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Abstract: Porous carbon materials derived from biopolymers are attractive sorbents for the removal of
emerging pollutants from water, due to their high specific surface area, high porosity, tunable surface
chemistry, and reasonable cost. However, carrageenan biopolymers were scarcely investigated as a
carbon source to prepare porous carbon materials. Herein, hydrochars (HCs) and porous activated
carbons (ACs) derived from natural occurring polysaccharides with variable sulfate content (κ-, ι- and
λ-carrageenan) were prepared and investigated in the uptake of ciprofloxacin, which is an antibiotic
detected in water sources and that poses serious hazards to public health. The materials were prepared
using hydrothermal carbonization and subsequent chemical activation with KOH to increase the
available surface area. The activated carbons were markedly microporous, presenting high specific
surface area, up to 2800 m2/g. Activated carbons derived from κ- and λ-carrageenan showed high
adsorption capacity (422 and 459 mg/g, respectively) for ciprofloxacin and fast adsorption kinetics,
reaching the sorption equilibrium in approximately 5 min. These features place the ACs investigated
here among the best systems reported in the literature for the removal of ciprofloxacin from water.
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1. Introduction

Emerging pollutants are a vast series of man-made chemicals such as cosmetics, pesticides
and pharmaceuticals that are essential to modern society and whose production has increased
dramatically over the last century. The continuous and uncontrolled discharge of such substances
into the environment, from distinct pollution sources, contributes to their accumulation in the aquatic
compartments, with potentially harmful effects [1,2]. Effects on human health, environment and
aquatic ecosystems are still poorly studied, but may include endocrinal disruption, promotion of
antibiotic resistance, and chronic toxicity [3,4]. Unfortunately, wastewater treatment plants (WWTP) are
currently unable to completely remove most of these compounds [5,6]. This is the case of ciprofloxacin
(CIP, Scheme 1), an antibiotic that belongs to the class of quinolones and is used to treat several bacterial
infections in animals and humans [7]. Ciprofloxacin can be found in wastewater, due to improper
disposal and incomplete metabolization of the drug in humans. The average CIP removal rate in
WWTPs is about 60% [5], resulting in wastewater effluents with concentrations that can still exceed
1 µg/L [8]. Furthermore, the detected amount of CIP in wastewaters discharged from hospitals and
drug production units is much higher, up to 150 µg/L and 30 mg/L, respectively, which is potentially
harmful to human health and ecosystems [9–11]. A recent study has indicated ciprofloxacin as the
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most widespread antibiotic in sea water in the Antarctic [12]. The presence of CIP in water sources
poses serious hazards to public health also because it can promote antimicrobial resistance in certain
pathogenic microorganisms [12–14].

Given the limitations of conventional treatments implemented in WWTPs, new, sustainable
and effective technologies are sorely needed. Several methods have been proposed for the removal
and degradation of CIP from water, including advanced oxidation processes [15], photocatalytic
treatment [16], electrocoagulation [9], biodegradation [17] and adsorption [18,19]. Among these
methods, adsorption is an interesting process in view of its simplicity of implementation, low cost,
high efficiency, and less production of toxic intermediates. In order to achieve high performance
adsorptive separation, it is crucial to select sorbent materials with high capacity, chemical selectivity
and fast rate of adsorption. This quest has boosted the development of new types of efficient sorbent
materials. A variety of carbon-based materials have been investigated as sorbents for the uptake of
CIP [20–23]. Among these materials, porous carbon such as activated carbons (ACs) have received
remarkable attention [18,24–26], owing to high specific surface area, high pore volume, micro- or
mesoporosity, tunable surface chemistry, and reasonable cost. These features are crucial to achieve
high performance in sorbent materials at low cost. In this context, it is important to consider that
the textural properties of ACs are tightly related to the raw materials used as precursors and the
method of preparation [27]. Activated carbon production usually comprises two-steps [27]. First,
the precursor is carbonized through pyrolysis at high temperatures or hydrothermal carbonization
at mild temperatures. In the second step, the hydro- or pyrochars are submitted to an activation
process, with the aim of increasing the surface area. In order to reduce the production cost, porous
carbon materials and activated carbons are commonly obtained using raw biomass and carbohydrates
as precursors [27]. Natural precursors rich in structural heteroatoms (e.g., chitosan) have been less
investigated but are particularly attractive as they offer the chance of producing hetero-doped carbon
structures with additional functionalities of interest for several applications [28,29].
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Scheme 1. Structural formulas of the disaccharide units of κ-, ι- and λ-carrageenan, and ciprofloxacin.

Carrageenan is a family of linear sulfated polysaccharides composed of galactose and
anhydrogalactose units, extracted from red seaweeds [30]. The most commonly used are κ-,
ι- and λ-carrageenan, that comprise one, two or three sulfated groups per disaccharide unit,
respectively (Scheme 1). Carrageenans have been widely used as emulsifying or gelling agents in the
pharmaceutical and food industries [30,31]. Owing to its natural abundance and chemical functionality,
carrageenan have attracted attention for sorption applications, namely in the uptake of pesticides and
pharmaceutical contaminants from water [32–35]. However, to the best of our knowledge, carrageenan
has been scarcely investigated as a carbon source to prepare porous carbon materials. Furthermore,
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studies on carrageenan-derived porous carbons were limited to energy-related applications [36,37].
For example, Fan and co-workers [37] reported that mesoporous carbon microspheres prepared from
carrageenan (undefined type) present good electrochemical capacitive performance owing to high
surface area, narrow pore size distribution and optimized micro- and mesoporous structure.

In this work, we have investigated the use of three distinct carrageenans with variable sulfate
content (κ-, ι- and λ-carrageenan) as precursors submitted to hydrothermal carbonization in the
preparation of activated carbons and subsequent chemical activation with potassium hydroxide
(KOH). Furthermore, we have explored the application of the prepared materials as sorbents for the
removal of the antibiotic ciprofloxacin from aqueous solutions.

2. Materials and Methods

2.1. Chemicals

Three types of carrageenan (κ, ι and λ-carrageenan) were acquired from Honeywell Fluka (Seelze,
Germany). Potassium hydroxide (>86%) was purchased from Labchem (Zelienople, PA, USA) and
hydrochloride acid (HCl, 37% v/v) was purchased from VWR International (Radnor, PA, USA).
Ciprofloxacin hydrochloride (99%) was purchased from Sigma-Aldrich (St. Louis, MO, USA). Milli-Q
water was obtained through Synergy equipment (Millipore, 0.22 µm filter) and absolute ethanol
(CH3CH2OH) was purchased from Honeywell Fluka (Seelze, Germany).

2.2. Preparation of the Activated Carbons

Synthesis of the activated carbons involved two main steps, a hydrothermal treatment of the
carrageenan, followed by chemical activation [37]. In a typical procedure, 0.87 g of carrageenan (κ,
ι or λ-carrageenan) were dissolved in water (17.5 mL) under stirring, placed in a Teflon autoclave
and subjected to 200 ◦C for 20 h. The resulting hydrochar, a dark precipitate, was collected by
centrifugation (15 min, 6000 rpm, Hettich Zentrifugen, EBA 20), washed with water and ethanol
several times, and freeze-dried (Coolsafe Touch, Labogene). The hydrochars were identified according
to their carrageenan precursor–HC-κ, HC-ι and HC-λ. These materials were chemically activated by
KOH in a 1:4 HC:KOH weight ratio (physical mixture) in a tube furnace, under nitrogen atmosphere, at
700 ◦C (4 ◦C/min) for 4 h. The obtained materials were washed with hydrochloric acid (2 M), followed
by water to remove all potassium, and then suspended in ethanol and dried at 60 ◦C overnight. The
resulting activated carbons were identified as AC-κ, AC-ι and AC-λ according to their AC precursor.

2.3. Adsorption Experiments

The ability of the activated carbons to uptake ciprofloxacin (CIP) from water was assessed through
batch adsorption experiments in polypropylene containers. AC samples were precisely weighted and
added to a CIP aqueous solution of known concentration in deionized water and were continuously
shaken using a vertical rotator at a constant rotation speed (30 rpm) under isothermal conditions
(25 ± 1 ◦C). The starting point of the uptake experiment was coincident with the beginning of the
stirring process. A comparison between the adsorption performances of the HC and AC materials was
preliminary assessed by using 0.5 mg/mL of carbon at pH 5. CIP solutions were prepared daily by
diluting the corresponding stock solution. In each experiment, aliquots were collected for analysis at
different times. The carbon materials were separated from the medium by centrifugation (13,300 rpm,
5 min, Spectrafuge 24D, Labnet). The concentration of CIP in the supernatant was determined by
measuring the absorbance at 273 nm using a UV–Vis spectrophotometer (Cintra 303, GBC). The
calibration curve was built with CIP standards with concentrations between 0.12 and 12 mg/L.

The amount of adsorbed CIP at time t (qt in mg/g) was estimated from the mass balance between
the initial CIP concentration (C0 in mg/L) and concentration at time t (Ct in mg/L) in the solution,
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as displayed by Equation (1), where V is the total volume of CIP solution (L) and m is the mass of the
dry weight of the sorbent.

qt =
(C0 − Ct)V

m
(1)

The removal percentage (R) of CIP was calculated using Equation (2):

R =
C0 − Ct

C0
× 100 (2)

Control uptake experiments, i.e., in the absence of carbon materials, were also carried out in
parallel under the same conditions to inquire about CIP losses due to adverse effects.

2.3.1. Effect of pH, Sorbent Dosage and Equilibrium Isotherms

The effect of pH on adsorption was firstly investigated. The pH of CIP solutions was adjusted
using ammonia (25%) or hydrochloric acid (37%). Then the adsorption capacity at equilibrium (qe) was
determined at pH 6 and 24 h contact time for an initial CIP concentration of 50 mg/L with variable
sorbent dosage (0.05, 0.1, 0.25, 0.4 and 0.5 mg/mL of AC). The amount of adsorbed CIP at equilibrium
(qe, mg/g) was assessed by UV-Vis spectroscopy and calculated using Equation (1) for Ct = Ce, where
Ce (mg/L) is the concentration of CIP at equilibrium. The isotherm curves were built by plotting qe

against Ce (mg/L).

2.3.2. Effect of Contact Time

To investigate the kinetics of adsorption, the time profile of CIP adsorption was assessed. Typically,
10 mg of activated carbon (accurately weighted) were added to 20 mL of CIP solution (50 mg/L, pH 6).
With the mixture being shaken, aliquots of 0.7 mL were collected over time, at 25.0 ± 1.0 ◦C. The
amount of CIP adsorbed onto the AC samples at each time interval (qt, mg/g) was determined using
Equation (1) and plotted against time (t, min).

2.4. Materials Characterization

Nitrogen physisorption experiments were performed with a Gemini V2.0 Micromeritics
Instrument (Micromeritics, Norcross, GA, USA) to investigate the textural properties of the
carbonaceous materials. The specific surface area of the materials was determined from N2 adsorption/
desorption isotherms, using the Brunauer–Emmett–Teller (BET) equation [38]. The total pore volume
(VT) was defined as the volume of liquid nitrogen corresponding to the amount adsorbed at a relative
pressure p/p0 = 0.99 (Gurvitch rule) [39]. The micropore volume, Vmicro, was calculated according to
the Dubinin–Radushkevitch method [40]. The average pore size (dP) was calculated using the ratio
4VT/SBET that considers pores with cylindrical shape. Elemental analysis of carbon, hydrogen and
sulphur was performed on a Leco Truspec-Micro CHNS 630-200-200 (LECO, Saint Joseph, MI, USA).
Fourier transform infrared (FTIR) spectra of the materials were obtained using a Bruker Optics Tensor
27 spectrometer (Bruker, Billerica, MA, USA) coupled to a horizontal attenuated total reflectance (ATR)
cell, using 256 scans at 4 cm−1 resolution. Raman spectra were acquired in a combined Raman-AFM
confocal microscope WITec alpha300 RAS+ (WITec, Ulm, Germany). An Nd:YAG laser operating
at 532 nm was used as excitation source with the power set to 1 mW. A 100× objective was used to
view samples with an integration time of 2 s for each spectrum and 10 acquisitions. The intensity
values of the Raman bands of the carbon materials for the ratio ID/IG calculation were obtained by
fitting the Gaussian function in Project five+ software (WITec, Ulm, Germany). The carbon materials
were analysed by powder X-ray diffraction (XRD) in a Rigaku Geigerflex Dmax-C diffractometer
(Rigaku, Tokyo, Japan) equipped with a CuKα monochromatic radiation source with 0.026◦ as step
size and 350 s as time per step. The morphology and size of the particles was analysed by scanning
electron microscopy (SEM) using a Hitachi Su-70 microscope (Hitachi, Tokyo, Japan) operating at
15 kV. Samples for electron microscopy analysis were prepared by evaporating particle suspensions
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(in ethanol) on a cooper grid coated with an amorphous carbon film. Zeta potential measurements
were performed in aqueous solutions of the particles to assess the surface charge of the particles, using
Zetasizer Nano ZS equipment from Malvern Instruments (Malvern, United Kingdom).

3. Results and Discussion

3.1. Characterization of the Carbon Materials

The electron microscopy analysis of the HCs and ACs prepared using different carrageenan
types as precursors unveiled distinct morphological and microstructural features (Figure 1). The
hydrothermal carbonization of carrageenan produced spheroidal carbon particles with a smooth
surface and an average diameter between 3 and 5 µm, respectively (Figure 1 and Table 1).
Hydrothermal carbonization of λ-carrageenan formed bottleneck junctions between adjacent HC-λ
particles. Upon activation with KOH the particle size decreased drastically to nanometric dimensions,
with the average size ranging between 50 and 150 nm, and the particles exhibited a rough surface. The
spherical shape of the hydrochars HC-ι and HC-λ was preserved after KOH activation, in agreement
with previous findings reported for spherical-activated carbons prepared from carrageenan (undefined
type) using identical KOH activation conditions [37]. In contrast, the activated carbons prepared from
κ-carrageenan presented irregular shape.Nanomaterials 2018, 8, x; doi: FOR PEER REVIEW 6 of 20 
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Table 1. Morphological and compositional properties of the hydrochars and activated carbons.

Sample DSEM (µm/nm) a C (wt%) b H (wt%) b S (wt%) b O (wt%) b

HC-κ 3.98 ± 1.63 µm 70.734 4.453 u.l.d. c 24.813
HC-ι 2.97 ± 1.18 µm 71.214 4.479 0.356 23.951
HC-λ 4.92 ± 0.48 µm 67.141 4.112 u.l.d c 28.747
AC-κ 45.9 ± 22.8 nm 89.592 0.592 u.l.d c 9.816
AC-ι 157.3 ± 51.5 nm 73.315 3.266 u.l.d c 23.419
AC-λ 54.1 ± 14.3 nm 78.879 0.418 u.l.d c 20.703

a Particle diameter measured using SEM. b Carbon, hydrogen and sulfur content measured by elemental
microanalysis. Oxygen content calculated by difference c under the limit of instrumental detection.

Among the hydrochars, HC-λ presented the highest oxygen content as determined by elemental
microanalysis. Although carrageenans are sulphonated polysaccharides, sulfur was detected in a
vestigial amount only for ι-carrageenan-derived hydrochars (0.4 wt%) (Table 1). As expected on
the basis of previous studies, activation with KOH resulted in an increase of carbon content and a
decrease of oxygen content in the materials prepared from κ- and λ- carrageenan [41]. Unexpectedly,
the activation barely affected the elemental composition of ι-carrageenan-derived AC, whose carbon
content was lower than in the other activated carbons, but has higher oxygen content.

The textural properties of the hydrochars and the activated carbons were analyzed by N2

sorption/desorption technique. The results are included in Table 2. The hydrochars have a specific
surface area (SBET) between 4.9 and 30 m2/g and low total porosity (VT), which are comparable with
the values reported for hydrochars prepared from polysaccharides [37]. The SBET was higher for HC-ι
spheres, which is in line with the smaller average particle size observed in SEM images, combined
with the higher value of total porosity. The surface area markedly increased through KOH activation
in agreement with the decrease of particle size and increase of surface roughness observed by electron
microscopy analysis. Furthermore, the activation process makes the carbons highly porous, as expected
on the basis of previous works [42,43]. Noteworthy, all ACs present a specific surface area above
2300 m2/g, and up to 2800 m2/g for the AC derived from ι-carrageenan, which are values superior to
the specific surface area of commercial activated carbons [44]. The N2 adsorption-desorption isotherms
(77 K) are type I (Figure 2), which is characteristic of materials with marked microporous character [45].
The volume of micropores (Vmicro) calculated using the Dubinin–Radushkevitch equation was high for
all AC samples, from 0.8 to 1.1 cm3/g, and is in line with the microporosity features demonstrated in
the isotherm profile.
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Table 2. Textural properties of the hydrochars and activated carbons.

Sample SBET (m2/g) VT (cm3/g) Vmicro (cm3/g) dP (nm)

HC-κ 4.88 0.0070 – 5.4
HC-ι 30.44 0.0245 – 3.8
HC-λ 11.89 0.0107 – 5.2
AC-κ 2345.6 1.336 0.836 2.3
AC-ι 2804.9 1.229 1.087 1.8
AC-λ 2515.8 1.164 0.968 1.9

The powder XRD of the hydrochars shows a single broad feature centered at 23◦ corresponding to
(002) of graphite, which suggests a material composed of amorphous carbon with low graphitization
(Figure 3 and Figure S1, Supporting Information) [37]. The absence of marked reflection peaks in the
XRD patterns of activated carbons indicates that the level of structure order decreases after activation.
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Figure 3. Powder XRD pattern of κ-carrageenan-derived hydrochar (HC) and activated (AC) carbons.

Figure 4a depicts the Raman spectra of the materials before and after activation with KOH. The
spectra show two bands at around 1360 cm−1 (D band) and 1586 cm−1 (G band) which are typical of
carbon materials. The G band is attributed to the C-C bond in ordered graphitic structures and indicates
the presence of sp2-hybridized C atoms present in materials such as graphene, carbon nanotubes
and amorphous carbon [46]. The D band denotes the presence of defects and disorder in the sp2

structure, namely due to the presence of sp3-hybridized carbon atoms. The intensity ratio between the
D-band and G-band (ID/IG) is an important parameter to monitor the disorder in the carbon structure
of the materials. The ID/IG ratio was identical in the hydrothermal carbons prepared from κ- and
λ-carrageenan and slightly lower when ι-carrageenan was used. Overall, the ID/IG value increased after
activation, which indicates that the degree of graphitization decreased after KOH activation. This is in
line with previous works that reported that activation with KOH at high temperatures (700–900 ◦C)
and high KOH/C ratios (4:1 and 3:1, w/w) favors the conversion of the conjugated aromatic structure
into sp3-hybridized C atoms [37,47].

The chemical identity of the carbon materials before and after activation was assessed by
ATR-FTIR spectroscopy (Figure 4b) and the most relevant bands were assigned as depicted in Table S1
(Supporting Information). All hydrochars exhibited a broad band at 3000–3600 cm−1 that is ascribed to
O-H stretching vibrations from surface hydroxyl groups and adsorbed water molecules. The bands at
2929 and 2879 cm−1 confirm the presence of aliphatic carbons, –CH2- and –CH3 [48]. The overlapping
bands with peaks at 1695 cm−1 and 1606 cm−1 are due to carbonyl (C=O) stretching vibrations and
the stretching of C=C in aromatic rings, respectively [49]. The broad band at 1298 cm−1 is ascribed
to C-O bending vibrations [50]. The band at 798 cm−1 is attributed to the C-H vibration in aromatic
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structures [49]. After activation, the bands due to OH, C=O and C-O vibrations are less intense (or not
observed), which indicates the decrease of surface functionalization with oxygen-containing groups.
The band at 798 cm−1 disappears, which indicates the decrease of aromatization after activation and is
in agreement with the Raman observations presented above. Still, vibrations of aromatic C=C bonds
can be detected through the most intense band in the region 1520–1560 cm−1 [48].
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Figure 4. Raman (a) and ATR-FTIR (b) spectra of hydrochars (HC) and activated (AC) carbons.

Determination of zeta potential (ζ) was performed to assess the surface charge of the carbon
materials. The measurements were performed at pH ranging from approximately 5 to 9, which includes
the normal range for pH in surface water systems (6.5–8.5). Zeta potential measurements revealed that
all the carbon materials display a negative surface within the pH range tested (Figure 5). Negative
ζ-values in the hydrochars are due to ionized oxygen containing groups present at the surface of the
carbons. Overall, the ζ-values of activated carbons range from ca. −10 mV at pH 5 to −30 mV at
pH 8.5 and are less negative than in hydrochars, which is in line with elemental microanalysis and
FTIR results that denote a decrease of oxygen-containing groups after activation. However, highly
negative surface charge of activated carbons at pH values above 7 suggests high colloidal stability of
these materials and strong stability against aggregation that could favor the adsorptive properties.
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3.2. Uptake of Ciprofloxacin From Water

The performance of the carbonaceous materials before and after KOH activation in the uptake of
ciprofloxacin was investigated for the same initial concentration of CIP (50 mg/mL, deionized water) at
pH 5, with 24 h contact time. The results clearly show that activated carbons have a higher capacity to
adsorb CIP than the hydrochars (Figure 6). Overall, the CIP removal by hydrochars is very low (<10%)
but increases to values above 99% when activated carbons are used in similar operational conditions.Nanomaterials 2018, 8, x; doi: FOR PEER REVIEW 10 of 20 
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Figure 6. The performance of the hydrochars and activated carbons for the removal of ciprofloxacin
from water (conditions: 50 mg/L CIP, pH = 5, 24 h contact time, sorbent dosage: 0.5 mg/mL).

3.2.1. Effect of pH on Adsorption in Aqueous Medium

The adsorptive performance of the activated carbons was investigated in the pH range 5–9 for
24 h contact time for an ciprofloxacin (CIP) concentration of 50 mg/L (Figure 7). Control experiments
were carried out in parallel without sorbents and under similar conditions of pH and contact time,
and have shown negligible losses of CIP (<2%, data not shown). Therefore, the decrease of CIP
concentration in the presence of the activated carbons was ascribed to adsorption phenomena. The CIP
removal was above 99% for pH values between 5 and 7, and slightly decreased to 98–99% at pH = 8.8.
According to the zeta potential results (Figure 5), all the ACs present a negatively charged surface for
pH 5–9. However, CIP is present in the form of distinct ionic species within this pH range (Figure S2,
Supporting Information) [51,52]. At pH = 5, CIP is mainly in the cationic form due to protonation
of the aminic groups but at pH = 7 it is mostly as zwitterions. Both forms contain protonated amine
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groups that could interact electrostatically with the negatively charged surface of the carbons. Still, at
pH = 8.8 about half of the CIP molecules are in the anionic form and thus are less prone to interact
with the sorbent’s surface via electrostatic interactions. This could explain the decrease on the CIP
adsorption at pH = 8.8 and suggests that cation-π interactions between CIP molecules and π-electrons
of the carbon structure play a role in the sorption mechanism [53]. Yet, even at pH = 8.8 the removal
capacity was high. This indicates that the sorption mechanism may involve other pathways such as
π-π interactions, hydrogen bonding and hydrophobic interactions [54]. The kinetics and equilibrium
studies were performed at pH 6, which is within the normal range of pH in surface water systems.
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Figure 7. Removal of ciprofloxacin (50 mg/L) from water samples at distinct pH using the activated
carbons (conditions: 24 h contact time, sorbent dosage: 0.5 mg/mL).

3.2.2. Effect of Adsorbent Dosage

The effect of the adsorbent dose on the adsorption of ciprofloxacin was investigated in the range
0.05 to 0.5 mg/mL. The results (Figure 8) show that CIP removal increases with the increase of the
amount of sorbent until it reaches a plateau. At 0.25 mg/mL or higher dosages, all the carbons display
a good performance (≥98–99%) in the removal of ciprofloxacin. At a dosage of 0.1 mg/mL, the removal
of CIP is markedly higher using the carbon AC-κ (>95%) than with AC-λ (61.7%) or AC-ι (59.9%),
which suggests a better adsorption performance for the activated carbon prepared from κ-carrageenan.
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Figure 8. Effect of the adsorbent dosage in the removal of CIP from water, using the carrageenan-based
activated carbons (conditions: 50 mg/L CIP, pH = 6, 24 h contact time).
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3.2.3. Isotherm Studies

The equilibrium adsorption capacity of CIP (qe) as a function of equilibrium concentration of
CIP (Ce) is depicted in Figure 9. The equilibrium data were analyzed using several common isotherm
models: the Langmuir [55] and Freundlich [56] isotherms, which are two-parameter isotherms, and
the Sips isotherm [57,58], also named the Langmuir-Freundlich method, which is a three-parameter
isotherm (See Table S2, Supporting Information for model equations). The isotherm equations were
fitted to experimental data by nonlinear regression analysis. The goodness of the fitting was assessed
based on the analysis of the correlation coefficient (R2) and Chi-square test value (χ2) (Equations (S1)
and (S2), Supporting Information). The goodness of the fittings and model parameters are shown in
Table 3.

Overall, the Sips model provides the best correlation with the experimental data, with R2

ranging from 0.9315 to 0.9808. The Sips (or Langmuir-Freundlich) isotherm is, as the name indicates,
a combination of Langmuir and Freundlich isotherms. At low sorbate concentration, the Sips equation
reduces to a Freundlich isotherm, while at high sorbate concentrations, it predicts the sorption capacity
of a monolayer, characteristic of the Langmuir isotherm. [59]. This isotherm is capable of modeling both
homogeneous and heterogeneous binding surfaces. The exponent m is the heterogeneous index that
varies from 1, in a homogeneous surface, to m < 1, in a heterogeneous surface. For AC-ι, m = 1 indicates
that the surface of this sorbent is homogeneous, i.e., all binding sites are energetically equivalent.
In this case, the Sips isotherm is reduced to Langmuir isotherm and the parameter a corresponds
directly to the Langmuir isotherm constant KL (Table 3). Whereas the value of the exponent m on Sips
equation was <1 for both AC-κ and AC-λ, which indicates heterogeneous surfaces in these sorbents.
For AC-λ, both a and m approaches 0 and the Sips equation tends to reduce to Freundlich isotherm.
Indeed, for this AC the goodness of fit by Sips and Freundlich models was identical. The Freundlich
isotherm is an empirical model with wide application in heterogeneous systems, which assumes that
the adsorption could take place via multiple layers instead of a single layer [56].
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Figure 9. Isotherm data and the corresponding model fitting for the adsorption of ciprofloxacin on the
activated carbons.
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Table 3. Equilibrium model parameters and goodness of fittings.

Isotherm Sample Model Parameters Goodness of Fit

Langmuir

qL (mg·g−1) KL (L·mg−1) R2 χ2

AC-κ 410.1 3.616 0.9494 40.06
AC-ι 327.5 3.907 0.9808 7.412
AC-λ 435.6 2.941 0.8528 131.1

Freundlich

KF (mg(1−1/n)·L(1/n)·g−1) n R2 χ2

AC-κ 245.6 4.991 0.8943 66.59
AC-ι 215.0 7.314 0.8431 79.09
AC-λ 245.6 4.912 0.9315 45.27

Sips

NT (mg·−1) a (L·mg−1) m R2 χ2

AC-κ 460.9 1.732 0.6913 0.9650 28.77
AC-ι 327.4 3.907 1.0 0.9808 7.412
AC-λ 1562.5 0.252 0.1909 0.9315 46.07

qL is the monolayer adsorption capacity. KL is the Langmuir isotherm constant. KF is the Freundlich constant. n is a
dimensionless constant associated with a heterogeneity factor. NT is the total number of binding sites. a is related to
the median binding affinity. m is the heterogeneous index.

A direct comparison between the ACs shows that the maximum adsorption capacity of AC-ι
(330 mg/g) is lower than for AC-κ (422 mg/g) or AC-λ (459 mg/g). Among the carbons prepared, the
sample AC-ι presented the highest specific surface area (2805 m2/g) and the lowest carbon content
(72 wt%), which might indicate that the carbon content on the surface might have a relevant role on
the adsorption of ciprofloxacin by these materials.

3.2.4. Effect of Contact Time and Kinetic Studies

The time profile of CIP adsorbed onto the ACs was assessed for an initial concentration of
50 mg/L, in order to investigate the kinetics of sorption. It was found that 5 min of contact time was
sufficient to achieve the optimal performance, with CIP removal higher than 99% (Figure 10). Overall,
the adsorption kinetics with these ACs is much faster than others ACs tested in the uptake of CIP in
similar conditions and reported in the literature. For example, bamboo-derived ACs tested in identical
dose (0.5 mgAC/mL) and similar initial CIP concentration (40 mg/L) required several hours to achieve
the sorption equilibrium and maximum sorption performance [24].

It is well accepted that the solid–liquid adsorption step involves several steps [60,61]. Initially
the sorbate species migrate from the bulk solution to the solid/liquid interface (bulk diffusion). Then
the sorbate diffuses across the liquid film surrounding the solid to the surface of the sorbent (film
diffusion). Afterwards, the sorbate diffuses in the liquid within the pores (intra-particle diffusion).
Finally, the sorbate reacts with the active sites of the sorbents surface through chemical reaction or
physical adsorption. The use of kinetic models allows elucidating the adsorption mechanism. The
kinetic adsorption data was fitted to two kinetic equations commonly used: the pseudo-first order
equation [62] and the pseudo-second order equation (see Supporting Information for model equation
model-Table S3) [63]. These models assume that the interaction of the sorbate with the active sites
is the rate-limiting step and is of chemical nature [61]. The kinetic parameters and goodness of the
fits, obtained by non-linear regression, are reported in Table 4 and the kinetic fittings are shown in
Figure 10 and Figure S3 (Supporting Information). Both equations provided a very good fit to the
experimental data, with a high coefficient of determination (R2 > 0.9999) and low chi-square values (χ2).
These results indicate that the chemisorption of CIP molecules onto ACs surface is the rate limiting
mechanism of CIP adsorption.
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Figure 10. Time profile of CIP adsorption capacity over 30 min and the corresponding kinetic model
fitting using pseudo 1st and pseudo 2nd order equations.

Table 4. Kinetic parameters estimated from pseudo 1st order and pseudo 2nd order models and the
evaluation of its fittings for an initial CIP concentration of 50 mg/L.

Sample Pseudo 1st Order Pseudo 2nd Order

R2 (χ2) k1 (min−1) qe (mg·g−1) R2 (χ2) k2 (g·mg−1·min−1) qe (mg·g−1)

AC-κ 0.9999
(5.7 × 10−3) 2.677 100.1 0.9999

(4.3 × 10−3) 0.1309 100.5

AC-ι 0.9999
(7.2 × 10−5) 5.009 100.2 0.9999

(1.6 × 10−4) 1.459 100.2

AC-λ 0.9999
(8.6 × 10−4) 3.424 100.1 0.9999

(2.6 × 10−3) 0.2908 100.2

3.3. Comparison with Other Sorbents

The measured maximum adsorption capacity was 422 mg/g, 330 mg/g and 459 mg/g for AC-κ,
AC-ι and AC-λ activated carbons, respectively. Table 5 shows the CIP adsorption capacity reported
for other carbonaceous sorbents, and AC-κ and AC-λ can be regarded as some of the most effective
adsorbents for CIP. The fast adsorption kinetics of these ACs when compared to other materials with
high sorption capacity (H3PO4 chemically-activated carbon from bamboo–ACbamboo/H3PO4) is also
an advantage. The combination of fast CIP uptake and high sorption capacity makes these ACs very
attractive for the efficient uptake of CIP from water.
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Table 5. Comparison of the maximum CIP adsorption capacity (qmax), time to achieve the equilibrium
(te) and specific surface area (SBET) of various carbonaceous adsorbents (T = 25 ◦C).

Adsorbent qmax (mg/g) SBET (m2/g) te pH Reference

AC-κ 422 2346 5 min 6 (this work)
AC-ι 330 2805 5 min 6 (this work)
AC-λ 459 2516 5 min 6 (this work)

Powder activated carbon 109 1075 >2 h 6.2 [64]
ACbamboo/H3PO4 613.0 2237 >2 h 6 [24]

ACpeach-stones/H3PO4 263.7 1521 >4 h 6.5 [22]
ACwood/H3PO4 231.0 1237 20 h 5 [20]

ACalbizia-seed/Microwave 131 1824 >2 h 9 [65]
Multiwalled Carbon Nanotubes 206 382 >1 h 4 [21]

ACpalm leaflets 116.3 24.4 48 h 6 [13]
Magnetic Carbon Nanocomposite 98.28 26.5 24 h 7 [23]

As for pilot studies, a study worth mentioning has investigated the efficacy of a fluidized activated
carbon pilot as tertiary treatment to remove a wide range of pollutants from wastewater treatment
plant effluents. While many pollutants are shown to be removed, there was an average 87% removal
for ciprofloxacin [66], which is a favorable indicator of the potential of the ACs developed herein for
CIP removal in continuous flow conditions.

4. Conclusions

Hydrochars and porous-activated carbons prepared from three distinct carrageenan
polysaccharides, κ-, ι- and λ-carrageenan, have been reported here. The ability of these materials to
uptake the antibiotic ciprofloxacin from aqueous solutions was investigated in several operational
conditions. The ACs prepared from κ- and λ-carrageenan have shown a greater adsorption capacity
towards ciprofloxacin, when compared to most of the carbonaceous sorbents previously reported,
which place these sorbents among the most efficient for this emergent pollutant in the tested conditions.
Moreover, the adsorption was very fast, achieving the equilibrium conditions in approximately 5 min.
Such good adsorptive performance could be attributed to a combined effect of high specific surface
area (above 2300 m2/g), high microporosity (near 1 cm3/g) and high carbon content. The kinetics and
equilibrium modelling analysis indicate that the chemisorption of CIP molecules onto ACs surface
is the rate limiting step and that equilibrium sorption is well described by Sips isotherm. These
findings demonstrate the potential of ACs prepared from carrageenan polymers as adsorbents for
removal of antibiotic pollutants from water. With the aim of evaluating these sorbents in realistic
conditions, subsequent studies are planned using real water samples contaminated with ciprofloxacin.
The study of the regeneration and reuse of the ACs should also be considered due to economic reasons.
Based on previous findings, several treatments could be tested in the regeneration of ACs loaded with
ciprofloxacin [13,67–72]. An alternative fate of spent sorbents that takes advantage of the potential of
ciprofloxacin as a corrosion inhibitor [73] is their use as a resource in the preparation of other materials,
following a circular economy approach.
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Table S3: Kinetic models and parameters. Figure S3: Time profile of CIP adsorption capacity over 24h and
corresponding kinetic model fitting.
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