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Abstract: Graphene-metal hybrid nanostructures have attracted considerable attention due to their
potential applications in nanophotonics and optoelectronics. The output characteristics of devices
based on such nanostructures largely depend on the properties of the metals. Here, we study
the optical, electrical and structural properties of continuous thin gold and copper films grown
by electron beam evaporation on monolayer graphene transferred onto silicon dioxide substrates.
We find that the presence of graphene has a significant effect on optical losses and electrical resistance,
both for thin gold and copper films. Furthermore, the growth kinetics of gold and copper films vary
greatly; in particular, we found here a significant dependence of the properties of thin copper
films on the deposition rate, unlike gold films. Our work provides new data on the optical
properties of gold and copper, which should be considered in modeling and designing devices
with graphene-metal nanolayers.

Keywords: graphene; thin metal films; graphene/metal hybrid nanostructures; optical constants;
gold; copper; spectroscopic ellipsometry

1. Introduction

In recent years, a great deal of interest has been directed toward the use of graphene/metal
hybrid nanostructures in the development of high-efficiency photonic, plasmonic, optoelectronic
and nanoscale electronic devices [1–3]. Graphene is an atomically thin layer which therefore in
practice does not affect the size of nanostructures, while possessing many remarkable properties,
including broadband optical transparency [4–6], outstanding transport (electrical and thermal
conductivity) [7–10] and record-breaking strength [11]. In addition, monolayer graphene is
impermeable to atoms, molecules, ions, liquids, and standard gases [12–14] and exhibits superior
chemical and thermal stability [15,16] together with high bioreactivity and biocompatibility [17,18].
Notably, the combination of graphene and other materials, in most cases, positively affects the entire
hybrid structure. Thus, one of the most exciting characteristics of metal/graphene (plasmonic) hybrid
devices is the tunability of their optical properties, which paves the way for new applications in the
visible-near-IR spectral region [19–24]. Moreover, metal/graphene hybrid structures allow one to
obtain a significant improvement in the strength and fatigue limit in bending compared to conventional
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metal structures without graphene [25,26], which allows an increase in the functionality of thin-film
metal structures in relation to their use in flexible electronics applications.

Nanometric composite hybrid structures consisting of alternating thin layers of metal deposited
onto a sublayer of graphene have been used to demonstrate room temperature operation of
novel ultrasensitive broadband photodetectors [21,24,27], photovoltaic solar cells [19,28], hybrid
graphene/metasurface systems at terahertz and infrared frequencies [24,29–32] and highly sensitive
surface-enhanced Raman scattering (SERS) biosensors with the fluorescence quenching effect [33–35].
In addition, such novel composites can be potentially used as transparent graphene-based neural
interfaces for electrophysiology, in vivo neural imaging, optogenetic applications [36,37] and
brain-computer interfaces [38]. Furthermore, the combination of metallic components with other
2D materials to form a hybrid nanostructure system also provides a multifunctional platform with
enhanced performance for various applications [39–41].

The fabrication of hybrid structures can be accomplished by transferring graphene (or a metal)
to a metal (or graphene) by using a transferring method [20,42] or by the direct deposition of metals
on single-layer graphene (for example by physical vapor deposition); in practice, both methods are
used. In the first case, the optical, electrical and structural properties of a thin metal film cannot differ
significantly from the standard tabulated values [43,44], and to our knowledge, no experimental studies
have been done to clarify the second case: The effects of the graphene sublayer on the properties of the
deposited metal. At present, the initial growth kinetics of nanoparticles of various metals on the surface
of graphene (for both chemical vapour deposited (CVD) and mechanically exfoliated samples) [45,46]
has been studied in some detail, but little attention has been paid to the deposition of thin metallic films
on graphene and the study of their properties. One notable exception is the recent work of Majkova
et al. [47], where the growth kinetics of copper films on CVD graphene transferred onto an oxidized
silicon surface was studied in detail using the grazing-incidence small-angle X-ray scattering (GISAXS)
technique, but the optical properties of these films as well as their conductivities have not been
investigated. It has been noted that the ratio of the adsorption energy of copper adatoms on graphene
to the bulk cohesive energy of the copper is sufficiently small, causing the graphene substrates to
become non-wettable by copper. In particular, the latter circumstance (in combination with the very
small diffusion barrier for copper on graphene) results in copper growing on the surface of graphene
in the form of 3D islands during the initial stages according to the well-known Volmer–Weber model of
thin film growth [48,49]. In addition, a 15 nm-thick copper film on graphene is close to the percolation
threshold, whereas continuous films of the same thickness can be obtained for silicon, optical glass or
other typical optical substrates [50].

In the present work, we have investigated the influence of a graphene underlayer on Au and
Cu films properties in continuous thin films at thicknesses of 25 and 50 nm. Gold was chosen
because, to date, it has been the most popular material for a variety of applications in nanoplasmonics.
The optical properties of thin polycrystalline copper films are not only as good as those of noble
metals [51–53], but unlike the noble metal components, copper-based components can easily be
implemented in integrated circuits using industry-standard fabrication processes. It has been
previously shown that the properties of thin-film plasmonic nanostructures depend appreciably
on the film thickness [44,54–56], deposition rate [51,57] and ambient temperature [58]. Accurate
accounting for optical constants is important for theoretical and numerical analyses (modeling) of
thin-film hybrid graphene-metal nanostructures. We have undertaken numerous experiments with
different deposition regimes to study the change in the optical and electrical properties of Cu and Au
films with respect to differences in structural features. We focused on observing how the graphene
underlayer affects the growth kinetics and characteristics of continuous thin films. All deposited films
were characterized using the following techniques: Scanning electron microscopy (SEM), atomic force
microscopy (AFM), and X-ray diffraction (XRD) to study the structural morphology; four-point probe
measurements to determine the electrical properties; and spectroscopic ellipsometry to determine the
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optical constants in the spectral range from 300 to 3300 nm. The results of the experimental study are
demonstrated in detail below.

2. Experimental Section

2.1. Sample Fabrication

As substrates for thin metal films deposition, we used CVD-grown monolayer graphene
transferred by a poly(methyl methacrylate) (PMMA)-assisted transfer method onto silicon wafers with
a 285 nm SiO2 coating (from Graphene Laboratories Inc. (New York, NY, USA)). Monolayer graphene
covered more than 90% of the substrate area, and the remaining part of the substrate was filled with a
random distribution of bilayer graphene islands. Before metal deposition, graphene substrates were
annealed at 250 ◦C in a vacuum chamber 10−6 Torr for 1 h to remove residual PMMA and water.

The crystal quality of monolayer graphene was assessed with a Thermo Scientific™ DXR™2
Raman microscope equipped with a 532 nm excitation laser working at a power of 10 mW. Raman
spectra were acquired through a 50× microscope objective by means of 10 consecutive exposures,
each with a duration time of 15 s. The ratio of the intensities of the D and G peaks located near 1340
and 1580 cm−1, respectively, indicates the defect level in the graphene crystal [59].

Deposition of metals was made both on the graphene/SiO2/Si and similar SiO2/Si wafers without
graphene to compare the properties of films on different substrates.

All film depositions were performed using gold and copper pellets with a purity of 99.999% (Kurt J.
Lesker), and the e-beam evaporation procedure employing a Nano-Master NEE-4000 system. The base
pressure of a vacuum chamber before and during the evaporation process was ~7 × 10−7 Torr and
~4 × 10−6 Torr, correspondingly. Unless mentioned otherwise, all metal depositions were performed
at 20 ◦C. The nominal thicknesses of the deposited films are approximately 25 and 50 nm with a
deposition rate in the range from 1 to 15 Å/s and were monitored by a quartz-crystal mass-thickness
sensor (inside the evaporator).

2.2. Structural Characterization

X-ray diffraction (XRD) measurements of the (111) peaks of Au and Cu (Thermo ARL X’TRA
X-ray diffractometer with Cu Kα radiation (λ = 0.154 nm)) were used to investigate the crystallinity
of the deposited films. The Bragg reflection peak was analyzed by the Debye-Scherrer formula
〈D〉 = λ√

β2−β2
std cos θ

to estimate the average size of crystallites using the values of the peak width β,

where θ is the diffraction peak angle and βstd = 0.131 is the instrumental broadening determined by
the corundum single-crystal standard (SRM NIST).

Surface morphology was studied by scanning electron microscopy (SEM) (JEOL JSM-7001F with a
Schottky emitter in secondary electron imaging mode, with a voltage of 30 kV, and a working distance
of ~6.2–6.4 mm).

Topography measurements were performed using an atomic force microscopy (AFM, NT-MDT
Ntegra) in tapping mode with a probe resonance frequency of 250 kHz. To determine the
root-mean-square surface roughness of thin films, an area of 1.5 × 1.5 µm was used. The thickness of
each film was obtained by direct measurement of the step height by an AFM scan of the film surface.

2.3. Optical and Electrical Characterization

To investigate the optical characteristics of thin metal films we applied ellipsometry measurements
using a variable-angle spectroscopic ellipsometer VASE® by J. A. Woollam Co. (Lincoln, NE, USA)
in the wavelengths range of 300–3300 nm. Ellipsometry parameters Ψ and ∆ were measured at
angles of incidence of 70◦ and 75◦, and to extract the complex effective dielectric function of metal
films, ellipsometry data were analyzed by the Drude-Lorentz model fitting applying specialized
spectroscopic ellipsometry software (WVASE®, J. A. Woollam Co., Lincoln, NE, USA).
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The sheet resistance of the thin metal films was measured by the four-point probe method on a
Jandel RM3000 probe station using a head with a pin distance and radius of approximately 425 and
40 µm, correspondingly, both being much smaller than the area of deposited films (~1 × 1 cm2).

3. Results and Discussion

The growth and properties of thin metal films depend strongly on substrate characteristics and
the use of additional coatings. In this study, we investigated metal films with thicknesses of several
tens of nanometers deposited by electron beam evaporation on SiO2/Si wafers with and without a top
graphene layer (Figure 1a). Raman spectra measured at several sites on the graphene surface indicate
the near-absence of D peak and, therefore, a low defect density of its crystal structure (Figures 1b
and A1). A quartz crystal microbalance (QCM) installed in the e-beam system provides a means to
control the thickness of metal films during deposition, while the exact thicknesses were assessed with
AFM measurements for each sample. Figure 1c,d shows, respectively, a polycrystalline structure of the
film and typical AFM images of a scratch made on the metal film. Accurate thickness measurements
of metal films are of high importance in determining their optical properties with ellipsometric
measurements [44]. For convenience, in this work, we used thickness values obtained with the QCM.
AFM measurements of the grain structures of all metal films provided a root-mean-square surface
roughness with amplitudes of less than 1.6 nm and 0.7 nm for the SiO2/Si substrates with and without
top graphene layers, respectively.

Nanomaterials 2018, 8, 1058 4 of 16 

 

The growth and properties of thin metal films depend strongly on substrate characteristics and 

the use of additional coatings. In this study, we investigated metal films with thicknesses of several 

tens of nanometers deposited by electron beam evaporation on SiO2/Si wafers with and without a top 

graphene layer (Figure 1a). Raman spectra measured at several sites on the graphene surface indicate 

the near-absence of D peak and, therefore, a low defect density of its crystal structure (Figures 1b and 

A1). A quartz crystal microbalance (QCM) installed in the e-beam system provides a means to control 

the thickness of metal films during deposition, while the exact thicknesses were assessed with AFM 

measurements for each sample. Figure 1c,d shows, respectively, a polycrystalline structure of the film 

and typical AFM images of a scratch made on the metal film. Accurate thickness measurements of 

metal films are of high importance in determining their optical properties with ellipsometric 

measurements [44]. For convenience, in this work, we used thickness values obtained with the QCM. 

AFM measurements of the grain structures of all metal films provided a root-mean-square surface 

roughness with amplitudes of less than 1.6 nm and 0.7 nm for the SiO2/Si substrates with and without 

top graphene layers, respectively. 

 

Figure 1. (a) Illustration of the sample structure. (b) An optical microscopy image and Raman 

spectrum of single-layer graphene transferred onto a SiO2/Si substrate. (c) Atomic force microscopy 

(AFM) surface morphology images of the deposited copper film (copper crystallites formed during 

the deposition). (d) The AFM image of the scratch on a thin copper film deposited on the graphene 

underlayer of a SiO2/Si substrate and the height profile of the scratched copper film. 

3.1. Thin Gold Films 

To study the influence of graphene on the growth of metal films, thin gold films were deposited 

by electron beam evaporation onto SiO2/Si substrates with and without top graphene layers. In this 

section, we present the results for gold films with thicknesses of 25 nm (the results for 50 nm-thick 

gold films are shown in the Appendix A (Figure A2)). Figure 2a,b shows SEM images of Au films 

grown on SiO2/Si and graphene/SiO2/Si substrates at a rate of 1 Å/s in a single deposition process. 

These images reflect the formation of continuous polycrystalline metal films on both substrates and 

smaller average sizes of the in-plane grains of the gold films deposited on monolayer graphene. Gold 

films with the same thickness, but deposited on graphene at a higher rate of 5 Å/s, also consist of 

grains with smaller sizes comparing to gold films deposited on pure SiO2/Si substrates at the same 

rate (Figure 2c). This indicates different kinetics of gold growth on graphene and SiO2/Si substrates. 

XRD analysis of gold films reveals larger crystallite size for the films on SiO2 than for those on 

graphene. It further found that the size of gold crystallites on graphene also  increases as the 

Figure 1. (a) Illustration of the sample structure. (b) An optical microscopy image and Raman
spectrum of single-layer graphene transferred onto a SiO2/Si substrate. (c) Atomic force microscopy
(AFM) surface morphology images of the deposited copper film (copper crystallites formed during
the deposition). (d) The AFM image of the scratch on a thin copper film deposited on the graphene
underlayer of a SiO2/Si substrate and the height profile of the scratched copper film.

3.1. Thin Gold Films

To study the influence of graphene on the growth of metal films, thin gold films were deposited
by electron beam evaporation onto SiO2/Si substrates with and without top graphene layers. In this
section, we present the results for gold films with thicknesses of 25 nm (the results for 50 nm-thick
gold films are shown in the Appendix A (Figure A2)). Figure 2a,b shows SEM images of Au films
grown on SiO2/Si and graphene/SiO2/Si substrates at a rate of 1 Å/s in a single deposition process.
These images reflect the formation of continuous polycrystalline metal films on both substrates and
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smaller average sizes of the in-plane grains of the gold films deposited on monolayer graphene.
Gold films with the same thickness, but deposited on graphene at a higher rate of 5 Å/s, also consist of
grains with smaller sizes comparing to gold films deposited on pure SiO2/Si substrates at the same rate
(Figure 2c). This indicates different kinetics of gold growth on graphene and SiO2/Si substrates. XRD
analysis of gold films reveals larger crystallite size for the films on SiO2 than for those on graphene.
It further found that the size of gold crystallites on graphene also increases as the deposition rate goes
up. Thus, we obtained a mean crystallite size of 23.9 nm for the films grown on SiO2 at both rates of 1
and 5 Å/s and mean crystallite sizes of 22.3 and 23.5 nm for the gold films on graphene deposited
at 1 and 5 Å/s, respectively. A reduction of the mean crystallite size in the film results in an increase
of the electron scattering losses at the crystallite boundaries, which leads to higher resistivity and
optical losses. For this reason, in plasmonic and optoelectronic applications, the growth of gold films
on graphene is preferred at higher deposition rates.

Next, to determine the effective permittivities of the gold films, we performed ellipsometric
measurements and fitted the acquired data with a model comprising film thicknesses measured by
AFM (Figure 2d). Figure 2e presents the figure of merit (FOM) for the optical quality of obtained
gold films, which is the ratio of the real ε′ and imaginary ε′′ parts of the dielectric permittivity.
For wavelengths higher than 1000 nm, the FOM for the gold films deposited on pure SiO2 is slightly
higher than the FOM for the gold film deposited at the same rate on graphene with the overall
difference less than 15%, which is mostly a consequence of the smaller crystallite size. This is true for
deposition rates of both 1 and 5 Å/s. In addition, we performed sheet resistance measurements to
characterize the electrical properties of deposited gold films. The sheet resistance of the gold films
deposited on SiO2/Si substrates does not depend on the deposition rate and equals 2.0 Ohm/sq, which
is 25% and 15% lower than the sheet resistance of the corresponding films deposited on graphene at
the rates of 1 and 5 Å/s, respectively (2.7 Ohm/sq and 2.3 Ohm/sq). The data obtained for the optical
FOM and sheet resistance of gold films are in a good agreement with the results of XRD analysis.
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Figure 2. Scanning electron microscopy (SEM) micrographs (scale bars = 200 nm) of thin gold films
(25 nm thick) deposited on (a) a SiO2/Si substrate at a rate of 1 Å/s, (b) a graphene/SiO2/Si substrate
at a rate of 1 Å/s and (c) a graphene/SiO2/Si substrate at a rate of 5 Å/s. (d) The measured real ε′

(solid line) and imaginary ε′′ (dashed line) parts of the dielectric functions of Au films on SiO2/Si
substrates with and without a graphene underlayer. (e) Figures of merit −ε′/ε′′ for the same Au films.
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3.2. Thin Copper Films

In the same manner, we studied thin copper films deposited on SiO2/Si substrates with and
without a top graphene layer. The results of the structural morphology and optical properties of
copper films with a thickness of 25 nm are presented below. Additional results of 50 nm-thick
copper films are given in the Appendix A. Figure 3a,b demonstrates the noticeable difference in
morphology of 25 nm-thick copper films deposited at a low rate (approximately 1 Å/s) on SiO2/Si and
graphene/SiO2/Si substrates in a single process. The copper films on a bare SiO2/Si substrate have
a continuous structure, while the ones deposited on graphene contain narrow voids between metal
clusters covering the entire film. Therefore, the addition of only a single atomic layer of graphene
completely changes the growth kinetics of copper films.
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Figure 3. SEM micrographs (scale bars = 200 nm) of thin copper films (25 nm thick) deposited on
(a) a SiO2/Si substrate at a rate of 1 Å/s, (b) a graphene/SiO2/Si substrate at a rate of 1 Å/s and (c) a
graphene/SiO2/Si substrate at a rate of 15 Å/s. (d) The measured real ε′ (solid line) and imaginary
ε′′ (dashed line) parts of the dielectric functions of Cu films on SiO2/Si substrates with and without
graphene underlayer. (e) Figures of merit −ε′/ε′′ for the same Cu films.

Nevertheless, the deposition of continuous copper films on graphene is possible by increasing
a number of nucleation centers during the initial steps of film growth. According to a report by
Zaporojtchenko et al. [60] and a recent report by Schwartzkopf et al. [61] increasing the deposition rate
by an order of magnitude leads a two-fold increase in the number of clusters formed. Based on this
assumption, we carried out a series of depositions and investigated the dependence of the optical,
electrical and structural characteristics of thin copper films on the deposition rate. As a result, we
found that 25 nm-thick copper films deposited on graphene at higher deposition rates of 10–15 Å/s
have a continuous surface morphology without notable voids (Figure 3c). The observed difference in
morphology of the Cu films shown in Figure 3a–c is also reflected in their effective dielectric functions
measured by spectroscopic ellipsometry. Figure 3d,e shows the real ε′ and imaginary ε′′ parts of
dielectric functions and the FOM for copper films deposited on bare SiO2/Si at a rate of 1 Å/s and on
graphene at rates of 1 to 15 Å/s. These results reveal the large discrepancy in the optical properties
of the copper films deposited under the same conditions on SiO2/Si substrates with and without
graphene, which showed poorer optical quality of the films with graphene due to presence of voids in
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their structure. However, an increase in the rate of copper deposition on graphene leads not only to the
growth of more continuous films but also to gradual improvement in the optical FOM characterizing
these films. Therefore, at a rate of 15 Å/s, the corresponding values of the FOM for copper films on
graphene are quite close to those for films deposited on pure SiO2/Si substrates. Similar dependencies
were obtained for copper films with a thickness of 50 nm (Figure A3). In addition, in Tables A1 and A2
in the Appendix A, we summarize the dielectric constants of thin metal films, both Cu and Au, as well
as their refractive indices n and extinction coefficients k acquired from ellipsometry measurements in a
wavelength range of 300–3300 nm with a step of 10 nm.

Here, we analyze in more detail the dependence of electrical and optical properties of copper
films as well as their crystalline structure on the film deposition rate. Figure 4 indicates the sheet
resistance and FOM (at 1500 nm) of the 25 nm-thick copper films grown on SiO2/Si substrates with and
without graphene at deposition rates ranging from 1 to 15 Å/s. Copper films deposited on graphene
demonstrate noticeable improvements in sheet resistance as well as FOM for higher deposition rates
(7.5- and 18-fold, respectively), while measurements of films on pure SiO2/Si substrates show only
slight changes. Let us keep in mind that the deposition process determines the effective dielectric
function of the film in two different ways: Influencing the crystallinity of the metal films and inducing
the formation of voids in the film morphology. To analyze these impacts on the optical properties
of the deposited films, we performed XRD measurements to determine the crystallinity of the films,
where the average sizes of the crystallites were determined from the width of the XRD peaks using the
Debye-Scherrer formula. Figure 5 shows an increase in the average crystallite size D with deposition
rate for copper films with and without graphene. These results are consistent with those obtained in
previous works for Au films on Si [62,63]. However, the crystallite sizes show the same dependencies
on the deposition rate for both types of copper films, and therefore, the sheet resistance and FOM
of copper films deposited on graphene at low rates are primarily defined by the presence of voids
in percolated films. These film parameters become comparable with those of the films on SiO2/Si
substrates only at high deposition rates when a more continuous film structure is formed. In addition,
an increase in the crystallite sizes for higher deposition rates explains the corresponding improvement
of 40% and 10% in electrical conductivities and optical response, respectively, of copper films on pure
SiO2/Si substrates because of lower electron scattering at the crystallite boundaries.

Nanomaterials 2018, 8, 1058 7 of 16 

 

and without graphene at deposition rates ranging from 1 to 15 Å/s. Copper films deposited on 

graphene demonstrate noticeable improvements in sheet resistance as well as FOM for higher 

deposition rates (7.5- and 18-fold, respectively), while measurements of films on pure SiO2/Si 

substrates show only slight changes. Let us keep in mind that the deposition process determines the 

effective dielectric function of the film in two different ways: Influencing the crystallinity of the metal 

films and inducing the formation of voids in the film morphology. To analyze these impacts on the 

optical properties of the deposited films, we performed XRD measurements to determine the 

crystallinity of the films, where the average sizes of the crystallites were determined from the width 

of the XRD peaks using the Debye-Scherrer formula. Figure 5 shows an increase in the average 

crystallite size D with deposition rate for copper films with and without graphene. These results are 

consistent with those obtained in previous works for Au films on Si [62,63]. However, the crystallite 

sizes show the same dependencies on the deposition rate for both types of copper films, and therefore, 

the sheet resistance and FOM of copper films deposited on graphene at low rates are primarily 

defined by the presence of voids in percolated films. These film parameters become comparable with 

those of the films on SiO2/Si substrates only at high deposition rates when a more continuous film 

structure is formed. In addition, an increase in the crystallite sizes for higher deposition rates explains 

the corresponding improvement of 40% and 10% in electrical conductivities and optical response, 

respectively, of copper films on pure SiO2/Si substrates because of lower electron scattering at the 

crystallite boundaries. 

 

Figure 4. Dependences of sheet resistance and figure of merit (FOM) (λ = 1500 nm) on the deposition 

rate of thin copper films (25 nm thick) deposited on SiO2/Si substrates with (diamonds) and without 

(circles) graphene. 

 

Figure 4. Dependences of sheet resistance and figure of merit (FOM) (λ = 1500 nm) on the deposition
rate of thin copper films (25 nm thick) deposited on SiO2/Si substrates with (diamonds) and without
(circles) graphene.



Nanomaterials 2018, 8, 1058 8 of 17

Nanomaterials 2018, 8, 1058 7 of 16 

 

and without graphene at deposition rates ranging from 1 to 15 Å/s. Copper films deposited on 

graphene demonstrate noticeable improvements in sheet resistance as well as FOM for higher 

deposition rates (7.5- and 18-fold, respectively), while measurements of films on pure SiO2/Si 

substrates show only slight changes. Let us keep in mind that the deposition process determines the 

effective dielectric function of the film in two different ways: Influencing the crystallinity of the metal 

films and inducing the formation of voids in the film morphology. To analyze these impacts on the 

optical properties of the deposited films, we performed XRD measurements to determine the 

crystallinity of the films, where the average sizes of the crystallites were determined from the width 

of the XRD peaks using the Debye-Scherrer formula. Figure 5 shows an increase in the average 

crystallite size D with deposition rate for copper films with and without graphene. These results are 

consistent with those obtained in previous works for Au films on Si [62,63]. However, the crystallite 

sizes show the same dependencies on the deposition rate for both types of copper films, and therefore, 

the sheet resistance and FOM of copper films deposited on graphene at low rates are primarily 

defined by the presence of voids in percolated films. These film parameters become comparable with 

those of the films on SiO2/Si substrates only at high deposition rates when a more continuous film 

structure is formed. In addition, an increase in the crystallite sizes for higher deposition rates explains 

the corresponding improvement of 40% and 10% in electrical conductivities and optical response, 

respectively, of copper films on pure SiO2/Si substrates because of lower electron scattering at the 

crystallite boundaries. 

 

Figure 4. Dependences of sheet resistance and figure of merit (FOM) (λ = 1500 nm) on the deposition 

rate of thin copper films (25 nm thick) deposited on SiO2/Si substrates with (diamonds) and without 

(circles) graphene. 
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the inset illustrates the improved crystallinity of the 25 nm-thick copper films deposited on SiO2/Si
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3.3. Growth Mechanisms of Thin Metal Films on Graphene

Kinetics mechanisms of metal growth strongly influence both optical and electrical properties
of metal films deposited on graphene. The formation of nuclei and the increase in the size of metal
islands are competing processes in the initial growth of metal films, and those processes depend on
a number of factors, such as deposition rate, surface temperature, a number of surface defects, and
parameters of adatom-surface interactions [45,48,49]. In turn, the interaction of metal atoms with a
substrate surfaces is determined by the diffusion barrier Ed and the ratio of the adsorption energy Ea

of the metal atom on the substrate to the metal cohesive energy Ec.
Several research papers provide an extensive overview of the influence of deposition rate and

surface diffusion on the growth of thin films [64,65]. According to the proposed model, the island
density increases as a power law of the deposition rate ni ∼ Rp (0 < p < 1). Therefore, faster
deposition leads to the formation of more nucleation sites, resulting in a smaller grain size and
allowing a smaller percolation thickness during film growth [50]. Increasing the deposition rate is
a useful technique to grow continuous ultrathin metal films on surfaces, which are non-wettable by
metal and characterized by low values of Ea/Ec and Ed.

Recent research reports of Liu et al. present experimental data on the interaction of various
metal adatoms with freestanding graphene [45,48]. We also used these data for the description
of graphene monolayers deposited on SiO2/Si substrates because their weak interaction causes
negligible impact on the electronic properties of graphene [66]. The ratio Ea/Ec is quite low for the
considered metallic adatoms on graphene and equals 0.024 and 0.090 for gold and copper, respectively,
which demonstrates that adatoms interact more strongly among themselves than with graphene, and
therefore, the growth of metal films on graphene can be described by the Volmer–Weber model [67].
The difference in morphology of copper and gold films can be explained by different diffusion barriers,
which are 0.0037 and 0.0074 eV for copper and gold, respectively, and an almost three-fold difference
in the corresponding atomic weights. Therefore, copper adatoms have higher mobility and diffuse
faster on graphene compared to gold, which follows the Arrhenius equation for the hopping rate:
υ = υ0 exp(−Ed/kT), where υ0 ∼ 1/

√
m, m is the adatom mass, k is the Boltzmann constant, and

T is the absolute temperature [68,69]. Higher mobility lowers the number of secondary nucleation
sites that are mainly responsible for overgrowing gaps between metallic islands. This process leads
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to enlargement of metallic islands and formation of wide gaps between them, which is shown in
Figure 3b for 25 nm-thick copper films.

Higher growth temperatures increase the mobility of adatoms, which in specific cases, can lead
to quasi-columnar growth. This type of growth differs from traditional Volmer–Weber growth by a
steadily rising ratio of the film thickness to the filling of the substrate surface by the metal. We observed
quasi-columnar growth during the deposition of copper at a rate of 1 Å/s on the graphene-covered
SiO2/Si substrate heated at 150 ◦C (Figure 6). The metal filling factor for 25 nm-thick copper films
deposited at 150 ◦C equals 84%, while the one obtained at 20 ◦C equals 92%. Both these films are
percolated; however, the sheet resistance of the film deposited at 20 ◦C is 20% lower (19.0 Ohm/sq).Nanomaterials 2018, 8, 1058 9 of 16 
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Figure 6. SEM micrographs (scale bar = 200 nm) of thin copper films (25 nm-thick) deposited on
SiO2/Si substrates without (a) and with (b) graphene with a rate of 1 Å/s at 150 ◦C.

4. Conclusions

We studied the growth and properties of continuous thin films of gold and copper on monolayer
graphene transferred onto silicon dioxide substrates. We presented experimental measurements for
films with thicknesses of 25 and 50 nm to provide their optical, electrical, and structural properties.
Tables A1 and A2 in the Appendix A summarize the optical constants of the corresponding thin films in
the wavelength range of 300–3300 nm. The results for thin gold films on graphene are not significantly
different from those for gold films grown on pure thermally oxidized silicon. The variation in FOM
(−ε′/ε′′ ) obtained for these samples deposited at the rate of 1 and 5 Å/s is less than 15%. In addition,
the properties of gold films show only a weak dependence on the evaporation rate. The situation
is drastically different for thin copper films, whose properties strongly depend on both the type of
substrate (SiO2/Si substrates with or without graphene) and the evaporation rate. We could not grow
a continuous 25 nm-thick copper film on graphene without voids at low rates (~1 Å/s). However,
higher evaporation rates (>10 Å/s) provide continuous and conductive films on graphene, which is
explained by the growth kinetics of this metal. Increasing the evaporation rate from 1 to 15 Å/s
improved the optical FOM and reduced the sheet resistance of copper films on graphene by 18- and
7.5-fold, respectively.

The deposition of continuous thin copper films on graphene requires high evaporation rates
owing to the fast mobility of copper adatoms. Higher evaporation rates produce more initial nucleation
centers, which compensates for the diffusion of copper atoms and allows the deposition of continuous
films without voids. In contrast, the mobility of copper adatoms increases with increasing growth
temperature. We demonstrated that substrate heating leads to quasi-columnar growth of copper
on graphene, which is the limiting case of Volmer–Weber-type growth. Therefore, control of the
growth temperature and evaporation rate provides an effective way to grow thin copper films with a
predefined ratio of film thickness to the fraction of metal filling. In addition, due to higher adatom
mobility, the formation of metal films on graphene occurs for thicknesses much higher than those on
other types of substrates. This makes graphene a convenient model surface to study the kinetics of
metal growth, including such processes as coalescence and percolation.
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In summary, our data on the structure of thin films of copper and gold deposited on graphene as
well as their optical and electrical properties will help researchers to simulate and develop various
photonic, plasmonic, and optoelectronic devices. Although graphene-nanometallic structures are
of high importance for practical applications, the deposition of high-optical-quality metal films on
graphene still requires some technological effort. We believe that our results will make an impact in
this area. In our work, we performed a comprehensive study of the properties of metal films deposited
using different regimes and discussed the underlying kinetics mechanisms of their growth. In addition,
the described percolated metal films with high aspect ratios can form the foundation for future devices
utilizing optical resonant phenomena.

Author Contributions: D.I.Y., Y.V.S., A.V.A. and V.S.V. proposed the concept, conceived and designed the
experiments and wrote original draft. D.I.Y., Y.V.S., R.V.K., K.V.V. and A.A.V. contributed to the measurement
results of the films. All authors discussed the results and contributed to manuscript preparation. D.I.Y. and Y.V.S.
contributed equally to this work and should be considered co-first authors.
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Figure A1. Raman spectra of single-layer graphene transferred onto a SiO2/Si substrate measured
at three different sites. The near-absence of D peak demonstrates a low defect density of the crystal
structure of graphene.
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Figure A2. SEM micrographs (scale bars = 200 nm) of thin gold films (50 nm thick) deposited on (a)
a SiO2/Si substrate at a rate of 1 Å/s, (b) a graphene/SiO2/Si substrate at a rate of 1 Å/s and (c) a
graphene/SiO2/Si substrate at a rate of 5 Å/s. (d) The measured real ε′ and imaginary ε” parts of the
dielectric functions of Au films on SiO2/Si substrates with and without a graphene underlayer. (e)
Figures of merit −ε′/ε” for the same Au films.Nanomaterials 2018, 8, 1058 11 of 16 
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Figure A3. SEM micrographs (scale bars = 200 nm) of thin copper films (50 nm thick) deposited on
(a) a SiO2/Si substrate at a rate of 1 Å/s, (b) a graphene/SiO2/Si substrate at a rate of 1 Å/s and (c) a
graphene/SiO2/Si substrate at a rate of 15 Å/s. (d) The measured real ε′ and imaginary ε” parts of
the dielectric functions of Cu films on SiO2/Si substrates with and without a graphene underlayer.
(e) Figures of merit −ε′/ε” for the same Cu films.
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Table A1. The measured real ε′ and imaginary ε” parts of thin gold films on graphene as well as their
refractive indices n and extinction coefficients k (at room temperature). The data at the most widely
used laser wavelengths are in bold.

t = 25 nm (rate = 5 A/s) t = 50 nm (rate = 5 A/s)

E (eV) λ (nm) ε′ ε” n k ε′ ε” n k

0.38 3298 −517 94.9 2.08 22.8 −528 91.3 1.98 23.1
0.45 2739 −359 55.3 1.45 19.0 −366 53.1 1.38 19.2
0.53 2343 −262 34.9 1.08 16.2 −267 33.5 1.02 16.4
0.61 2046 −199 23.5 0.83 14.1 −203 22.5 0.79 14.3
0.68 1816 −155 16.6 0.66 12.5 −158 15.8 0.63 12.6
0.76 1633 −125 12.2 0.54 11.2 −127 11.6 0.52 11.3
0.80 1550 −111 10.6 0.49 10.5 −113 10.0 0.47 10.7
0.84 1483 −102 9.24 0.46 10.1 −104 8.82 0.43 10.2
0.91 1359 −84.0 7.23 0.39 9.17 −85.7 6.88 0.37 9.27
0.95 1310 −77.5 6.53 0.37 8.81 −79.1 6.21 0.35 8.90
0.99 1253 −70.3 5.79 0.34 8.39 −71.8 5.50 0.32 8.48
1.07 1163 −59.5 4.75 0.31 7.72 −60.8 4.50 0.29 7.80
1.14 1085 −50.7 3.98 0.28 7.13 −51.9 3.76 0.26 7.21
1.16 1064 −48.0 3.76 0.27 6.93 −49.1 3.54 0.25 7.01
1.22 1017 −43.5 3.41 0.26 6.60 −44.6 3.21 0.24 6.68
1.30 956.7 −37.6 2.98 0.24 6.13 −38.5 2.79 0.22 6.21
1.37 903.3 −32.5 2.65 0.23 5.71 −33.4 2.47 0.21 5.79
1.45 855.5 −28.3 2.41 0.23 5.32 −29.1 2.23 0.21 5.40
1.53 812.5 −24.6 2.23 0.22 4.97 −25.4 2.05 0.20 5.04
1.59 780.0 −22.0 2.12 0.23 4.69 −22.7 1.94 0.20 4.77
1.60 773.7 −21.4 2.11 0.23 4.64 −22.2 1.92 0.20 4.71
1.68 738.3 −18.7 2.03 0.23 4.33 −19.4 1.83 0.21 4.41
1.76 706.1 −16.2 1.99 0.25 4.04 −16.9 1.78 0.22 4.12
1.83 676.6 −14.1 1.98 0.26 3.76 −14.8 1.76 0.23 3.85
1.91 649.4 −12.2 2.01 0.29 3.50 −12.8 1.77 0.25 3.59
1.96 633.0 −10.8 2.06 0.31 3.30 −11.5 1.76 0.26 3.39
1.99 624.3 −10.4 2.08 0.32 3.25 −11.1 1.81 0.27 3.34
2.06 601.1 −8.87 2.18 0.36 3.00 −9.49 1.88 0.30 3.10
2.14 579.6 −7.44 2.32 0.42 2.76 −8.05 1.99 0.35 2.86
2.22 559.5 −6.14 2.52 0.50 2.53 −6.73 2.14 0.41 2.63
2.29 540.8 −4.95 2.76 0.60 2.30 −5.52 2.35 0.49 2.40
2.33 532.0 −4.27 2.95 0.68 2.18 −4.83 2.50 0.55 2.27
2.37 523.3 −3.87 3.08 0.73 2.10 −4.42 2.62 0.60 2.19
2.45 506.9 −2.90 3.48 0.90 1.93 −3.41 2.98 0.75 1.99
2.52 491.5 −2.06 3.96 1.10 1.81 −2.53 3.43 0.93 1.84
2.60 477.0 −1.39 4.53 1.29 1.75 −1.81 3.99 1.13 1.76
2.68 463.3 −0.94 5.14 1.46 1.76 −1.34 4.61 1.32 1.75
2.75 450.4 −0.71 5.73 1.59 1.80 −1.13 5.21 1.45 1.80
2.83 438.2 −0.71 6.18 1.66 1.86 −1.20 5.60 1.50 1.86
2.91 426.7 −0.82 6.42 1.68 1.91 −1.32 5.71 1.51 1.89
2.98 415.7 −0.90 6.47 1.68 1.93 −1.33 5.62 1.49 1.88
3.06 405.3 −0.87 6.43 1.68 1.92 −1.17 5.49 1.49 1.84
3.14 395.4 −0.73 6.39 1.69 1.89 −0.90 5.43 1.52 1.79
3.21 385.9 −0.53 6.43 1.72 1.87 −0.60 5.49 1.57 1.75
3.29 376.9 −0.34 6.57 1.77 1.86 −0.34 5.66 1.63 1.73
3.37 368.4 −0.20 6.80 1.82 1.87 −0.16 5.92 1.70 1.74
3.44 360.2 −0.17 7.10 1.86 1.91 −0.10 6.22 1.75 1.78
3.52 352.3 −0.30 7.42 1.89 1.97 −0.20 6.53 1.78 1.84
3.60 344.8 −0.58 7.70 1.89 2.04 −0.44 6.79 1.78 1.90
3.67 337.6 −0.97 7.90 1.87 2.11 −0.77 6.96 1.77 1.97
3.75 330.7 −1.46 7.98 1.82 2.19 −1.19 7.02 1.72 2.04
3.83 324.1 −2.01 7.85 1.75 2.25 −1.64 6.89 1.65 2.09
3.90 317.7 −2.53 7.60 1.65 2.30 −2.07 6.65 1.57 2.13
3.98 311.6 −2.99 7.19 1.55 2.32 −2.43 6.29 1.47 2.14
4.06 305.7 −3.32 6.68 1.44 2.32 −2.69 5.84 1.37 2.14
4.13 300.0 −3.59 6.13 1.33 2.31 −2.89 5.37 1.27 2.12
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Table A2. The measured real ε′ and imaginary ε” parts of thin copper films on graphene as well as their
refractive indices n and extinction coefficients k (at room temperature). The data at the most widely
used laser wavelengths are in bold.

t = 25 nm (rate = 15 A/s) t = 50 nm (rate = 15 A/s)

E (eV) λ (nm) ε′ ε” n k ε′ ε” n k

0.38 3298 −456 99.5 2.32 21.5 −502 97.3 2.16 22.5
0.45 2739 −318 58.4 1.63 17.9 −349 56.9 1.52 18.7
0.53 2343 −233 37.1 1.21 15.3 −255 36.0 1.12 16.0
0.61 2046 −177 25.1 0.94 13.4 −194 24.3 0.87 14.0
0.68 1816 −139 17.7 0.75 11.8 −152 17.2 0.70 12.3
0.76 1633 −111 13.1 0.62 10.6 −122 12.7 0.57 11.0
0.80 1550 −99.7 11.3 0.57 10.0 −109 10.9 0.52 10.5
0.84 1483 −90.8 10.0 0.52 9.54 −99.3 9.66 0.48 9.98
0.91 1359 −75.2 7.87 0.45 8.68 −82.3 7.60 0.42 9.08
0.95 1310 −69.4 7.14 0.43 8.34 −76.0 6.89 0.39 8.73
0.99 1253 −63.0 6.35 0.40 7.94 −69.0 6.13 0.37 8.31
1.07 1163 −53.3 5.26 0.36 7.31 −58.4 5.08 0.33 7.65
1.14 1085 −45.5 4.46 0.33 6.75 −49.9 4.30 0.30 7.07
1.16 1064 −43.0 4.23 0.32 6.57 −47.3 4.08 0.30 6.88
1.22 1017 −39.0 3.87 0.31 6.26 −42.9 3.73 0.28 6.56
1.30 957 −33.7 3.43 0.29 5.81 −37.1 3.31 0.27 6.10
1.37 903 −29.2 3.10 0.29 5.41 −32.2 3.00 0.26 5.68
1.45 856 −25.4 2.87 0.28 5.04 −28.1 2.77 0.26 5.31
1.53 813 −22.1 2.71 0.29 4.71 −24.5 2.61 0.26 4.96
1.59 780 −19.7 2.62 0.29 4.45 −21.9 2.53 0.27 4.69
1.60 774 −19.2 2.61 0.30 4.39 −21.4 2.52 0.27 4.64
1.68 738 −16.8 2.56 0.31 4.11 −18.8 2.47 0.28 4.34
1.76 706 −14.6 2.56 0.33 3.83 −16.4 2.48 0.31 4.06
1.83 677 −12.6 2.62 0.37 3.58 −14.3 2.52 0.33 3.80
1.91 649 −10.9 2.72 0.41 3.33 −12.4 2.62 0.37 3.55
1.96 633 −9.71 2.84 0.45 3.15 −11.1 2.74 0.41 3.36
1.99 624 −9.37 2.89 0.47 3.10 −10.8 2.78 0.42 3.31
2.06 601 −8.00 3.13 0.54 2.88 −9.26 3.00 0.49 3.08
2.14 580 −6.78 3.45 0.64 2.68 −7.92 3.31 0.58 2.87
2.22 560 −5.74 3.88 0.77 2.52 −6.76 3.71 0.69 2.69
2.29 541 −4.95 4.39 0.91 2.40 −5.81 4.21 0.83 2.55
2.33 532 −4.60 4.71 1.00 2.36 −5.35 4.56 0.92 2.49
2.37 523 −4.46 4.91 1.04 2.35 −5.14 4.79 0.97 2.47
2.45 507 −4.25 5.31 1.13 2.35 −4.80 5.33 1.09 2.45
2.52 492 −4.23 5.45 1.16 2.36 −4.74 5.66 1.15 2.46
2.60 477 −4.17 5.32 1.14 2.34 −4.79 5.67 1.15 2.47
2.68 463 −3.96 5.08 1.11 2.28 −4.73 5.44 1.11 2.44
2.75 450 −3.63 4.84 1.10 2.20 −4.50 5.13 1.08 2.38
2.83 438 −3.22 4.70 1.11 2.11 −4.14 4.87 1.06 2.29
2.91 427 −2.82 4.64 1.14 2.03 −3.73 4.70 1.07 2.21
2.98 416 −2.45 4.65 1.19 1.96 −3.32 4.62 1.09 2.12
3.06 405 −2.14 4.72 1.23 1.91 −2.96 4.61 1.12 2.05
3.14 395 −1.89 4.82 1.28 1.88 −2.65 4.65 1.16 2.00
3.21 386 −1.70 4.94 1.33 1.86 −2.40 4.71 1.20 1.96
3.29 377 −1.58 5.06 1.36 1.85 −2.22 4.79 1.24 1.94
3.37 368 −1.52 5.17 1.39 1.86 −2.09 4.87 1.27 1.92
3.44 360 −1.52 5.26 1.41 1.87 −2.02 4.93 1.29 1.92
3.52 352 −1.57 5.31 1.41 1.88 −2.00 4.96 1.29 1.92
3.60 345 −1.65 5.32 1.40 1.90 −2.02 4.97 1.29 1.92
3.67 338 −1.75 5.30 1.38 1.92 −2.06 4.94 1.28 1.93
3.75 331 −1.87 5.23 1.36 1.93 −2.12 4.88 1.26 1.93
3.83 324 −1.99 5.11 1.32 1.93 −2.18 4.76 1.24 1.93
3.90 318 −2.10 4.95 1.28 1.93 −2.24 4.63 1.20 1.92
3.98 312 −2.20 4.77 1.24 1.93 −2.29 4.46 1.17 1.91
4.06 306 −2.26 4.55 1.19 1.92 −2.32 4.27 1.13 1.90
4.13 300 −2.32 4.33 1.14 1.90 −2.34 4.07 1.08 1.88
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