Supporting Information

Small-sized Mg-AI LDH nanosheets supported on silica aerogel with large pore channels: Textural properties and basic catalytic performance after activation

Lijun Wang *, Yusen Wang, Xiaoxia Wang, Xiaolan Feng, Xiao Ye, Jie Fu

School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, PR China

*Corresponding author. E-mail address: ljwang@usx.edu.cn

Figures and Tables

Figure S1 TEM images of SA/LDH-Mg₂Al-80 (a), SA/LDH-Mg₅Al₂-80 (b), SA/LDH-Mg₃Al-80 (c), SA/LDH-Mg₂Al-105 (d) and SA/LDH-Mg₂Al-150 (e) with a large length-to-height ratio of 1.5; the insets are the radial diameter distributions of the supported LDH nanosheets acquired from >150 nanoparticles in the corresponding images.

Figure S2 Thickness distributions of the supported LDH nanosheets: SA/LDH-Mg₂Al-80 (a),

SA/LDH-Mg₅Al₂-80 (b), SA/LDH-Mg₃Al-80 (c), SA/LDH-Mg₂Al-105 (d) and SA/LDH-Mg₂Al-150 (e) acquired from >150 nanoparticles in Figure S1.

Figure S3 EDS mappings and corresponding elemental analysis of SA/LDH-Mg₂Al-80 (a), SA/LDH-Mg₂Al-105 (b), SA/LDH-Mg₂Al-150 (c), SA/LDH-Mg₅Al₂-80 (d) and SA/LDH-Mg₃Al-80 (e).

Figure S4 (a) N_2 adsorption-desorption isotherms and the corresponding BJH pore size distribution (inset) of SA; (b) BJH pore size distributions of the SA/LDH series and the unsupported LDH (LDH-Mg₂Al-80).

Figure S5 TEM image of unsupported LDH nanosheets (LDH-Mg₂Al-80) using as a contrast sample.

The inset is the corresponding radial diameter distribution.

Figure S6 The used catalyst SA/LDH- Mg_2Al-80 collected by centrifugation after the reaction of benzaldehyde with nitromethane in different solvents such as nitromethane, ethanol, dichloromethane, toluene, DMF, Water and THF.

Figure S7 NH₃-TPD profiles of SA/LDH series synthesized at a temperature of 80°C.

	Samples -	NH ₃ -TPD peak position (°C)			Total peak
		Ι	II	III	area (a.u.) ^{<i>a</i>}
	SA/LDH-Mg ₂ Al-80	168.0	440.0	695.5/736.4	99705.9
	SA/LDH-Mg ₅ Al ₂ -80	183.6	431.8	667.8	80575.0
	SA/LDH-Mg ₃ Al-80	161.0	429.1	660.6	83856.0

Table S1 The semi-quantitative results of NH₃-TPD measurements.^{*a*}

^{*a*} Total peak area is linearly proportional to the amount of NH₃ adsorbed.