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Abstract: The magnetization of most materials decreases with increasing temperature due to
thermal deterioration of magnetic ordering. Here, we show that Mn4C phase can compensate the
magnetization loss due to thermal agitation. The Mn–C nanoparticles containing ferrimagnetic
Mn4C and other Mn–C/Mn-O phases were prepared by using the traditional arc-discharge method.
A positive temperature coefficient of magnetization (~0.0026 Am2 kg−1 K−1) and an exchange bias
up to 0.05 T were observed in the samples. We ascribe the exchange bias to the co-existence of
ferrimagnetic Mn4C/Mn3O4 and antiferromagnetic α-Mn(C)/MnO phases. The positive temperature
coefficient of magnetization of the samples was ascribed to the presence of Mn4C phase, which is
considered as a Néel’s P-type ferrimagnet.
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1. Introduction

The magnetization of most magnetic materials decreases with increasing temperature due to
thermal agitation of magnetic ordering. The thermal-induced magnetization reduction severely
restricts the applications of magnetic materials at elevated temperatures. From a technical point
of view, it is highly desired to find materials that can resist thermal deterioration of magnetization.
Our previous work showed that the magnetization of high-purity Mn4C powders increases linearly
with increasing temperature at temperatures up to 590 K [1]. The positive temperature coefficient
of magnetization in Mn4C at temperatures above room temperature might be potentially useful
in tuning the thermomagnetic behaviours of a magnetic system containing phases with a negative
temperature coefficient of magnetization. However, no report in this field could be found. In this work,
the Mn–C nanoparticles composed of phases with both positive and negative temperature coefficient
of magnetization were prepared by arc discharge method. The unusual thermomagnetic behaviours of
the Mn–C nanoparticles were studied.

The current understandings of the Mn–C system have evolved gradually since the systematic
investigation of this system by Vogel and Döring in 1935 [2,3]. Although a number of high
quality experimental and theoretical investigations have been conducted, there are still a number
of controversial issues [1–3]. The constitutional diagram of Mn–C was proposed containing five
stoichiometric carbides (Mn23C6, Mn7C2, Mn3C, Mn5C2, and Mn7C3) and five solid solution phases
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(α-, β-, γ-, δ-, and ε-Mn) [3–5]. However, Zaitsev’s results do not support the existence of a carbide
at a carbon concentration of 22.2 at.%, referred to as Mn7C2 by Kuo and Persson [4,6]. The Mn4C
phase reported by Morgan in 1954 was soon suggested to be Mn4(C, O) and Mn4C was thought to be
unstable at room temperature [4,7,8]. However, high-purity Mn4C powders were prepared successfully
recently [1]. Moreover, fairly large uncertainties remain for the phase equilibria and thermodynamic
properties of the Mn–C solid solution phases [3]. The controversial issues on stoichiometric manganese
carbides and the substantial uncertainties concerning the Mn–C solid-state phase equilibria of the solid
solution phases indicate the need for a more detailed study on the Mn–C system. Most of the previous
work on Mn–C system has been focused on bulk samples. It has been proved that a low-dimensional
system usually exhibits unique structure and properties that differ from that of the bulk counterpart
due to size effect and surface effect [9]. In this work, the structure and magnetic properties of Mn–C
nanoparticles prepared by arc discharge method were studied.

The exchange bias effect has been extensively studied in exchange-coupled nanostructures
with ferromagnetic (FM) and antiferromagnetic (AFM) interfaces. The macroscopic signature of this
interfacial exchange interaction is a shift in the magnetic hysteresis loop along the magnetic field axis.
A variety of exchange bias systems such as Ni/Ni(OH)2, MnN/CoFe, CoO/Co, LaMnO3/LaNiO3,
Mn3O4/MnO/Mn, and Gd/Cr, etc., have been studied experimentally and/or theoretically [10–18].
In this work, a novel exchange bias Mn–C system that containing ferrimagnetic Mn4C, AFM α-Mn(C),
manganese oxide, and trace amount of Mn3O4 were prepared and studied.

2. Materials and Methods

The Mn–C nanoparticles were prepared by the traditional arc-discharge method in argon
atmosphere (0.03 MPa). A Mn–C alloy in nominal composition of Mn4C was used as anode, while a
tungsten needle served as cathode. Argon plasma was struck between the two electrodes and
maintained for ten minutes. The powder deposited on the water-cooled chamber was passivated in
the chamber for 10 h, and then collected in air and separated by using a hand magnet. The structure
of the magnetic powder was measured by using X-ray powder diffraction (XRD, Rigaku D/Max
2500, Tokyo, Japan) with Cu Kα radiation. The morphology of the magnetic powder was observed by
using transmission electron microscopy (TEM, Jeol 200CX, Tokyo, Japan). The magnetic properties of
the samples were measured using a physical properties measurement system (Quantum Design Inc.,
San Diego, CA, USA).

3. Results and Discussion

3.1. Structure

The XRD patterns of the Mn–C nanoparticles, as shown in Figure 1, could be indexed mainly
with α-Mn(C) solid solution, Mn4C, manganosite, and trace amount of C. According to the Mn–C
phase diagram [3], the α-Mn(C) solid solution is the most stable phase at temperatures below 1000 K
in the Mn-rich region. The carbon solution in manganese metal is usually described by an interstitial
solution model with one sublattice occupied by manganese atoms and the other occupied by carbon
and vacancies [3]. The interstitial C atoms may significantly enlarge the lattice parameters of α-Mn.
The diffraction peaks of α-Mn(C) shift slightly to lower angles in comparison with that of pure α-Mn,
indicating enlarged lattice parameters due to interstitial C. The formation of the manganosite was
ascribed to the spontaneous oxidation of Mn nanoparticles when exposed to air, and this had been
observed in pure Mn nanoparticles with large surface areas [9]. The trace amount of C may result
from two routes, the unreacted C and the C that precipitated from the Mn–C melt when cooling down.
Although the Mn4C phase is thermally unstable and thus is absent in the Mn–C phase diagram [3],
a considerable amount of Mn4C phase was detected by XRD, as shown in Figure 1. The formation
mechanism of Mn4C phase is not clear. The room temperature ferromagnetic behaviours of the Mn–C
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nanoparticles as discussed below are further evidence for the presence of Mn4C in the samples as most
other phases are AFM or paramagnetic (PM) at room temperature.
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Figure 1. The XRD patterns of Mn–C nanoparticles can be indexed with α-Mn(C), Mn4C, manganosite,
and trace amount of C.

3.2. Morphology

Figure 2 shows the morphology of the Mn–C nanoparticles observed by the TEM.
Most nanoparticles show cubic or spherical shape with size of approximately several tens of
nanometres. The size distribution of these nanoparticles is relatively large, as shown in Figure 2a.
A high-resolution image of a typical nanoparticle is shown in Figure 2b, which shows that the surface
layer of the nanoparticle is different from the cores. The thickness of the surface layer is approximately
3–5 nm while the diameter of the core is approximately 30 nm. Such shell/core structure is mainly
attributed to the oxidation process of very small Mn-C nanoparticles when exposed to air. In fact,
an analogous shell/core structure has been observed in pure Mn nanoparticles [9]. It is reasonable for
us to assume that most manganosite as observed by XRD present as the surface shell.
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Figure 2. The low magnification (a) and high magnification (b) TEM images of the Mn–C nanoparticles.
A shell/core structure of the Mn-C nanoparticles was observed.
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3.3. Magnetic Properties

Figure 3a shows the M-T plot of the Mn–C nanoparticles measured with increasing temperature
after cooling to 5 K from 300 K under an applied field of 5 mT. The magnetization of the nanoparticles
decreases abruptly at ~45 K, which is very close to the Curie temperature (~43 K) of Mn3O4.
Our previous work on Mn nanoparticles indicated that Mn3O4 phase is usually spontaneously formed
when the Mn nanoparticles were exposed to air [9]. Although Mn3O4 were not detected by XRD,
as shown in Figure 1, we could not exclude its presence for the following reasons. First, the presence
of manganosite has been proved by XRD as seen in Figure 1. The oxygen stoichiometry in the
manganosite formed via spontaneous passivation of the nanoparticles is difficult to measure. However,
it is reasonable for us to assume a deceasing oxygen concentration from the surface to the centre of
the Mn–C nanoparticles, as partially proved by the shell/core structure of the nanoparticles shown in
Figure 2b. Second, the low fraction and the tiny grain size of Mn3O4 make it difficult to be detected by
XRD for the limited sensitivity of XRD. Third, only Mn4C and Mn3O4 are ferrimagnetic (FI) phases
among Mn–C and Mn-O binary compounds while all the other manganese carbides and manganese
oxides are AFM or PM at low temperatures. Our recent work showed that the magnetization of the
Mn4C phase varies little with temperatures below 50 K [1]. Therefore, the large magnetization variation
at ~45 K was ascribed to the FI/PM transition of Mn3O4. However, the abrupt magnetization change
and positive temperature coefficient of magnetization observed here were not obviously observed
in the Mn4C/MnO micro-powders prepared by laser-ablation method [19]. We speculate that the
dimension of the powder and the fraction of Mn4C in the powder may play an important role in phase
formation and thermomagnetic behaviours of the sample.
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Figure 3. (a) The M-T curve of the field-cooled Mn–C nanoparticles measured with increasing
temperature and under an applied field of 5 mT. (b) The magnetic hysteresis loops (quadrants 1
and 2) of the Mn–C nanoparticles at 100 K, 150 K, 200 K, 250 K, and 300 K, respectively.

It is interesting that the magnetization of our Mn–C nanoparticles increases with increasing
temperature at temperatures above 60 K. Most materials exhibit a monotonic decrease of magnetization
with increasing temperature due to thermal agitation. Our previous work showed that the
magnetization of the Mn4C phase increases with increasing temperature at temperatures above
~50 K [1]. Therefore, we ascribe the positive temperature coefficient of magnetization in the Mn–C
nanoparticles to the presence of Mn4C phase. The presence of other phases with negative temperature
coefficients of magnetization may reduce the magnetization increment rate of the samples, giving an
opportunity to control the thermodynamics of the magnetization of the magnetic material, and this
has been proved by the M-H curves (Figure 3b) of the samples.
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Figure 3b shows the magnetic hysteresis loops of the Mn–C nanoparticles at varied temperatures.
The magnetization (at 1 T) of the Mn–C nanoparticles at 100 K, 150 K, 200 K, 250 K, and 300 K is
3.26 Am2 kg−1, 3.38 Am2 kg−1, 3.51 Am2 kg−1, 3.64 Am2 kg−1, and 3.78 Am2 kg−1, respectively.
The monotonic increase of the magnetization with increasing temperature was ascribed to Mn4C.
It is known that the ferrimagnetic Mn4C has a simple cubic perovskite-type structure and has
two ferromagnetic sublattices that composed of face-centred Mn atoms and cornered Mn atoms,
respectively [1]. The positive temperature coefficient of Mn4C can be explained by Néel’s P-type
ferrimagnetism, which appears when the sublattice with smaller moment is thermally disturbed more
easily [1,20]. The temperature coefficient of magnetization of Mn–C nanoparticles is approximately
0.0026 Am2 kg−1 K−1, which is lower than that (~0.0072 Am2 kg−1 K−1) of the pure Mn4C [1],
owing to the presence of other phases with negative temperature coefficients of magnetizations.
This work indicates that the magnetization of a system composed of materials with both positive
and negative temperature coefficients of magnetizations may be tunable by tuning the fraction of
these two component phases. The remnant magnetization of the Mn–C nanoparticles varies little with
temperature and is approximately 1.58 Am2/kg. The coercivity of the Mn–C nanoparticles falls in the
range of 0.046–0.026 T in the temperature range of 100–300 K, as shown in Figure 3b.

Figure 4 shows the typical M-H curves and the temperature dependence of exchange bias (He)
and coercivity (Hc) of the Mn–C nanoparticles. Figure 4a shows an obvious shift of the magnetic
hysteresis loops along the axis, indicating exchange bias effect in the samples. We ascribe the exchange
bias to the co-existence of ferrimagnetic Mn4C/Mn3O4 and antiferromagnetic α-Mn(C)/MnO phases.
An applied field of 1 T is enough to saturate the sample at temperatures above 60 K, as seen in Figures
3b and 4a, but is not enough to saturate the sample at 5 K, owing to the magnetic contribution of
Mn3O4 phase at temperatures lower than its Curie point (43 K). Our previous work on Mn4C and
Mn3O4 showed that Mn4C can be saturated under much lower magnetic field in comparison with
Mn3O4 at low temperatures near 5 K [1,12]. The He and Hc of the Mn–C nanoparticles at 5 K reached
up to 0.05 T and 0.13 T, respectively. Both He and Hc decrease with increasing temperature, as shown
in Figure 4b. The values of He and Hc are much lower than that of the oxide-coated Mn nanoparticles
prepared by the same method [9,12]. indicating a reduced interfacial exchange coupling between the
FI and AFM phases in comparison with that of the oxide-coated Mn nanoparticles. The exchange
bias effect in the Mn–C nanoparticles may result from the interfacial coupling between AFM α-Mn(C)
solid solution or manganosite and FI Mn3O4 or Mn4C, respectively. We speculate that the interstitial C
atoms in the α-Mn lattices might reduce the antiferromagnetic coupling of the Mn atoms and thus the
interfacial coupling for exchange bias effect.
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Figure 4. (a) The typical field-cooling (1 T) M-H curves and (b) the temperature dependence of
exchange bias (He) and coercivity (Hc) of the Mn–C nanoparticles.
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4. Conclusions

The Mn–C nanoparticles composed of α-Mn(C) solid solution, Mn4C, manganosite, and trace
amounts of C/Mn3O4 were prepared by the traditional arc discharge method. The Mn–C nanoparticles
exhibit room temperature ferromagnetic behaviours and unusual positive temperature coefficients of
magnetization owing to the presence of Mn4C, which is Néel’s P-type ferrimagnet. The thermomagnetic
behaviours of a system composed of materials with both positive and negative coefficients of
magnetizations may be tunable by tuning the fraction of the component materials. The exchange bias
field and the coercivity of the Mn–C nanoparticles decrease with increasing temperature.
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