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Abstract: Due to their unique properties, such as good biocompatibility, excellent conductivity,
effective catalysis, high density, and high surface-to-volume ratio, gold nanoparticles (AuNPs) are
widely used in the field of bioassay. Mainly, AuNPs used in optical biosensors have been described
in some reviews. In this review, we highlight recent advances in AuNP-based non-optical bioassays,
including piezoelectric biosensor, electrochemical biosensor, and inductively coupled plasma mass
spectrometry (ICP-MS) bio-detection. Some representative examples are presented to illustrate the
effect of AuNPs in non-optical bioassay and the mechanisms of AuNPs in improving detection
performances are described. Finally, the review summarizes the future prospects of AuNPs in
non-optical biosensors.
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1. Introduction

Nanoparticles are defined as particles with sizes between 1 and 100 nm. Due to their physical
and chemical properties such as high specific surface area, electrical performance, magnetism, optical
and catalytic property, nanoparticles have received great attention in many research fields [1,2].
Especially, AuNPs have excellent properties such as good biocompatibility, excellent conductivity,
effective catalysis, high density, and high surface-to-volume ratio, which are widely used in the field
of bioassay [3–9].

As one of the most stable metal nanoparticles, AuNPs play an important role in the field of
biosensors. AuNPs can be easily modified with biomolecules such as DNAs and proteins by thiol and
amine via Au-S or Au-N bonds without destroying the activity of biomolecules. In optical biosensors,
AuNPs are widely used to improve the detection sensitivity of fluorescence, chemiluminescence,
surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS) method, and other optical
detection [10–13]. The AuNPs are usually used as fluorescence quenchers, catalysts, immobilization
platforms, colorimetric nanoparticles, as well as SPR and SERS enhancers in optical biosensors. It shows
that the sensitivities of optical biosensors are effectively improved based on the signal amplification of
AuNPs. However, the optical detections usually require expensive instruments such as fluorescent
spectrometers, SPR/SERS instruments, which increases the cost of bioassay.

In non-optical biosensors, AuNPs are mainly used in piezoelectric biosensors, electrochemical
biosensors and ICP-MS biosensors. In piezoelectric biosensors, AuNPs usually act as labels which make
use of their high density to increase the mass change and improve the sensitivity of detection [14,15].
In electrochemical biosensors, AuNPs are often used as immobilization platform, electrocatalyst or
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electron migration enhancer which exhibit advantages in improving the sensitivity, selectivity and
stability of detection [16–18]. In recent years, AuNPs have also been reported in biological detection
based on ICP-MS technology [19–22]. Similar to optical biosensors, the performances of non-optical
biosensors are effectively improved based on the signal amplification of AuNPs. Although the
instruments of non-optical detection are simple, the detection procedures are not as automatic and
rapid as those of the optical biosensors, which are not widely used in clinic application.

In this review, we focus on the applications of AuNPs in non-optical bioassay strategies of
piezoelectric biosensors, electrochemical biosensors and ICP-MS detections. The effects of AuNPs
in these detection methods are described. Finally, we summarize the future prospects of AuNPs in
non-optical biosensors.

2. Piezoelectric Biosensors

The most common type of piezoelectric biosensor is quartz crystal microbalance (QCM), which
is a sensitive technique based on the piezoelectric effect [23]. When a mechanical force is exerted
on the quartz crystal, the crystal generates an electric potential in the direction of the applied force.
Oppositely, when an electric field is applied to the crystal, the crystal generates mechanical vibrations.
When a certain substance is adsorbed on the surface of quartz crystal, the resonance frequency of
the crystal will shift from its basic frequency. Therefore, the mass change on the surface of quartz
crystal can be detected by the frequency shift according to piezoelectric effect. QCM biosensors possess
the advantages of high sensitivity at a nanogram level, label-free and real-time monitoring, which is
widely used in the detection of genes, proteins, cells, microorganisms, toxins and so on [24–44].

Because of their large specific surface area, AuNPs are often immobilized on the surface of the
quartz crystal in order to connect more biomolecules in QCM biosensors. Jiang’s team reported that
AuNPs were immobilized on the surface of a gold electrode to increase the number of capture probes
and hybridize more target DNAs. It suggested that the sensitivity of this method is three times more
than that without AuNP immobilization [45]. Moreover, they deposited AuNPs on the surface of
platinum coated QCM (Pt-QCM) to provide more binding sites for HS-DNA, and the maximum
immobilization amount of HS-DNA on (Au)Pt-QCM was about three-fold more than that on bare
Pt-QCM [46]. In addition, to immobilize more AuNPs on the surface of the crystal, they developed a
novel method that a large amount of AuNPs were adsorbed on the surface of polystyrene microspheres
which were immobilized on the surface of Au electrode, with a low detection limit of 10−12 M for DNA
analysis [47].

Obviously, AuNPs have a significant signal amplification effect in QCM biosensors due to their
heavier masses than biomolecules. Owing to their high density, AuNPs have potential as labels
to increase the mass change on the quartz surface [48–50]. Jiang et al. used AuNPs of 50 nm as
the mass enhancer to amplify the frequency signal of QCM, which reached a low detection limit of
10−14 M for target DNA [51]. Furthermore, they improved the detection limit to 10−16 M by modifying
AuNPs on the surface of gold electrode and labeling AuNPs with probe DNA simultaneously [52,53].
Premaratne et al. carried out a similar research and obtained an ultralow detection limit of 28 fM for
target oligonucleotide [54]. To further increase the frequency shift, Chen et al. exploited a QCM-DNA
sensor with a layer-by-layer AuNPs structure by DNA hybridization, which achieved an ultralow
detection limit of 2 plaque forming units (PFU)/mL for dengue virus (DENV) [55]. Kim et al. found
that the introduction of AuNP modified antibodies increased the signal by 53.4% compared with that
without AuNPs modification [56]. Tang and co-workers proposed a novel displacement-type QCM
immunosensor based on AuNPs, which lead to a significant frequency shift, and a detection limit as
low as 0.6 pg·mL−1 for brevetoxin B (PbTx-2) (Figure 1) [57].
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immunosensor. Reproduced with permission from [57]. American Chemical Society, 2013. 
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Figure 1. (a) Conventional displacement-type assay protocol based on the dextran-concanavalin
A (ConA)-glucose system, (b) schematic illustration of gold nanoparticle heavily functionalized
with glucoamylase and PbTx-2 BSA, and (c) measurement principle of the displacement-type QCM
immunosensor. Reproduced with permission from [57]. American Chemical Society, 2013.

The technique of gold label silver stain (GLSS) is also an excellent choice to enhance the mass
change in QCM biosensor. In the presence of reducing agents such as hydroquinone quinol (HQ),
AuNPs catalyze the reduction of silver ions to form silver element which deposits on the surface
of AuNPs to obtain Au@Ag core-shell structure, which highly increases the mass change and
improve the detection sensitivity. Shan et al. constructed a QCM cell sensor based on the classical
GLSS signal amplification method, and the limit of detection (LOD) for acute leukemia cells was
1160 cells·mL−1 [58].

Another effective way to improve the sensitivity of QCM biosensors is to combine AuNPs
with biological amplifying technologies. Sun et al. developed a method with multi-cycle signal
amplification based on AuNPs and hybridized chain reaction (HCR), which the large number of
AuNPs were assembled on the HCR products for signal amplification, and the detection limit of the
target DNA was as low as 0.7 fM [59].

3. Electrochemical Biosensors

Electrochemical biosensors show the advantages of high sensitivity, low-cost, amenable
miniaturization and operating convenience. AuNPs play an important role in improving the sensitivity
and specificity of electrochemical biosensors, such as modifying the sensing surface to enhance
conductivity, increasing the immobilization of biomolecules and catalyzing the electrochemical
reactions. In addition, AuNPs are also used as the electrochemical indicators.

3.1. AuNPs as the Electrochemical Indicators

AuNPs can be used as electrochemical indicators based on the redox reaction between Au0 and
Au3+ [60]. In electrochemical biosensors, the ways to detect AuNPs signal mainly include: (i) direct
detection of the oxidation signal of AuNPs without treatment [61]. (ii) AuNPs are electro-oxidized
to gold ions in hydrochloric acid (HCl) solution [62–67]. (iii) AuNPs are dissolved in HBr/Br2 acidic
solution [68,69].

Kerman et al. reported an electrochemical sensor for DNA detection by the direct oxidation of
AuNPs without acid treatment, which provided a detection limit of 2.17 pM for target DNA [70].
Although it is simple to detect AuNPs directly, most of AuNPs cannot be detected due to their
distances away from electrodes. Therefore, AuNPs are usually oxidized to gold ions in most
electrochemical detections. Trau et al. reported a fast and sensitive electrochemical detection in
which the AuNPs were electrochemically oxidized to Au3+ in HCl solution at first, and then the
reduction of gold ions was detected which obtained a detection limit as low as 1 colony-forming
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units (CFU) for Mycobacterium tuberculosis (Mtb) DNA [71]. Ilkhani et al. designed an electrochemical
sandwich immunosensor in which cathodic preconcentration and anode stripping of gold were
performed after AuNPs were dissolved in HCl solution. The detection limit of this method was
50 pg·mL−1 [72]. Preconcentration of gold ions on the surface of electrodes can increase the recovery
rate of AuNPs and enhance the electrochemical signals. Qin et al. reported a new method by cathodic
preconcentration of gold ions. Unlike traditional AuNP electrochemical measurements, a cathodic
potential (0 V here) was firstly applied on the electrode in air, and then the dissolution of AuNPs and
cathode preconcentration simultaneously performed in microliter-droplet aqueous HBr/Br2. This
scheme presented high signal recovery efficiency of AuNPs, and the detection limit was as low as
0.3 fg·mL−1 for human immunoglobulin G (hIgG) and 0.1 fg·mL−1 for the human prostate-specific
antigen (hPSA) (Figure 2) [73].
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Figure 2. Illustration of key electrochemical steps of the metal-labeled amperometric immunoassay
signal amplification protocol. Reproduced with permission from [73]. Royal Society of Chemistry, 2015.

The corrosive solutions such as HBr/Br2 and HCl used in dissolving AuNPs are harmful to
the ecological environment and human health. Therefore, green reagents are needed to replace
acidic electrolytes for AuNP electrooxidation. Recently, NaNO3/NaCl mixture was first proposed by
Baldrich et al. as a potential alternative. The results showed that NaNO3/NaCl mixture exhibited
better electrooxidation performance than other oxidized salts, but the reduction peak is much lower
than that of the HCl solution. It’s also suggested that NaNO3/NaCl provided nanoimmunoconjugate
quantization in all the concentration range. Therefore, NaNO3/NaCl can be used to substitute HCl,
providing a more environmentally friendly method for electrochemical measurement of AuNPs
(Figure 3) [74].
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3.2. AuNPs as the Electron Migration Enhancers

In electrochemical biosensors, the electrochemical redox reaction generates electron exchange on
the electrode, which is relative to the concentration of the analytes. However, the direct electrochemical
detection is often difficult to achieve because of the weak electrical conductivity of biomolecules which
blocks the transfer of electrons to the electrode. In order to enhance the conductivity, AuNPs are
usually immobilized on the surface of the electrode, which not only enhances the electron transfer rate
in the electrochemical process, but also enlarges the sensing area to increase the immobilized amount
of the recognition unit, thereby achieving the improvement of sensitivity.

As early as 1996, Natan’s group had demonstrated the direct electron transfer of AuNPs between
proteins and electrodes [75]. Since that, much research using AuNPs as the electron migration enhancer
has been published [76–80]. Electrodeposition is a common method to immobilize AuNPs on the
surface of electrodes. Zhao et al. electrochemically deposited AuNPs on the surface of glassy carbon
electrode (GCE), and a wide linear range from 0.5 pg·mL−1 to 100 ng·mL−1 and the ultralow detection
limit of 145.69 fg·mL−1 was achieved for prostate-specific antigen (PSA) detection [81]. Bao et al. also
used AuNPs deposition modified GCE to detect DNA methylation and DNA methyltransferase [82].
Another way to modify AuNPs on the surface of electrodes is the direct immobilization of AuNPs.
Jarocka et al. immobilized AuNPs on the surface of gold electrode as the electron migration enhancer,
achieving a LOD of 2.2 pg·mL−1 for target protein [83]. The size of AuNPs has influence on the
performance of the biosensor, affecting mainly linearity of the output signal and reproducibility of
assays. To immobilize more AuNPs on the electrode surface, a three-dimensional structure of AuNPs
was developed by Wang’s group. They designed a layer-by-layer assembly of AuNPs on the surface
of electrode by para-Sulfonatocalix[4]arene (pSC4) modified AuNPs and 1,6-hexanediamine (HMD)
conjugation through host-guest recognition. With enhanced electron migration and large specific
surface area of AuNPs, this structure showed a detection limit of 0.5 ng·mL−1 for human epidermal
growth factor receptor 2 (ErbB2) (Figure 4) [84].
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To enhance the conductivity furthermore, AuNPs are also combined with other high conductive
materials such as graphene, carbon nanotubes and dendrimers in electrochemical biosensor. Wang et
al. developed an electrochemical DNA sensor in which the chitosan-graphene sheet and polyaniline
were modified on the surface of GCE to increase the effective surface area of the electrode to deposit
more AuNPs. The detection limit of this method was as low as 2.11 pM [85]. Gao et al. reported an
electrochemical immunosensor based on AuNPs and Nile blue A (NB) hybridized electrochemically
reduced graphene oxide (NB-ERGO). In this study, NB-graphene oxide (NB-GO) and HAuCl4 were
simultaneously reduced to synthesize AuNPs/NB-ERGO on the surface of the electrode, which
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provided a large surface area for antibody attachment, achieving a detection limit of 1 pg·mL−1

for carcinoembryonic antigen (CEA) [86]. Furthermore, to enhance the specific surface area of
electrode, Shuai et al. proposed an ultrasensitive electrochemical biosensor by combining tungsten
oxide-graphene (WO3-Gr) composites with AuNPs on the electrode to provide more binding sites for
the probes, obtaining a detection limit of 0.05 fM for microRNA [87]. Nanocarbon materials are often
used in electrochemical biosensors due to their good conductivity. Bai et al. attached the electrode
by single-walled carbon nanotube modified AuNPs to improve the conductivity of the electrode and
provide more binding sites for biomolecules, receiving a detection limit of 8 pM for platelet-derived
growth factor (PDGF) and 11 pM for thrombin respectively [88]. Liu et al. produced a composite
of AuNPs coated with graphitized mesoporous carbon nanoparticles for the detection of PSA. This
composite increased the electron transfer rate and the immobilizing number of aptamers on the surface
of electrode, resulting in a limit of detection less than 0.25 ng·mL−1 and a linear detection range from
0.25 to 200 ng·mL−1 [89]. In addition, dendrimer-encapsulated AuNPs are also developed to enhance
the signal of electrochemical biosensors, which possess the advantages of high density of active groups,
excellent structural homogeneity, good biocompatibility and conductivity. Jeong et al. reported the
poly(amidoamine) dendrimer encapsulated AuNPs (PAMAM-AuNPs) for CEA detection, which not
only increased the immobilized amount of the antibody, but also accelerated the electron transfer
process, resulting in a linear dynamic range of 10.0 pg·mL−1 to 50.0 ng·mL−1 and a detection limit of
4.4 pg·mL−1 [90]. Zhang et al. also exploited a highly sensitive electrochemical immunosensor based
on PAMAM-AuNPs with a detection limit of 50 CFU·mL−1 for Escherichia coli (E. coli) [91].

In addition, AuNPs are also used in molecularly imprinted electrochemical biosensors by
increasing the surface area of the recognition unit and improving the conductivity of the molecularly
imprinted polymer (MIP) film [92]. Yang and co-workers developed a novel molecularly imprinted
electrochemical sensor for cholesterol (CHO) detection based on bioinspired Au microflowers. In this
study, the bioinspired Au microflowers were formed on the surface of the electrode by wrapping
AuNPs on the bioinspired polydopamine (PDA) film through electropolymerization, followed by the
coating of MIP. The linear response range of this strategy was between 10−18 and 10−13 M, with an
ultralow detection limit of 3.3 × 10−19 M, which is more sensitive than the traditional CHO detection
method (Figure 5) [93].
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The regeneration of biosensor is able to simplify operation, reduce cost and save time, which is
favourite in the detection process. Sun et al. developed an ultrasensitive electrochemical biosensor
for the detection of human liver hepatocellular carcinoma (HepG2) cells. After measurement, an
electrochemical reductive desorption method was performed to break gold thiol bond and desorb the
components on the surface of AuNPs/GCE, which retained 90% of the original sensitivity [94].

3.3. AuNPs as the Immobilization Platform

For electrochemical biosensors, the number of electroactive molecules is a key factor to the
detection sensitivity, which is usually improved by increasing the amount of electrochemical signal
molecules through various amplifying strategies. Because of the advantages of large specific
surface area and easy conjugation with biomolecules by Au-S bond, AuNPs are usually used as
the immobilization platform to connect a large number of biomolecules, resulting in the conjugation of
a great deal of electrochemical signal molecules [95–104].

Wang and co-workers developed an electrochemical DNA sensor based on the amplification
of AuNPs. In this method, a large number of the methylene blue (MB) labeled DNA probes
were immobilized on the surface of AuNPs. Attribute to the large specific surface area of AuNPs,
the electrochemical signals of MB were effectively amplified, resulting in a detection range of 10−13 to
10−8 M and a detection limit as low as 50 fM [105]. Shu et al. modified 6-ferrocenyl hexanethiol (Fc) and
aptamers on the surface of AuNPs simultaneously that the amount of the former was much more than
that of the latter. After the biorecognition of aptamers and CEA, the amplified electrechemical signal
of Fc significantly improved the detection sensitivity [106]. Hasanzadeh et al. used AuNPs to support
histidine (nano-Au-Hist), which showed a perfect discriminatory power for the Brucella-specific probe
hybridization [107]. Wang et al. reported AuNPs as the platform to immobilize DNAs for the detection
of ampicillin [108]. In addition, AuNPs often combined with other nanomaterials to further improve
the performance of the biosensors. Chen et al. reported that the AuNPs were grown on the surface of
the octahedral Cu2O nanocrystals to increase the surface area and immobilize recognition components
and electroactive substances, which presented a detection limit as low as 23 fM for thrombin (TB) [109].

Combining AuNPs with signal amplifying technologies is a common way to increase the detection
sensitivity of electrochemical biosensors. Zhu’s group designed an electrochemical detection strategy
based on spherical nucleic acids AuNPs triggered mimic-hybridization chain reaction (mimic-HCR).
The AuNP carried DNA probes initiated the mimic-HCR which the double-stranded structure bound a
large amount of [Ru(NH3)6]3+ to amplify the electrochemical signal [110]. Recently, Bo et al. developed
a triple-signal amplification method for the determination of miRNA. In this protocol, AuNPs were
connected together to form the bridge DNA-AuNPs nanocomposites, which was used to absorb a large
number of electrochemical indicator [Ru(NH3)6]3+. This strategy achieved a wide detection linear
range of 10−17 to 10−11 M, with limit of detection as low as 6.8 aM (Figure 6) [111]. Yu et al. developed
AuNPs hot-spots self-assemble structure by catalytic hairpin assembly (CHA) reaction to improve the
absorption amount of [Ru(NH3)6]3+, obtaining a detection limit as low as 25.1 aM for miRNA-141 [112].
It suggests that AuNPs combined with bio-amplification technologies such as bio-barcode HCR, CHA
lead to a detection limit as low as aM level, which is of great prospect to enhance the sensitivity of
electrochemical biosensors.

In addition, Wang et al. reported a multiple electrochemical detection method for quantitative
analysis of miRNAs. In this work, gold nanoparticle-coated magnetic microbeads (AuNP-MMBs) were
used as the carrier to connect two hairpin probes. At the same time, the electrochemical indicators
MB and Fc modified diblock oligonucleotides (ODNs) were immobilized on the surface of AuNPs as
the signal output. Two target miRNAs were detected simultaneously with detection limits as low as
0.2 fM and 0.12 fM for miRNA-182 and miRNA-381 respectively (Figure 7) [113].
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3.4. AuNPs as the Catalyst

Bulk gold is chemically inert, while AuNPs exhibit extraordinary catalytic capability [114–117].
Studies show that the catalytic activity of AuNPs arises from their quantum scale, high
surface-to-volume ratio and interface-dominated property, which is able to reduce the overpotential
of electrochemical reactions and accelerate the chemical reaction, leading to the improvement of
detection sensitivity. Typically, AuNPs are used to catalyze redox reactions such as nicotinamide
adenine dinucleotide (NADH), hydrogen peroxide (H2O2), 4-nitrophenol, o-phenylenediamine (o-PD),
catechol and nitrite [118–120].

Raj et al. described the electrocatalytic oxidation effect of AuNPs on NADH. The self-assembly
of AuNPs on a thiol-terminated three-dimensional silicate network modified on the surface of the
electrode catalyzed the oxidation of NADH, reducing the overpotential by 915 mV without any
electron transfer mediator [121]. Li et al. prepared a sandwich immunosensor for the analysis
of alpha fetoprotein (AFP). In this study, AuNPs functionalized magnetic multi-walled carbon
nanotubes (MWCNTs-Fe3O4) were utilized to adsorb lead ions and antibodies, which exhibited
good electrocatalytic activity for the reduction of H2O2. Under optimal experimental conditions,
the detection limit reached 3.33 fg·mL−1 for AFP [122]. Cao et al. structured an AuNP network to
catalyze the redox of H2O2 and HQ, with a detection limit of 0.32 pM for lysozyme [123].
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To improve the electrochemical signals, considerable research efforts have been devoted to the
application of GLSS in electrochemical biosensors [124–131]. Because of the amplification of GLSS,
the electrochemical signal of silver is highly improved, which leads to the enhancement of detection
sensitivity. Lai et al. constructed an electrochemical immunoassay strategy based on GLSS for the
detection of human and mouse IgG [132]. The amount of AuNPs is one of the keys to enhance the
effect of GLSS. Recently, Zhang et al. used polypyrrole microsphere (PPyMS) to immobilize more
AuNPs for the amplification of silver label signal. A low detection limit of 0.1 ng·L−1 and a wide linear
range of 0.25 ng·L−1 to 50·L−1 was obtained for microcystin-LR (MC-LR) detection [133].

Combining AuNPs with other nanomaterials is also an effective way to improve the performance
of electrochemical biosensors. Yang et al. used AuNPs functionalized nitrogen-doped graphene
quantum dots (Au@N-GQDs) to enhance conductivity and synthesized the echinoidea-shaped
nanocomposites (Au@Ag-Cu2O) which composed of Au@Ag core-shell nanoparticles and disordered
cuprous oxide to label antibodies. Taking advantages of the conductivity and catalysis of AuNPs, an
ultralow detection limit of 0.003 pg·mL−1 for PSA was achieved [134]. Studies show that the size of
AuNPs affects the catalysis of silver deposition, and relatively high deposition currents of silver can be
obtained using small AuNPs. Duangkaew et al. developed a triple signal amplification strategy based
on small-sized gold nanoparticles for the electrochemical detection of PSA. In this method, the size
of AuNPs was increased by forming an Au shell on the surface of the small AuNP tags, and then the
spiky AuNPs were grown on the surface of Au shell, with the benefit of enhancing the catalysis of
silver. Compared to the traditional GLSS process, this triple signal amplification strategy magnified
the electrical signal by 260 times (Figure 8) [135].

The electrochemical biosensors based on AuNPs are summarized in Table 1.
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Figure 8. Schematic representation of triple signal amplification strategy based on AuNPs serving as
labeling tags. Sandwich immunoreaction of PSA was used as an immunosensing model. Linear sweep
voltametric analysis was performed to detect deposited silver. Reproduced with permission from [135].
Elsevier, 2017.



Nanomaterials 2018, 8, 977 10 of 23

Table 1. Electrochemical biosensors based on AuNPs.

Analytes a Electrode Modification b Functions of AuNPs Detection Limits Ref.

Mtb DNA SPCE/SA Electrochemical indicators 1 CFU [71]
EGFR GCE Electrochemical indicators 50 pg/mL [72]

hIgG, hPSA GCE/MWCNT/AB Electrochemical indicators 0.3 fg/mL, 0.1 fg/mL [73]
hMMP9 SPCE/AB Electrochemical indicators 0.06 ng/mL [74]

PSA GCE/AuNPs/AB Electron migration enhancers 145.69 fg/mL [81]
M.SssI MTase GCE/AuNPs/CP Electron migration enhancers 0.04 U/mL [82]

ErbB2 GE/pSC4/HMD/AuNPs Electron migration enhancers 0.5 ng/mL [84]
ssDNA GCE/CS-GS/PANI/AuNPs/CP Electron migration enhancers 2.11 pM [85]

CEA GCE/NB-ERGO/AuNPs/AB Electron migration enhancers 1 pg/mL [86]
MicroRNA GCE/WO3-Gr/AuNPs/CP Electron migration enhancers 0.05 fM [87]
PDGF, TB GCE/SWCNTs@AuNPs/AB Electron migration enhancers 8 pM, 11 pM [88]

PSA PGE/GMCs@AuNPs/AB Electron migration enhancers 0.25 ng/mL [89]
CEA GE/Cys/AuNPs@PAMAM/Th/AB Electron migration enhancers 4.4 pg/mL [90]

ssDNA GE/CP Immobilization platform 50 fM [105]
Ampicillin GCE/AuNPs/Aptamer Immobilization platform 0.3 pM [108]

TB GCE/AuNPs/Aptamer Immobilization platform 23 fM [109]
MiRNA GE/CP Immobilization platform 6.8 aM [111]

MiRNA-141 GE/CP Immobilization platform 25.1 aM [112]
MiRNA-182, MiRNA-381 MGE Immobilization platform 0.2 fM, 0.12 fM [113]

AFP GCE/AuNPs/AB Catalyst 3.33 fg/mL [122]
Lysozyme GE/CP Catalyst 0.32 pM [123]

Microcystin-LR GCE/CNT/PEG Catalyst 0.1 ng/L [133]
PSA GCE/Au@N-GQDs/AB Catalyst 0.003 pg/mL [134]
PSA SPCE/CNT/AB Catalyst 1.2 pg/mL [135]

a Mtb DNA: Mycobacterium tuberculosis DNA; EGFR: epidermal growth factor receptor; hIgG: human immunoglobulin G; hPSA: human prostate-specific antigen; hMMP9: human
matrix metallopeptidase-9; PSA: prostate-specific antigen; M.SssI MTase: methyltransferase; ErbB2: human epidermal growth factor receptor 2; CEA: carcinoembryonic antigen; PDGF:
platelet-derived growth factor; TB: thrombin; AFP: alpha fetoprotein. b SPCE: screen printed carbon electrode; SA: streptavidin; GCE: glassy carbon electrode; MWCNT: multiwalled
carbon nanotube; AB: antibody; GE: gold electrode; pSC4: para-Sulfonatocalix[4]arene; HMD: 1,6-hexanediamine; CS-GS: chitosan-graphene sheets; PANI: polyaniline; CP: capture probe;
NB-ERGO: Nile blue A (NB) hybridized electrochemically reduced graphene oxide; WO3: tungsten oxide; SWCNTs: single-walled carbon nanotubes; PGE: pyrolytic graphite electrode;
GMCs: graphitized mesoporous carbon nanoparticles; Cys: cysteamine; PAMAM: poly(amidoamine) dendrimer; Th: thionine; MGE: magnetic gold electrode; CNT: Carbon nanotubes;
PEG: polyethylene glycol; Au@N-GQDs: AuNPs functionalized nitrogen-doped graphene quantum dots.



Nanomaterials 2018, 8, 977 11 of 23

4. ICP-MS Biosensor

Inductively coupled plasma mass spectrometry (ICP-MS) combines the high-temperature
ionization characteristics of inductively coupled plasma with the sensitive and fast scanning of
mass spectrometers, which is a high sensitive technique for element, isotope and morphological
analysis [136]. The technology offers extremely low detection limit and an extremely wide dynamic
linear range with a working range more than 9 orders of magnitude, and owns the advantages of simple
spectral lines, low interference, high analytical precision, rapid analysis and high specificity, which
is widely used in environmental protection, biology, medicine, metallurgy, nuclear material analysis
and other fields [137–143]. In the past few years, the strategies combining ICP-MS technology with
metal nanoparticle labels were developed to achieve ultra-high sensitivity analysis in biomolecular
analysis [144–152].

AuNPs are composed of plenty of gold atoms, which generate a huge number of Au ions by
dissolution, digestion and plasma. Using AuNPs as the labels, the ultra-high sensitive detection of
biomolecules is able to achieve by ICP-MS technology. He et al. developed an ICP-MS biosensor
based on AuNP labels for HIV-1 p24 antigen detection. In this study, diluted HNO3 was used to
dissociate AuNPs from the immunoassay complex, with a detection limit of 1.49 pg·mL−1 by ICP-MS
measurement (Figure 9) [153]. Similar methods were developed in cell and immune assay [154].
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To improve the signal of ICP-MS measurement, the amplification methods have been developed
to increase the amount of labeled AuNPs. Yang et al. reported a layer-by-layer assembly method of
AuNPs to amplify the ICP-MS signals for the detection of cancer cells. The detection limit of human
hepatocellular carcinoma SMMC-7721 cells was as low as 100 cells·mL−1 (Figure 10) [155]. Li et al.
developed an ICP-MS ultrasensitive immunoassay based on AuNPs and tyramine signal amplification
(TSA), with a detection limit of 1.85 pg·mL−1 for AFP [156]. He et al. reported a new method based on
rolling circle amplification (RCA) and ICP-MS detection, which provided an ultralow detection limit of
0.1 fM and a good specificity [157]. Zhang et al. reported an AuNPs labelling and HCR amplification
strategy for HepG2 cells detection by ICP-MS, with detection limit as low as 15 cells and a linear range
of 40–8000 cells [158]. Li et al. reported a triple signal amplification strategy based on AuNPs, which
combined RCA, nicking displacement and bio-bar-code techniques to perform ultra-sensitive detection
of target DNA by ICP-MS. This strategy provided a detection limit as low as 3.2 × 10−17 M for hepatitis
B virus (HBV) DNA [159]. Liu et al. reported a novel strategy based on capillary electrophoresis
and inductively coupled plasma mass spectrometry (CE-ICP-MS). The results shown that more than
2000 Au atoms were attached to each albumin with a detection limit as low as 0.1 aM and a wide linear
range of 4 orders of magnitude [160].
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Conventional ICP-MS is usually used in analyzing the concentrations and compositions of the
elements. However, single-particle mode ICP-MS (sp-ICP-MS) is able to perform multiple information
analysis on the structure, shape, particle size, and agglomeration of nanoparticles, which extends the
application of ICP-MS technology in bioassay [161–170]. For the first time, Allabashi et al. evaluated
the possibility of direct determination of AuNPs in colloid solutions by ICP-MS, without previous
digestion/dissolution. The results showed no significant difference compared to the same AuNPs by
acidic digestion [171]. Liu et al. reported that ICP-MS was able to measure AuNPs with the sizes from
10 to 70 nm under high sensitive mode, and the size of AuNPs could be further extended to 200 nm in
less sensitive mode [172]. In sp-ICP-MS detection, the frequency of the pulse signal is a function of the
concentration of AuNP colloids and the recorded peak distribution of signal intensity is a function of
size distribution. It can be used in the detection of biomolecules. Han et al. reported a DNA detection
method based on AuNPs and sp-ICP-MS. In this method, the hybridization of DNA targets with DNA
probes immobilized on the surface of the AuNPs resulted in the formation of dimers, trimers, or even
large aggregates of AuNPs. This polymeric network aggregation led to decreased concentrations of
the whole AuNP population as well as increased individual sizes. These changes were detected by
sp-ICP-MS quantitatively, and thus the amount of DNA was obtained. The quantitative detection
of AuNPs aggregates was performed directly and yielded a good linear relationship, with a LOD as
low as 1 pM [173]. Therefore, the sp-ICP-MS is a powerful tool for nanoparticle detection, which is
environmentally friendly, and needn’t use toxic reagents such as HCl and nitric acid to digest AuNPs.

5. Conclusions

Nanotechnology promotes the development of many fields such as bioassay and
biorecognition [174–187]. Nanomaterials play a crucial role in enhancing the performance of biosensors.
In non-optical bioassay, AuNPs are widely used to improve the detection sensitivity due to their good
physical and chemical properties. Taking advantage of their heavy mass, AuNPs are utilized to
increase the mass change and improve the frequency shift in piezoelectric biosensor. In electrochemical
biosensor, AuNPs are used as an electrochemical indicator, electron migration enhancer and catalyst
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based on their excellent conductivity and effective catalysis. In addition, the gold element in AuNPs can
be detected by ICP-MS technology. Because of their high specific surface area, AuNPs are often used
as the immobilization platform to immobilize more biomolecules and enhance the detection sensitivity.
Combining AuNPs with other various signal amplifying methods such as RCA, HCR, bio-barcode
and layer-by-layer assembly, the sensitivities of biosensors are highly improved to achieve detection
limits as low as attomole or below. Although AuNPs perform excellently in improving the sensitivity
of non-optical biosensors, there are still challenges to be faced. The potential of AuNPs in non-optical
bioassay should be further explored to design new bioassay strategies to achieve multiplexed analysis
of biomolecules. The combination of AuNPs with novel signal amplification methods should be further
investigated to enhance the sensitivity of non-optical bioassay. To develop the practicable biosensors
based on AuNPs, the operation convenience, detection time, and analysis cost have to be considered.
It is possible that the non-optical biosensors with good performance should be successfully applied in
the field of biomedicine.
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