Supporting Information ## pH-sensitive poly(β -amino ester)s nanocarriers facilitate the inhibition of drug resistance in breast cancer cells Mengxue Zhou^{1,2,†}, Xingcai Zhang^{3,†}, Jin Xie¹, Rongxiang Qi¹, Huiru Lu¹, Stefano Leporatti^{4,*}, Jun Chen^{1,2,*} and Yi Hu^{1,2,*} ¹CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multidisciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China ²University of Chinese Academy of Sciences, Beijing 100049, China ³John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States ⁴CNR Nanotec-Istituto di Nanotecnologia, Polo di Nanotecnologia, Lecce 73100, Italy [†]These authors are co-first authors who contributed equally to this work. ^{*}Correspondence: stefano.leporatti@nanotec.cnr.it, chenjun@ihep.ac.cn, and huyi@ihep.ac.cn. **Figure S1.** Zeta potentials of PHP, TPGS and PHP/TPGS nanoparticles at different pH. Data are presented as mean \pm SD (n = 6). **Figure S2.** Stability of nanoparticles in PBS, 2% BSA, 150 mM sodium chloride and cell culture media for three days at 37 °C. The particles were examined by dynamic light scattering. Data are presented as mean \pm SD (n = 6). **Figure S3.** Cumulative DOX release profiles of DOX-loaded nanoparticles in cell culture media at different pH. Data are presented as mean \pm SD (n = 3).