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Abstract: Using quantum-mechanical calculations of second- and third-order elastic constants
for YN and ScN with the rock-salt (B1) structure, we predict that these materials change the
fundamental type of their elastic anisotropy by rather moderate hydrostatic pressures of a few
GPa. In particular, YN with its zero-pressure elastic anisotropy characterized by the Zener anisotropy
ratio Az = 2Cy4/(C11 — Cq2) = 1.046 becomes elastically isotropic at the hydrostatic pressure of
1.2 GPa. The lowest values of the Young’s modulus (so-called soft directions) change from (100)
(in the zero-pressure state) to the (111) directions (for pressures above 1.2 GPa). It means that the
crystallographic orientations of stiffest (also called hard) elastic response and those of the softest
one are reversed when comparing the zero-pressure state with that for pressures above the critical
level. Qualitatively, the same type of reversal is predicted for ScN with the zero-pressure value of
the Zener anisotropy factor Az = 1.117 and the critical pressure of about 6.5 GPa. Our predictions
are based on both second-order and third-order elastic constants determined for the zero-pressure
state but the anisotropy change is then verified by explicit calculations of the second-order elastic
constants for compressed states. Both materials are semiconductors in the whole range of studied
pressures. Our phonon calculations further reveal that the change in the type of the elastic anisotropy
has only a minor impact on the vibrational properties. Our simulations of biaxially strained states
of YN demonstrate that a similar change in the elastic anisotropy can be achieved also under stress
conditions appearing, for example, in coherently co-existing nanocomposites such as superlattices.
Finally, after selecting ScN and PdN (both in B1 rock-salt structure) as a pair of suitable candidate
materials for such a superlattice (due to the similarity of their lattice parameters), our calculations
of such a coherent nanocomposite results again in a reversed elastic anisotropy (compared with the
zero-pressure state of ScN).

Keywords: YN; ScN; pressure; elasticity; ab initio; stability; nanocomposites

1. Introduction

Anisotropic (tensorial) elastic characteristics belong to the most fundamental properties of
crystals (see [1,2]) and reflect the nature of inter-atomic bonds. Elastic constants are decisive for
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numerous phenomena well beyond simple mechanical response of crystal lattices to uniaxial, biaxial or
triaxial loading. In particular, strong long-range elastic interactions among point defects, such as
substitutional or interstitial solute atoms, are inter-linked with their low solubilities (see [3]). Further,
elastic interactions among extended defects, such as edge or screw dislocations [4], grain boundaries
or stacking faults, are crucial for phenomena mediating plasticity in crystalline materials. As another
example, when changing the temperature in composites, it is the varying lattice-parameter mismatch
and elastic stiffnesses of coexisting phases which play an important role in stresses occurring at
internal interfaces. Regarding the mechanical stability and the very existence of materials phases,
relations among elastic constants are vital for the mechanical stability as violations of so-called
Born-Huang stability criteria [5] often lead to phase transformations. As it would be indeed very
difficult to provide a complete list of phenomena intertwined with elastic properties, we further
mention only their role in sound propagation [6-10], heat transfer and partly also in thermal lattice
vibrations [11], which significantly contribute to the thermodynamic stability (phonon entropy
contribution is a part of the free energy [12]).

When considering elastic anisotropy of materials, its most important characteristics are the
magnitude of the anisotropy (as a measure of how different the elastic response is from the isotropic
one) and then special directions for which the studied crystalline system exhibits the softest and
stiffest elastic response. Focusing on crystals with a cubic symmetry, which are described by three
independent elastic constants (stiffnesses) Cq1, C1p and Cy4, the magnitude of the elastic anisotropy is
often expressed by the so-called Zener’s anisotropy ratio Az = 2Cy4/(C11 — C12). If this ratio exceeds
one, the elastically stiffest response of the studied cubic crystal to uniaxial loading is found along
the (111) family of directions while the softest response occurs along the (001) directions. When the
Zener’s ratio is lower than one, the elastic anisotropy is opposite and the stiffest elastic response,
i.e., the highest value of the Young’s modulus, is found along the (001) directions. The border case
of Az =1 describes an elastically isotropic material (the directional dependence of Young’s modulus
would be a sphere).

Together with the above discussed second-order elastic constants, there are also elastic constants
related to higher-order elasticity [13-16]. In particular, there are six independent third-order elastic
constants in the case of cubic-symmetry systems: Ci11 = Cop = C333, Cias = Cos5 = Czp6, C112 =
Cr3 = Ci33 = C13 = Ci2 = C33, Ci55 = Coag = Caag = Ci6 = Coes = Cas5, C123, Cy56 and all other
are zero (provided that the mutual orientation of the lattice and the coordination system is matching).
Importantly, third-order elastic constants describe the changes of the second-order elastic constants
due to the application of external stress or strain, including a hydrostatic pressure p.

In our study we show that the fundamental elastic anisotropy type, i.e., whether the elastically
softest response is either along (001) or (111) directions and the corresponding Zener anisotropy ratio
either higher or lower than 1, respectively, can be changed by application of moderate hydrostatic
pressures. Importantly, the predicted reversal means that the mutual ratio of longitudinal sound
velocities (which is faster or slower) in the [100] direction on one hand and in the [110] and [111]
directions on the other, reverse as well [17]. Such a change has been reported mostly as a consequence of
compositional changes so far, e.g., in Ref. [18], while we found that it caused by the hydrostatic pressure.

We predict the reversal for YN and ScN as two technologically important materials which have
been intensively studied. Regarding YN, its electronic structure, vibrational spectrum, and thermal
properties were computed using first-principles density functional theory (DFT) based simulations with
a generalized gradient approximation (GGA) of the exchange correlation energy in [19]. The authors of
that study also applied the Hubbard on-site correlation U term (GGA+U) and reported improvement
in the accuracy of the calculation of the bandgap and selected features of the electronic structure of
YN which are relevant to transport properties, such as transverse and longitudinal conduction band
effective mass. The GGA+U calculations were also performed in the study of electronic, mechanical,
and thermodynamic properties of YN in [20]. Other theoretical studies were focused on the stability
of the rock-salt B1 structure of YN with respect to a pressure-induced transition into another phase,
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such as the caesium-chloride B2 one [21,22]. Full-potential calculations were also performed in the
theoretical study by Stampfl and co-workers [23] who showed that local density approximation (LDA)
predicts YN to be semimetal and the bandgap is open only when a screened-exchange calculations are
performed. As far as ScN is concerned, it was a part of an extensive study of properties of 3d transition
metal nitrides considering their cubic zinc-blende, rock-salt and caesium-chloride polymorphs [24].
It was also one of the compounds in the study of the Sc-based ternary nitrides [25] which was
focused on single-crystal elastic constants, mechanical stability, the site-projected density of states,
Fermi surfaces, charge densities and chemical bonding.

2. Methods

Our quantum-mechanical calculations were performed within the framework of density functional
theory [26,27] using the Vienna Ab initio Simulation Package (VASP) [28,29] and projector augmented
wave (PAW) pseudopotentials [30,31] (electron configuration in the VASP-notation Y-sv: 4s4p5s4d,
Sc-sv: 3p4s3d, N: s2p3). The computational setting was the same as in Ref. [32]. The exchange and
correlation energy was treated in the generalized gradient approximation (GGA) as parametrized by
Perdew and Wang [33]. We used a plane-wave energy cut-off of 800 eV, a7 x 7 x 7 Monkhorst-Pack
k-point mesh and 8-atom cube-shaped computational supercells (see a schematic visualization of this
structure in Figure 1b). Second- and third-order elastic constants at zero pressure were computed as
described in our paper [32] which also contains very detailed convergence tests. The second-order
elastic constants under pressure (also in the case of tetragonal-symmetry states) were determined
using the stress-strain method [34]. In this case, Born stability conditions in their original version are
also valid for non-zero pressures and the external pressure does not enter here explicitly. In order
to obtain highly accurate densities of states, 14 x 14 x 14 k-point meshes were used in the case
of the above discussed 8-atom cells. These calculations were initially performed with employing
the Fermi smearing (VASP-parameter ISMEAR = —1) with the smearing parameter ¢ = 0.02 eV.
After reaching a self-consistent solution for a given geometry (for each studied lattice parameter),
a non-selfconsistent run (VASP-parameter ICHARG = 11) was subsequently performed utilizing the
tetrahedron method (VASP-parameter ISMEAR = —5) to compute the density of states (following the
VASP manual). For phonon calculations we have used 64-atom 2 x 2 x 2 multiple of the cube-shape
8-atom elementary cell (which is shown in Figure 1b). The corresponding k-point mesh was then
4 x 4 x 4. Phonopy [35] software package was utilized.

Figure 1. Schematic visualization of the 2-atom primitive (a) and 8-atom conventional cube-shape
(b) unit cells of NaCl-structure of YN (some atoms are shown together with their periodic images).

3. Results

As far as the ground-state properties of Bl-structure YN and ScN are concerned, the calculated
equilibrium lattice parameters are in an excellent agreement with those previously obtained that
employed different variants of the GGA exchange-correlation approximations as well as with
experimental results. In particular, we find the lattice parameter of YN to be 4.916 A when theoretical
values 4.90-4.93 A were reported in Reference [19], 4.619 A in [20], 493 A in [21,36], 4.85 A in [23] and
the experimental value is 4.88 A [37]. Regarding ScN, our value 4.510 A agrees with theoretical ones of
4543 A from [24], 4.516 A reported in Reference [38], 4.50 A in [23] and experimental 4.50 A [39].
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Regarding elastic properties, the first-order derivatives of the second-order elastic constants C;;
with respect to the hydrostatic pressure p are in the case of cubic systems equal to (according to
Refs. [13-15,32,40]):

0Ci1 . 2C11 +2C1 + Cin +2Cp

_ ) 1
op C11 +2Cypp M)

0Cip _  —Cii —Cip+Ci3 +2Ci2 @
op Ci1 +2Cp2 ’

0Cas  Ci11 +2C1p + Cag + Craa +2C166

(Sp C11 +2Cqpp

The calculated values of second-order Cjj(p = 0 GPa) and third-order elastic constants
Cijk(p = 0 GPa) determined for ground-state (i.e., zero hydrostatic pressure, p = 0 GPa) of YN and ScN
are summarized in Table 1. The elastic constants were recently published in our previous work [32]
but here we newly add also the changes 6C11/6p, 6C12/0p and 6Cyq/6p according to Equations (1)—(3).
Regarding the calculated values of second-order elastic constants C;j(p = 0 GPa), Table 1 shows that
they are in an excellent agreement with previously published theoretical results for both YN and ScN
when we selected GGA calculations [24,25,38] (LDA predicts both materials to be metallic [23]).

®)

Table 1. Calculated second-order elastic constants C;j(p = 0 GPa) (in comparison with selected literature
values—when a GGA was used as in our case) and their pressure changes (6C11/dp, 6C12/6p, and
0Cy4/5p) as approximatively evaluated for ép = 1 GPa from computed third-order elastic constants
Cijk(P = 0 GPa). Theoretical values taken from Ref. [24] are related to GGA-PW91 approximation [33]
similarly as in our case (marked by *), GGA-PW91 + U (marked by **), GGA-PBE [41] (marked by Hor
GGA-PBE + U (marked by ™).

Cn Ci2 Cay 6C11/dp 6C12/0p ICulép

YN 318 81 124 7.55 1.12 -0.70
(321 [24]*  (81[24]%  (124[24]%)
(304 [24] *) (76 [24] **) (122 [24] *%)
(317[241YH  80[241H) (123[24]11)
(310[24]1 T (81[24] ™) (1242411

ScN 388 106 166 7.49 1.02 -0.51
(399 [24]) (96 [24]) (158 [24])
(397[25])  (131[25]) (170 [25])
(354[38])  (100[38]) (170 [38])

Cin Ci2 Cixs Craa Ci66 Cas6
YN —4100 —160 180 180 —225 185
ScN —5100 —190 260 200 —330 215

The second-order elastic constants of Bl structure YN for the zero-pressure case C;;(p = 0 GPa)
can be neatly visualized in the form of directional dependence of Young’s modulus Y(p = 0 GPa) in
Figure 2a. The Young’ s modulus is a measure of the response of the studied system to an uniaxial
loading along different directions and as such it reflects the elastic anisotropy. Young’s modulus in
Figure 2a is nearly spherical, i.e., the elastic elastic anisotropy of YN at the zero-pressure case is weak
and the corresponding Zener ratio Az = 1.046. In order to graphically represent the third-order
elastic constants Cjj(p = 0 GPa), we conveniently visualize pressure-induced changes in the Young’s
modulus for each direction. In particular, we show the difference between the Young’s modulus in
the pressurized case Y(p = 1 GPa) and Young’s modulus for the zero-pressure case Y(p = 0 GPa), i.e.,
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Y(p =1 GPa) — Y(p = 0 GPa). The values of these changes (in GPa) are shown for each direction in
Figure 2b while relative changes (when the difference Y(p = 1 GPa) — Y(p = 0 GPa) is for each direction
divided by the Y(p = 0 GPa) along this direction) are visualized in Figure 2c.

(a) pressure: 0.0 GPa, A;=1.046 (b) pressure: 1 GPa
Young's modulus Young’s modulus differences 7

(c) pressure:1GPa (d) pressure: 1.6 GPa, A,=0.987
normalized Young's modulus differences ., . Young’s modulus

YN

301.2
3008
300.4
300.0
289.6
200.2

298.8

GPa

Figure 2. Computed changes in the elasticity of rock-salt structure YN visualized as directional dependencies
of the Young’s modulus. The zero-pressure case based on the second-order elastic constants computed
by the stress-strain method is shown in part (a). The estimated changes in the Young’s modulus
due to 1 GPa of hydrostatic pressure are shown for different directions in absolute terms (in GPa) in
part (b) and relatively (divided by the value for this direction in the zero-pressure case) in part (c).
The visualized changes (in the second-order elasticity at the hydrostatic pressure of 1 GPa) are predicted
using the second-order and third-order elastic constants computed for the zero-pressure state according
to Equations (1)-(3). Finally, the directional dependence of the second-order elasticity computed at the
1.6 GPa is shown in part (d). Mind the change in the scale between the parts (a) and (d).

Figure 2b,c show that the Young’s modulus is found to increase the most along the (001) directions.
This is the direction along which the Young’s modulus of YN in the zero-pressure case exhibits the
softest elastic response (the lowest value, see Figure 2a). In contrast, the change for the the (111)
directions is nearly zero (see Figure 2b,c). Figure 2b,c thus indicates that application of hydrostatic
pressure can change the type of elastic anisotropy.

The Young’s modulus of YN under pressure is predicted to have the stiffest (hard) elastic response
along the (001) directions and not the softest one (as in the zero-pressure case). Such a change in the
elastic anisotropy would be characterized by the change of the Zener anisotropy ratio which would
become lower than that for pressurized states of YN. It is worth noting that these pressure-induced
changes shown in Figure 2b,c are based on zero-pressure second- and third-order elastic constants.
In order to check this prediction we have also determined the second-order elastic constants by
quantum-mechanical calculations for a series of states at different hydrostatic pressures. Our results
are shown in the form of directional dependence of Young’s modulus for the hydrostatic pressure of
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1.6 GPa in Figure 2d. It can be seen that the softest elastic response (the lowest value of the Young’s
modulus) is indeed along the (111) directions.

While we expect that this reversal would be rather rare, we predict it also for ScN with the same
rock-salt (B1) structure as in the YN case. Figure 3 visualizes the directional dependence of the Young's
modulus for ScN for the zero-pressure case (Figure 3a) as well as the impact of zero-pressure second-
and third-order elastic constants on the elasticity of ScN (Figure 3b,c). Performing then calculations of
second-order elastic constants also in the case of pressurized ScN (see Figure 3d), the comparison of
Figure 3a,d clearly shows the change.

(a) pressure: 0.0 GPa, A;=1.117 (b) pressure: 1.0GPa
Young’s modulus Young’'s modulus differences 2
ScN ScN o

(c) pressure: 1.0 GPa (d)

normalized Young’s modulus differences pressure:8.0GPa, A;=0.978
i Young’s modulus

ScN ) 175 4176

ScN
2

416.8

416.0

415.2

[001]
&

414.4
4136
4128
412.0

4112

.

T
0.25 -400 T ——
=200 —

410.4

0
[
9, logy 200 GPa

Figure 3. The same as in Figure 2 but for ScN. Part (d) is computed at the hydrostatic pressure of
8.0 GPa. The parts (a) and (d) were visualized by the SC-EMA [42—-44] library (scema.mpie.de) based
on our ab initio computed elastic constants.

In order to examine the changes in the elasticity in a broader range of pressures we have performed
a series of calculations for YN and ScN states with different volumes (different hydrostatic pressures).
The resulting elastic constants, the bulk modulus B = (Cy; +2Cy3)/3, C' = (C11 — C12)/2 and Cyg,
are displayed in Figure 4. As the Zener’s ratio could be re-written as Az = C44/C’ the crossing of the
trends for Cy4 and C’ indicates the change of the elastic anisotropy type. The pressure dependence
of the Zener’s ratio is then depicted in Figure 5a. For YN the Ay ratio reaches the value of 1 (elastic
isotropy) for the pressure of about 1.2 GPa. For higher pressures the type of elastic anisotropy is
opposite to that in the zero-pressure state. The critical pressure for ScN is about 6.5 GPa (see Figure 5a).
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Figure 4. Quantum-mechanically calculated second-order elastic constants of YN (a) and ScN (b) for
different hydrostatic pressures. The vertical dash-dotted lines indicate the zero hydrostatic pressure.
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Figure 5. Quantum-mechanically computed (a) dependence of the Zener elastic anisotropy ratio Az
and the band-gap energy (b) as a function of hydrostatic pressure for both YN and ScN. The horizontal
dashed line for Az = 1 represents the border value of the elastic anisotropy, the vertical dash-dotted
line corresponds to zero hydrostatic pressure.

Next, we have also checked the electronic properties of both materials which are predicted
to be semiconductors in their ground state. This is in agreement with previous studies [19,20,23]
but our value of the band-gap energy width (0.34 eV) is underestimated similarly as in previous
theoretical studies in which similar computational methods were used—see a detailed discussion in
Reference [20]. The pressure-dependences of the width of the energy band-gap in their electronic
structures are depicted in Figure 5b. It is obvious that both YN and ScN remain semiconducting within
the studied range of hydrostatic pressures.

The decreasing width of the energy band-gap with increasing (positive) hydrostatic pressure
(lattice constants are smaller than the zero-pressure values) in both materials indicates that there
can be a pressure-induced semiconductor-to-metal transition. Such a major change of the electronic
structure (and subsequently properties of inter-atomic bonds) may also lead to a phase-instability and
a transition into another crystal structure. For example, YN seems to be prone to a pressure-induced
phase transition into the B2 (caesium chloride structure) phase according to full potential linearized
augmented plane wave (FP-LAPW) calculations in [21,22], but at rather high pressures, 134 GPa [21]
and 139 GPa [22]. As none of these transitions seems to be directly related to the change in the type of
the elastic anisotropy reported in our present study, we do not examine them in detail and leave them
for future work.
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As the elastic properties are inter-connected with phonon modes, we have also examined an
impact of the above discussed change in the elastic anisotropy on vibrational properties. Our computed
phonon spectra for both YN and ScN at the zero-pressure as well at selected pressures (for which the
Young’s moduli are shown in Figures 2d and 3d) are summarized in Figure 6. The change in the elastic
anisotropy is found to have only a very minor impact on the vibrational properties.

(a) YN, pressure: 0.0 GPa, A; = 1.046 (b) ScN, pressure: 0.0 GPa, A;=1.117
g 5
c u
g \ &
@ ,/}\ ﬁ\
. | K X r L ] K X I L
(C) Wave vector (d) Wave vector
YN, pressure: 1.6 GPa, A; = 0.987 ScN, pressure: 8.0 GPa, A;=0.978
Q
r 0 ﬁ L?_
- X I L

=
=
-

Wave vector Wave vector

Figure 6. Quantum-mechanically calculated phonon dispersions at zero pressure for YN (a) and ScN
(b) and for YN also for the hydrostatic pressure p = 1.6 GPa (c) and for ScN for p = 6.5 GPa (d).

After examining in detail the elastic-anisotropy change when applying hydrostatic pressures
we next search for other conditions/mechanisms with potentially a similar impact. Our motivation
is the fact that hydrostatic pressures over 1 GPa rarely occur in technologically relevant situations.
It would be, therefore, desirable to achieve the studied elasticity change under more easily reachable
conditions. It is interesting to examine biaxial loading conditions (misfit strains) which are induced,
for example, in coherent nanocomposites (such as superlattices [45-66]) when materials with slightly
mismatching lattice parameters co-exist. In order to simulate the impact of similar strain conditions,
we have performed a series of calculations for tetragonally deformed YN. The YN cell then looses
its cubic shape and symmetry and we conveniently describe it by two lattice parameters 2 = b and
c. Considering the fact that these coherently-strained superlattices exist only in the case when the
two co-existing materials have their lattice parameters only very slightly different (by about 1-2%),
we limit our calculations to £1.0% change of the lattice parameters with respect to the equilibrium
lattice parameter (of the cubic-shape B1 lattice). Figure 7 shows the resulting directional dependencies
of the Young’s modulus for biaxially 1% compressed case (Figure 7a) and biaxially 1% expanded state
(Figure 7b), respectively. The tetragonal lattice parameters c of these states are equal to the values
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corresponding to the minimum energy (and zero stress o = 0) with the constraint that the lattice
parameters a = b have those specific values.

The state with a = b = 0.990 aeq and ¢ = 1.006 aq (Figure 7a) is characterized by elastic constants
Cn = sz = 361 GPa, C33 = 308 GPa, C12 =90 GPa, C13 = C23 =83 GPa, C44 = C55 = 122 GPa and
Ces = 126 GPa. The state witha = b = 1.010 aeq and ¢ = 0.996 aq (Figure 7b) has its elasticity described
by elastic constants C;; = Cyp = 283 GPa, C33 = 325 GPa, Cj; = 75 GPa, Ci3 = Cy3 =79 GPa,
C44 = C55 = 123 GPa and C66 = 120 GPa.

Importantly, the reversal of the elastic anisotropy is clearly visible in Figure 7. Regarding the
biaxially compressed state in Figure 7a, the highest value of the Young’s modulus is along the [+100]
and [0£10] directions within the (001) plane of the biaxial loading. On the other hand, for the [00£1]
directions from the {001} family, the lowest values of the Young’s modulus are found. As far as the
biaxially expanded state in Figure 7b is concerned, the maximum Young’s modulus is along the [00£1]
directions perpendicular to the (001) plane of the biaxial loading while the lowest values are obtained
for the [£100] and [0+£10] directions. The computed differences in the elastic response of the two
biaxially loaded states indicate that tetragonal deformations may contribute to fine-tuning of elastic
properties within a materials design of systems with a desired elasticity.

(@) a=b=0990a,, (b)
YN biaxial ¢ =1.006 a,, YN biaxial
(001) strain . (001) strain

295
320 290
315 285
100 310 280

305

295
290

285

-300

-200
-100

1 100
200 300 300 GPa o) 200 300 300 GPa

0
[10g; 100

Figure 7. The calculated directional dependences of the Young’s modulus of two tetragonally deformed
states of YN with a = b = 0.990 aeq (a) 2 = b = 1.010 aeq (b), respectively. The tetragonal lattice c
parameters are equal to the values corresponding to the minimum energy (and zero stress o = 0).

Our previous simulations of tetragonally-deformed states of YN were motivated by strains
appearing in coherent nanocomposites but, admittedly, a hypothetical partner material entered
only via the geometry of the imposed strains. In order to check a more realistic situation with
two different materials interfacing each other, we next simulate a superlattice consisting of two
transition-metal (TM) nitrides each crystalizing in the B1 structure. As it has turned out, it is not easy
to find another TM-nitride with the equilibrium lattice parameter close (1-2%) to that of YN (our
value: 4.916 A). Therefore, we have tried to identify a partner material for ScN for which we found
the lattice parameter equal to 4.510 A. The motivation to replace the hydrostatic pressure of 6.5 GPa
by another mechanism is even stronger in the case of ScN. Figure 8a visualizes a 16-atom supercell
containing one conventional cell of ScN and one with PdN for which we obtained the lattice parameter
equal to 4.447 A (i.e., 1.4% smaller than in the ScN case). When applying periodic boundary conditions
a coherent superlattice is formed. The composite supercell has a tetragonal shape and we will thus
use the description by the lattice parameters 2 = b and c similarly as in the case of tetragonal states
of YN discussed above. The calculated values are a = b = 4.532 A and ¢ = 8.690 A. The former value
means that ScN is biaxially expanded within the (001) plane by 0.49% and PdN is biaxially expanded
by 1.91%. This unexpected results, expansions of both materials, is accompanied by contraction of both
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materials in the direction [001] perpendicular to the interfaces. In particular, the c lattice parameter
of the composite is by 2.98% smaller than the sum of equilibrium lattice parameters of ScN and PdN.
The reason for these unexpected results can be probably found in the fact that there is a structural
distortion inside the composite. In particular, the N and TM atoms do not share the same planes
which are perpendicular to the [001] direction (planes are parallel to the interfaces) as they do in the Bl
ground-state structure. The off-sets are alternating (up/down) and their direction are schematically
indicated by small arrows in Figure 8a. The magnitude of these shifts is (in relative terms as fractions
of the supercell lattice parameter ¢ and as absolute values) equal to +0.0061 and +0.053 A in the
PdN layers and +0.0085 and +0.074 A in ScN layers. Similar shifts of N atoms were found also in
MoN/TaN composites [47] and represent quite likely a frozen optical phonon mode.

Figure 8b then shows the elasticity of the studied ScN/PdN nanocomposite. The calculated
elastic constants are C1; = Cyp = 304 GPa, C33 = 450 GPa, C1p = 157 GPa, C13 = Cp3 = 126 GPa,
Cy44 = Cs5 = 75 GPa and Cg¢ = 101 GPa. When inspecting the directional dependence of the Young's
modulus in Figure 8b we can observe that the highest values are found for directions close to the
[00£1] directions. Thus there is a way how a change of the elastic anisotropy can be achieved also for
the ScN. But three aspects should be noted. First, the lowest value of the Young’s modulus is along the
[£100] and [0+£10] directions parallel to the plane of the composite interfaces (see Figure 8b). Second,
the overall elastic anisotropy of ScN/PdN nanocomposite is an outcome of complex interactions of
pre-strained materials each having a different tensorial elastic properties. Finally, the single-phase PdN
in the B1 lattice has, according to our calculations, the Zener’s ratio equal to 0.631, i.e., opposite to that
of single-phase Bl-structure ScN. Therefore, a reduction of the Zener’s ratio due to the presence of PAN
in the nanocomposite is then expected. Nanocomposites formed by either YN (or ScN) on one hand
and other materials on the other require a detailed investigation and will be a topic of future studies.

375
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Figure 8. Schematic visualization of 16-atom ScN/PdN supercell (a) and the corresponding directional
dependence of the Young’s modulus (b). The calculations for this nanocomposite were performed
using 7 x 7 X 4 k-point grid. Small black arrows indicate the shifts of N atoms off the transition-metal
planes perpendicular to the [001] direction.

4. Conclusions

We have performed a series of quantum-mechanical calculations of second- and third-order elastic
constants of YN and ScN with the rock-salt structure in the case of their zero-pressure states as well
as for systems compressed by hydrostatic pressures. We predict that both YN and ScN undergo
a reversal of their elastic anisotropy type. In particular, their elastic anisotropy expressed by the
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Zener ratio drops under one due to applied hydrostatic pressure. At zero pressure, both systems
exhibit the softest elastic response to uniaxial loading (the lowest value of the Young’s modulus) along
the (100) directions which is changed to the (111) directions for pressures beyond the critical one.
These transition pressures are rather moderate, 1.2 GPa and 6.5 GPa for YN and ScN, respectively.
The elasticity change keeps the semiconducting character of both materials and has only a minor impact
on the vibrational properties. As alternative mechanisms leading to the reversal of the elastically
soft and hard directions, we identified tetragonal deformations of YN for very small biaxial strains
(lattice parameter compressed/expanded by about 1%) and a composite (superlattice) state of ScN and
PdN (mismatch of their lattice parameters is 1.4%). The last two discussed mechanisms clearly pave
a path towards a strain-controlled fine-tuning of elastic anisotropy in materials, which would allow,
for example, a theory-guided design of nanocomposites with a particular ratio of longitudinal sound
velocities in the [001], [011] and [111] directions in different components.
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