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Abstract: We present an ab initio and atomistic study of the stress-strain response and elastic stability
of the ordered Fe3Al compound with the D03 structure and a disordered Fe-Al solid solution with
18.75 at.% Al as well as of a nanocomposite consisting of an equal molar amount of both phases
under uniaxial loading along the [001] direction. The tensile tests were performed under complex
conditions including the effect of the lateral stress on the tensile strength and temperature effect.
By comparing the behavior of individual phases with that of the nanocomposite we find that the
disordered Fe-Al phase represents the weakest point of the studied nanocomposite in terms of
tensile loading. The cleavage plane of the whole nanocomposite is identical to that identified
when loading is applied solely to the disordered Fe-Al phase. It also turns out that the mechanical
stability is strongly affected by softening of elastic constants C′ and/or C66 and by corresponding
elastic instabilities. Interestingly, we found that uniaxial straining of the ordered Fe3Al with the
D03 structure leads almost to hydrostatic loading. Furthermore, increasing lateral stress linearly
increases the tensile strength. This was also confirmed by molecular dynamics simulations employing
Embedded Atom Method (EAM) potential. The molecular dynamics simulations also revealed that
the thermal vibrations significantly decrease the tensile strength.

Keywords: Fe-Al; superalloys; order; tensile strength; elasticity; ab initio; stability; nanocomposite

1. Introduction

Iron-aluminium-based materials containing either Fe3Al and/or FeAl intermetallic compounds
represent one of the most promising classes of metallic alloys intended for high-temperature
structural applications. They are known for many excellent properties, e.g., (i) resistance to oxidation [1]
or with respect to various molten salts [2]; (ii) relatively low density; (iii) electrical resistivity and (iv)
low cost of raw materials [3–5]. On the other hand, their wider use is hindered by their low ductility at
ambient temperatures and a drop of the strength at elevated temperatures [5]. Regarding the former,
it has been shown that it is caused by an extrinsic effect, in particular hydrogen atoms produced
by the reaction of water vapor with aluminum at the surface of the specimen [6,7]. If it is not
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for this environmental embrittlement, Fe3Al is seen in experiments to have decent ductility [8,9].
Recently, there is a renewed interest in Fe-Al-based materials containing higher number of chemical
species and/or phases [1,10–19].

A special sub-class of Fe-Al-based nanocomposites [20–33] are those consisting of two phases,
ordered Fe3Al with the D03 structure and a disordered Fe-Al solid solution with about 18.75 at.% Al
(see, e.g., Refs. [22,24,34]). These phases co-exist in the concentration range from about 19 to about
25 at.% of Al (see the original Fe-Al phase digram by Kattner and Burton [35]) reproduced, for example,
in an excellent review by Sundman and co-workers [36]. Importantly, the transformation of phases
in the Fe-Al system is particularly complicated and the final state of samples is very sensitive to
many factors including thermo-mechanical history [37]. The co-existence of Fe3Al compound and a
disordered Fe-Al solid solution is best experimentally confirmed by transition electron microscopy
(TEM) technique which is sensitive to anti-phase boundaries (APBs) as these have a specific character in
Fe3Al and a different one in other, at least partly ordered, Fe-Al phases. In particular, Oguma et al. [38]
developed a time-dependent Ginzburg-Landau (TDGL) formulation for the ordering processes of B2
and D03 types in binary alloy systems. Specifically in the case of Fe-Al, numerical simulations of the
kinetic equations have been performed for concurrent ordering and phase separation to disordered A2
and ordered D03 and helped to explain TEM observations. This combined theoretical and experimental
analysis identified round/oval droplets of the disordered Fe-Al phase formed on the expense of
diminishing amount of ordered Fe3Al phase. The rounded shape of these droplets indicate that the
interface energy is not sensitive to crystallographic orientation and, therefore, the (001) interfaces
studied in this paper are equally probable as others (when mechanical properties can admittedly be
orientation-sensitive).

Papers related to first-principles calculations of these two-phase coherent nanocomposites are
rather rare as most of the previous studies focused on individual phases appearing in the Fe-Al phase
diagram (see a few selected examples listed below). In order to fill in this gap, we study in this work
thermodynamic, structural and elastic properties of interfaces between these two phases (see Figure 1)
without any external load as well as under extreme uniaxial loading conditions leading to the instability
of these composites. In particular, we compare the properties of the two-phase nanocomposite with
properties of both constituting phases.
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Figure 1. A schematic visualization of a supercell used in our ab initio calculations. The 32-atom
supercell contains a disordered Fe-Al phase (left-hand side) and an ordered Fe3Al compound with the
D03 structure (right-hand side). The interface between both phases is highlighted by the blue planes.

Let us summarize the main results of the previous studies on these constituting phases first.
Watson and Weinert [39] reported heats of formation for binary and ternary 3d transition-metal
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(Ti, V, Fe, and Ni) aluminides using the local density approximation (LDA). They found their
predictions in the case of Fe aluminides overestimated by about 0.15 eV/atom when compared
with experimental data. As the most likely reason they identified a poor description of bcc
Fe by LDA (a fact which lead us to use the generalized gradient approximation (GGA) in
our work). Another calculations by Gonzales-Ormeno et al. [40] were performed employing
Perdew-Burke-Ernzerhof (PBE) parametrization [41] of GGA and Full Potential - Linear Augmented
Plane Wave method (FP-LAPW). The computed formation energies of the D03 (Fe3Al) and B2 (FeAl)
compounds show excellent agreement with available calorimetric data on standard enthalpies of
formation of Fe-Al alloys up to 50 at.% aluminium.

Lechermann et al. [42] demonstrated that neither LDA nor PBE parametrization of GGA can
correctly reproduce the D03 structure as the ground state of Fe3Al and both above mentioned
parametrizations of the exchange-correlation energy prefer the L12 structure (at T = 0 K and in
the case of defect-free static lattices without any collective excitations). Subsequently, in another
paper [43], Lechermann and co-workers studied electronic correlations and magnetism in Fe3Al
employing local density approximation with an additional energy term (LDA+U) and correctly
obtained the D03 structure as the ground-state structure of Fe3Al. Similarly, Connetable and
Maugis [44] calculated structural, magnetic, elastic and vibrational properties of Fe3Al employing PBE
parametrization [41] of the GGA and found out that Fe3Al has a lower energy in the L12 structure than
in the experimentally observed D03 structure.

As far as solid solutions of Al and Fe are concerned, Amara and co-workers [45] performed
first-principles calculations to study the electronic structure and energetics of the dissolution of
aluminum in α-iron and the interaction between Al atoms and vacancies. It was found that the stability
of these complexes is mainly driven by strong Al-vacancy attractions whereas Al-Al interactions
are repulsive. Liu et al. [46] calculated the difference in vibrational entropy between chemically
disordered and ordered Fe-Al compounds. Kulikov et al. [47] have studied the electronic structure of
disordered bcc FexAl1−x (0.4 < x < 0.75) alloys around the equiatomic stoichiometry, as well as of the
ordered B2-structure FeAl phases with point defects employing the coherent potential approximation
within the Korringa-Kohn-Rostoker (KKR) method for the disordered case and the tight-binding linear
muffin-tin orbital (TB-LMTO) method for the intermetallic compounds. Studying in particular the
onset of magnetism in Fe-Al they found the appearance of large local magnetic moments associated
with the transition metal antisite defect in FeAl, in agreement with the experimental findings.

Furthermore, Friák and Neugebauer [48] performed an ab initio study of a dense set of Fe-Al
compositions and local atomic arrangements in order to explain the anomalous volume-composition
dependence in Fe-Al alloys. They found that the spin-polarized calculations for Fe-rich compounds
reproduce very well the anomalous lattice-constant behavior in contrast to both the nonmagnetic and
fixed-spin-moment calculations that result in nearly linear trends without any anomaly. The change in
magnetism of iron atoms caused by an increasing number of Al atoms in the first coordination spheres
was thus identified as the decisive driving force of the anomalous behavior.

Regarding other published papers, Fähnle et al. [49] applied cluster-expansion method to
predict the phase diagram for the system Ni-Fe-Al, Friák et al. [50] studied an impact of solutes
(in particular Ti additions) on the elastic properties of Fe3Al both theoretically by first-principles
calculations and experimentally by ultrasonic measurements, Kirklin et al. [51] performed a
high-throughput computational search for strengthening precipitates in alloys including Fe matrix
and Fe-Al-based compounds, Airiskallio et al. [52] studied corrosion resistance of Fe–Al and Fe-Al-Cr
alloys in oxidizing environment using the Exact Muffin-Tin Orbitals (EMTO) method as an alternative
of screened Korringa-Kohn-Rostoker (KKR) method, Medvedeva et al. [53] calculated impact of Al
and C on the stacking fault energies in fcc Fe using generalized gradient approximation and the
projector-augmented waves (PAW) potentials [54] implemented in the same code VASP [55] as we use
(see below), Čížek et al. [56] used quantum-mechanical calculations when characterizing quenched-in
vacancies in Fe-Al alloys, Ipser et al. [57] developed a statistical-thermodynamic model for intermetallic
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phases with D03-structure and Kellou et al. [58] used DFT-GGA calculations to study the magnetic
properties Fe3Al and Fe3AlX (X = H, B, C, N, O) compounds.

As an evidence of how intensive have been first principles calculations applied in the case of
Fe-Al-based materials it should be noted that the papers listed above represent only minor part of all
publications focused on individual phases within the Fe-Al binary system so far.

This paper is organized as follows. After the Introduction, Section 2 describes computational
details. The results obtained are discussed in Sections 3 and 4 then presents the conclusions and
summarizes the whole paper.

2. Materials and Methods

The present simulations were performed with the help of ab initio total-energy and
molecular-dynamics program VASP (Vienna ab initio simulation package) developed at the Fakultät
für Physik, Universität Wien [55]. In the presented study the electron interactions were described
with the projector-augmented waves (PAW) potentials as supplied with the VASP code [54] and the
exchange correlation energy was evaluated by means of the generalized gradient approximation
(GGA) with parametrization of Perdew-Wang [59]. A Methfessel-Paxton method of the first order was
adopted with a smearing width of 0.1 eV. Importantly, our setting prefers the experimentally observed
D03 structure of Fe3Al over the L12 structure by 5 meV/atom.

The sampling of the Brillouin zone was done using Monkhorst-Pack [60] grids 5× 5× 1, 5× 5× 3
and 5 × 5 × 5 for the simulation cells containing 64 (double cell - composite), 32 (composite) and
16 (D03 and disordered phases) atoms, respectively. The convergence steps in the DFT cycle were
considered as self-consistent when the differences in energy between two consequent steps was
below 10−6 eV/(sim. cell) and the plane wave basis set was expanded with the cut off energy 350 eV.
During the simulations it was necessary to optimize all atomic positions and the cell shape. The atomic
positions were optimized using the internal VASP procedure until all forces between atoms were
lower than 10 meV/Å while for the optimization of the cell shape we used our own external program
that cooperated with the VASP code via reading its output files and writing new structure input files.
In stress control calculations this program allowed us to relax the stress tensor components to their
targeted values within the selected tolerance. In this work this tolerance was set to be ±0.10 GPa. In all
present calculations, magnetism was included via spin polarization and all simulations always started
in ferromagnetic state.

The simulation supercell used in the present work is depicted in Figure 1 together with the cell
dimensions and orientation of the coordinate system. This cell is assembled from two parts where the
first one corresponds to the ordered Fe3Al phase with the D03 structure and the second one to the
disordered Fe-Al, i.e., a solid solution of Al atoms in bcc Fe with 18.75 at.% Al and the atoms distributed
according to the special quasi-random structure (SQS) concept developed by Zunger et al. [61]. The SQS
concept is based on the idea that atoms are distributed in a rather small periodically repeated supercell
in such a way that their statistical characteristics (average occupations of nearest-neighbor shells,
so-called Warren-Cowley short-range order (SRO) parameters) mimic those in an ideal disordered solid
solution of atoms with the same chemical composition in an infinitely large system. In order to achieve
this goal up to, e.g., second, third or fourth coordination shell, different local atomic environments are
typically included. For example, the SQS-part of Figure 1 contains Al atoms distributed in way that they
mutually form the first and second nearest neighbor pairs. This is in a clear contrast to the Fe3Al-part
of Figure 1 which contains Al atoms forming solely the third nearest neighbor pairs (a characteristic
feature of the D03 structure). The interface between both parts (the blue plane) is located in the middle
and due to application of the periodic boundary conditions in ab initio simulations is also located at
the cell edges with respect to the z direction.

The strength characteristics in this work are represented by the stress-strain responses obtained
from the tensile loading that was always oriented perpendicular to the interface (or along the equivalent
directions for the perfect crystals). The stress and strain acting perpendicular to the interface are
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denoted as the axial stress σax and axial strain εax, respectively. The maxima at the stress-strain
dependence can be considered as the tensile strength σts. For comparison, the tensile strength
characteristics were not only determined for the simulation cell depicted in Figure 1 but also for
the perfect D03 and the disordered phases. It must be pointed out that we have simulated behavior
of defect-free systems while some crystal defects or instabilities might lower the tensile strength
(e.g., dislocations, grain boundaries, phonon or elastic instability, etc.) before reaching the maxima
at the stress-strain curve. However, quantum-mechanical phonon calculations, which can assess
temperature effect, are computationally very demanding and, therefore, we leave it for future studies.

To obtain at least partial information related to finite-temperature properties, we complement our
ab initio calculations with the molecular dynamics simulations (MD) to see if and how temperature
decrease the tensile strength σts. For the MD simulations, we used the code LAMMPS (Large-scale
Atomic/Molecular Massively Parallel Simulator) [62] with the embedded-atom method (EAM)
potential type [63].

To check the precision of the MD potential we performed the comparison of the stress-strain
dependencies and the related tensile strengths with those obtained from first-principles calculations.
This cross-checking of atomistic and quantum-mechanical methods was realized under quasi-static MD
simulations which means that the atomic motions were set to absolute zero (no kinetic energy). All the
atoms in the simulation were thus kept frozen and the tensile tests were realized in a similar way as in
the case of ab initio simulations, e.g., via homogeneous dilatation of the simulation cell followed by
the optimization of all atomic positions and the cell shape at each strain increment. The Polak-Ribiere
version of the conjugate gradient (CG) algorithm was used for the atomic optimization during the
quasi static simulations performed by LAMMPS. For the MD simulations (non quasi-static) we set the
time step to 2 fs and the strain rate was chosen 10−4/ps.

In quantum-mechanical calculations, the stress values can be computed from the total energy
changes between two strain increments according the following formula

σax =
1
V

dEtot

dεax
(1)

where dEtot is the total energy change between two consequent deformation steps, dε is the increment
of the axial strain and V corresponds to the volume of the simulation cell (a recent review of strength
studies may be found in Ref. [64]). Another way how to obtain the axial stress is to read its value
directly from the VASP or LAMMPS outputs. The ab initio results presented in this work are based
on the stress tensor that was obtained directly from the VASP output (OUTCAR). This is due to fact
that we read not only the axial stress but also all remaining stress tensor components which cannot be
obtained from Equation (1). Because the axial stress computed from the total energy changes is less
sensitive to the settings of first-principles simulations we compare the values from both approaches to
check whether the simulation settings are sufficient to obtain reliable results.

The deformation of the supercell in the quantum-mechanical and MD (quasi-static) simulations
was realized via homogeneous straining along the axis perpendicular to the interface. During each
strain increment the cell shape and ionic positions were optimized within the cell according to selected
deformation model (for a detailed review, see e.g., Refs. [65,66]). Because the real crystal structures are
mostly subjected to complex loading conditions, we systematically studied the mechanical responses
under optimized uniaxial deformation (OUD), optimized uniaxial loading (OUL) and also under
superimposed lateral stress σlt.

The OUD mode is based on the strain increments along only one direction while the
dimensions of the crystal along other two directions remain constant during the entire tensile test.
Thus, the simulation cell changes its shape only in one direction (εx = 0, εy = 0, εax 6= 0).
Here, we would like to point out, that the OUD model usually leads to the triaxial loading state [65,66].
On the other hand, the OUL model comprises relaxation of the lateral stresses and therefore all three
dimensions change during the deformation (εx 6= 0, εy 6= 0, εax 6= 0). The last deformation model



Nanomaterials 2018, 8, 873 6 of 20

is very similar to the OUL model and difference is that both lateral stresses are not relaxed close to
zero value. Instead of that, they are relaxed close to predefined certain values which are kept constant
for the entire tensile test. Because both lateral stresses are chosen to be equal in all our models (σx = σy)
we marked them as lateral stress σlt. In this work, the lateral stresses were chosen from a range starting
from 0 GPa to 20 GPa with a step 5 GPa. Due the cubic crystal symmetry and the loading conditions
in the [001] direction there are no shear stresses and therefore the stress tensor acquires a following
simple form:

σ̂ =

∣∣∣∣∣∣∣
σlt 0 0
0 σlt 0
0 0 σax

∣∣∣∣∣∣∣ (2)

3. Results

3.1. Mechanical Properties of Individual Phases (D03 and Disordered)

As the first step, we obtained the stress-strain characteristics of the D03 and the disordered phases
subjected to the uniaxial deformation (OUD) and the uniaxial loading (OUL) deformation modes. The
resulting stress-strain responses for the D03 phase are depicted in Figure 2a. Surprisingly, all three
curves for the OUD model (the axial (σax) and two laterals (σx and σy)) are almost identical with respect
to the axial strain εax values except the location close to maxima where the axial stress σax has a slightly
higher values than the lateral ones.

Figure 2. The stress-strain dependencies obtained from ab initio simulations for the uniaxial
deformation (OUD) and uniaxial loading (OUL) deformation models for perfect Fe3Al with the D03

structure (a), a disordered Fe-Al phase (b) and their nanocomposite (c). The blue, magenta and orange
curves represent axial and two transverse stresses for the OUD model while the red one belongs to the
axial load of the OUL model. Elastic instabilities are marked by black dashed lines.
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The fact that the uniaxial deformation (OUD) leads to nearly identical values of all three
normal stresses, i.e., σx = σy = σax, means that the loading is almost hydrostatic (the stresses are
nearly equal). We would like to point out that the material response to the uniaxial deformation is
usually represented by smaller values of the lateral stresses with respect to the axial one (see, e.g.,
results for perfect Ni crystal in direction [001] and [120] in Ref. [65]).

It is worth noting that the expected maxima of the axial strain for the OUD model in Figure 2 is
located in rather large values of the axial strain. The strain in the direction [001] is, in fact, comparable
with deformations related to the Bain’s transformation path when the bcc lattice transforms into the
fcc one. Indeed, in the case of bcc-based D03 structure these conditions occur for the OUD model when
the axial strain reaches value (

√
2− 1) [67–69]. Beyond this value the structure cannot be considered as

D03 and hence the axial stress at this transformation point may be considered as the theoretical tensile
stress σts. The axial strains corresponding to the Bain’s deformation path are marked in Figure 2a
by black vertical dashed line and the corresponding tensile strength σOUD

ts for the OUD model is
determined in the case of Fe3Al to be 24.7 GPa. There is also a question whether the D03 is elastically
stable for such large strain values. We will focus on this question in Section 3.5.

Regarding the uniaxial loading (OUL), it revealed a completely different response (see Figure 2a).
As a result of the optimization of the lateral stresses to zero values during the entire deformation path,
e.g., allowing the Poisson’s contraction, OUL predicts remarkably lower values of the axial stress σax

and the related tensile strength (σOUL
ts = 4.1 GPa), i.e., only 17 % of the value found in the case of the

OUD model. As far as the strains corresponding to the bcc-to-fcc transition according to the Bain’s
deformation path are concerned, they are marked in Figure 2a by black vertical dashed line but the
value for the OUL model does not have any impact on the tensile strength due to its location after the
maximum of the stress.

Importantly, from the comparison of the OUD and OUL approaches above it is evident,
that the strength σts of the D03 phase is very sensitive to the lateral stresses σlt and even small
increases/decreases of these stresses increase/decrease the tensile strength σts. For this reason,
we investigated the influence of σlt on the tensile strength σts in more detail and these results are
described and discussed in Section 3.3. The stress-strain dependence for the OUL model also shows a
plateau for the strain values in the range 0.05–0.1. This plateau means zero value of the corresponding
elastic constant in this region and possibility of some structure instability. Hence, it is a question which
maximum at the stress-strain should be considered as the theoretical tensile strength σts.

To answer this question we computed elastic constants for several points of the stress-strain curves
and also employed the molecular dynamics simulations to include temperature effect (lattice vibration)
into the simulations. These results are discussed in Sections 3.4 and 3.5. Because the stress-strain curve
in Figure 2a for the OUL model contains the plateau and has a different shape compared to the other
structures there is a question whether the precision of the ab initio simulations in this case is sufficient.
For this reason, we also performed the tensile test using very precise simulation settings (the cut-off
energy was increased to 500 eV, the tolerance of the DFT cycle to 10−8 eV and the k-point grid to
11 × 11 × 11); the obtained stress-strain curve is practically identical to that one obtained earlier.

In the next stage, we performed the tensile tests for the disordered Fe-Al phase with 18.75 at.%
Al and the obtained stress-strain behavior is illustrated in Figure 2b. For the disordered phase
and the OUD model the tensile strength σOUD

ts was determined to be equal to 22.9 GPa which is
slightly lower than for the D03 (24.7 GPa). On the contrary, the tensile strength for the OUL reach
almost doubled value (σOUL

ts = 7.8 GPa) when compared with the Fe3Al phase (σOUL
ts = 4.1 GPa).

Thus, the disordered phase is less sensitive to the transversal stresses than the ordered Fe3Al phase
and it has higher tensile strength σOUL

ts under the uniaxial loading. We note that the lateral stresses σx

and σy reach very high values close to the axial one (σax). This indicates that the uniaxial deformation
also leads to a stress state which is very close to the hydrostatic one (as mentioned above for the
Fe3Al phase). Also, the stress-strain curve for the OUL is smooth, does not contain any irregularities
and its maximum point is followed by sudden drop which indicates a fracture in the structure.
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The obtained tensile strengths σts are summarized in Table 1 for all Fe-Al alloys and the deformation
models applied in this work. The OUD value of the tensile strength of the Fe3Al compound in the
[001] direction σts, 22.0 GPa, is rather high and of the same order of magnitude as the OUL value of
20 GPa reported for this material for the loading along the [111] direction [70]. A similar difference
(12.7 GPa for the [001] direction and 27.3 GPa for the [111] one) was also found in Fe [71]. As we are
not aware of any other calculations of strength for this material, the values shown in Table 1 are the
first ab initio calculated values of strength for loading along the [001] direction also for the Fe3Al in the
D03 structure.

Table 1. The tensile strengths σts in the [001] direction for the Fe3Al compound and the disordered
Fe-Al phase with 18.75 at.% Al together with their nanocomposite from ab initio calculations, from
quasi-static simulations and from the molecular dynamics simulations at temperature of 1 K. The table
contains the tensile strengths obtained from maximum at stress-strain dependence (ab initio; except of
the value of 24.7 GPa for Fe3Al OUD, which corresponds rather to a structural transformation), the ab
initio tensile strength obtained from elastic instability (ab initio + ei), molecular static (MD (qs)) and
molecular dynamics at the temperature of 1 K.

ab initio ab initio + ei MD (qs) MD (1 K)

Fe3Al OUD 24.7 22.0 18.6 16.7
Fe3Al OUL 4.1 4.1 6.0 6.0
Fe-Al disordered OUD 22.9 - 17.7 17.3
Fe-Al disordered OUL 7.8 - 8.5 8.4
nanocomposite OUD 23.0 21.4 16.6 16.0
nanocomposite OUL 5.6 5.5 7.0 7.2

3.2. Mechanical Response of the Fe3Al/Fe-Al Nanocomposite

The next part of our ab initio simulations was focused to the determination of properties of
the nanocomposite consisting of the ordered Fe3Al and the disordered Fe-Al phase. We applied the
uniaxial deformation (OUD) and uniaxial loading (OUL) to the entire simulation cell shown in Figure 1
and compared the results with those summarized in the previous section for the individual phases.
The stress-strain curves for the nanocomposite are depicted in Figure 2c and it can be seen that the
shape of these curves is smooth for both OUD and OUL deformation models. Here, the uniaxial tensile
strength σOUD

ts = 23 GPa is almost the same as for the perfect disordered phases. This fact indicates that
the strength found for uniaxial straining (here represented by triaxial loading state) of Fe3Al will be
determined by the strength of the weaker disordered phase. On the other hand, the tensile strength for
the uniaxial loading is σOUL

ts = 5.6 GPa is located between the values of the strength calculated for Fe3Al
and disordered Fe-Al phase. The maximum achieved strain values also indicate that the presence of
the disordered structure increases the brittleness of the nanocomposite because these maximum strains
are equal to those computed for this phase. In summary, if we neglect small increases of the strength
in case of uniaxial loading we can conclude that the presence of the disordered phase has a negative
effect on the mechanical characteristics, in particular a small reduction of the strength for uniaxial
deformation and significant reduction of strains corresponding to the theoretical tensile strength.

3.3. Influence of Lateral Stresses on the Strength

The previous results revealed a very high influence of the lateral stresses σlt on the tensile strength
σts for all studied materials. Hence, in this section we analyze this effect in detail in order to clarify
its impact on the mechanical characteristics of the studied Fe-Al-based systems. Here, using the
quasi-static ( ab initio and molecular dynamics) simulations we performed several sets of the tensile
tests where each individual test was realized under predefined constant value of the lateral stress σlt.
For example, to obtain the tensile strength for Fe3Al phase as a function of the lateral stress σlt we
performed five tensile tests where each test was realized under a particular constant value of σlt.
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As mentioned in Section 2 these values were chosen to be σlt = (0, 5, 10, 15, 20 GPa). We note that the
tensile test obtain for σlt = 0 GPa is identical to the OUL model (the uniaxial loading).

The obtained tensile strength σts as a function of the lateral stress σlt is illustrated in Figure 3
for Fe3Al, disordered Fe-Al phase as well as their nanocomposite. Here, the red curves represent the
data obtained from the quantum-mechanical simulations whereas the blue ones are the data from the
molecular quasi-static simulations. From these dependencies it is obvious that the tensile strength
σts for all structures linearly increases with increasing of the lateral stress σlt and therefore it can be
approximated by linear functions σts(σlt) using the formula

σts = γσlt + σOUL
ts , (3)

where the σlt is the selected value of the lateral stress, the γ represents the slope of this dependence and
the σOUL

ts is the tensile strength in corresponding direction for the OUL model. Let us note that the same
equation was used by Černý and Pokluda for perfect bcc, fcc and hcp crystals [72,73]. Those papers
also contain the values of the coefficients γ (denoted as kmax or s in the above mentioned papers) and
the theoretical strengths for uniaxial loading σOUL

ts (marked as σmax,0 or σr). Hence, the present results
obtained for Fe-Al systems can be compared with perfect crystals, in particular with Fe. However,
perfect Al crystal was not considered in Refs. [72,73]. For this reason, we supplement the present
results with the data calculated for perfect fcc Al crystal, i.e., from the stress-strain curves for all
deformation models considered in the present work.
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Figure 3. The effect of the transverse stresses on the tensile strength as studied by quantum-mechanical
calculations (marked as DFT-GGA) and atomistic Embeded Atom Method (EAM) potentials (marked
as EAM-FS).

The results obtained in Refs. [72,73] revealed that the most fcc and bcc crystals with linear
dependencies of σts on σlt have the slope γ mostly positive with higher values for bcc crystals than
fcc ones. Interestingly, our results computed for perfect fcc Al crystal showed behavior similar to Ni
or Cu where the tensile strength σts is insensitive to the applied lateral stress σlt. This means that the
tensile strength σts of Al always reaches the same value for all present deformation models. Of course,
there are some small differences between the computed values, however, these differences are smaller
than the stress convergence criteria introduced in the computational details, e.g., the σts is always
located in the range of 〈11.31;11.43〉 GPa. For this reason we consider the slope to be γ = 0. We must
point out that the range of the lateral stress σlt used for Al is only within the values 0, 5, 10 GPa. On the
other hand, the slope γ for perfect Fe is 0.63 [72] and more interestingly 0.79–0.89 for the Fe-Al-based
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alloys (Table 2). This means that the Fe-Al systems studied in this work are more sensitive to the lateral
stress σlt than elemental Fe or Al. Thus, differences in loading conditions in Fe-Al systems lead to
significant changes of the tensile strength σts compared to Fe and Al.

Table 2. The coefficients γ and γec from Equation (3) that were determined directly from the stress-strain
dependence and via Equation (4), respectively. The Table also contains the tensile strengths σOUL

ts
for elemental Fe (bcc) [71,72,74–78], Al (fcc) (present calculations and Refs. [79–83]) and Fe-Al-based
systems. Most values of strength given in the Table correspond to the maximum of stress at the
stress-strain curve. All values without a reference come from the present work. The γec for Al was
computed from Equation (4) and the elastic constants were taken from Ref. [84] (C11 = 123 GPa, C12 =
70.8 GPa and C44 = 30.9 GPa). The values of γec for Fe-Al systems were obtained from the elastic
constants calculated here (see Table 3).

γ γec σOUL
ts (GPa)

elemental Fe (bcc) 0.63 [72] 0.67 [72] 12.7 [71,74,77], 14.2 [75], 12.6 [76], 12.4 [72,78]
elemental Al (fcc) 0.00 0.73 12.6 [79], 12.1* [79], 12.92 [80]

9.20** [80], 11.6 [81], 9.0* [82], 11.33 [83], 11.4
Fe-Al - nanocomposite 0.82 0.86 5.5
Fe3Al - D03 0.89 0.87 4.1
Fe-Al - disordered 0.79 0.75 7.8

* corresponding to elastic instabilities occurring prior to reaching the maximum stress at the stress-strain curve,
** obtained from a phonon instability with finite wave vector.

The obtained results of the γ slope and the tensile strength σOUD
ts are summarized in Table 2

together with the data for perfect Al and Fe crystals. Černý and Pokluda also proposed a simple
formula for determination of the γ slope from the elastic constants [72].

γec =
σiso − σOUL

ts
σiso

≈ 1− E100

3B
=

2C12

C11 + C12
(4)

Using this equation we computed the values of γ for all studied systems and the
results (marked as γec) are compared in Table 2 with those computed directly from the
stress-strain dependencies. Because Equation (4) works only for cubic systems and the Fe-Al
nanocomposite possesses orthorhombic symmetry we used average values of the elastic constants,
i.e., C11 = (C11 + C22 + C33)/3, etc. (see the paper by Moakher and Norris [85]). As it can be seen,
the slopes γec agree very well with values of γ for the Fe-Al-based systems and perfect Fe crystal,
however, the results do not agree for the perfect Al crystal. This difference can be easily explained
via different crystal structure and the loading direction between Al and Fe-Al systems. Whereas the
perfect Al crystal is subjected to the [001] deformation in fcc system then the present Fe-Al structures
are deformed in [001] direction in bcc like system. Thus, both systems are completely different by
means of the atomic ordering and the loading direction.

3.4. Temperature Effect on the Tensile Strength

The previous results were computed under quasi-static simulations where temperature effect
is neglected. To include temperature into our simulations we employed the molecular dynamics
simulations. Using MD simulations we computed the tensile strength σts for all studied materials as
a function of temperature. The computed dependencies for OUD and OUL modes are depicted in
Figure 4.

It can be seen that increasing temperature decreases the tensile strength for all studied phases and
deformation models. As far as the Fe3Al and the OUD model are concerned, the strength decreases
from 16.7 GPa (obtained from the T = 1 K simulations) to values approx. 12.5 GPa for temperature
300 K, i.e., only 75 % of the strength values obtained from the quasi-static simulations.
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Figure 4. The tensile strength of Fe3Al and disordered Fe-Al phases together with their nanocomposite
as functions of the temperature (the simulations were performed for 1, 10, 50, 100, 200, 300 and 400 K).
Blue and yellow curves show the results obtained within OUD and OUL, respectively.

Similar effect can be observed for the uniaxial loading (OUL) where temperature also decreases
the strength. According to these results it is obvious, that the quasi-static simulations for Fe3Al might
overestimate the tensile strength when performed for a static lattice at T = 0 K and and the inclusion of
the lattice vibrations at finite temperatures significantly decreases the tensile strength.

3.5. Elastic Constants

As was mentioned in the introduction, any crystal structure might become unstable even before
reaching the maxima at stress-strain dependence. This instability might occur due to temperature
effects (e.g., a phonon instability) or, specifically in the case of long-wave phonon modes close to the
Γ-points, the elastic instability. The temperature effect was discussed in the previous section with the
help of molecular dynamics simulations. However, the tensile strength might be also reduced due to
elastic instability, i.e., failure to fulfill the stability conditions formulated using elastic constants Cij.
For this reason we computed Cij (using the stress-strain method [86]) as a function of the axial strain
εax and if the conditions of elastic stability were not satisfied [87] the crystal structure was considered
as unstable and the tensile strength was set equal to the corresponding value of stress. As far as the
ground-state configurations of Fe3Al compound, the disordered Fe-Al and their nanocomposite are
concerned, their elastic properties are summarized in Table 3 and visualized in the form of directional
dependencies of Young’s modulus in Figure 5.
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a) Fe3Al                                   b)                                               Fe-Al  alloy                             

c)                                              Fe3Al/Fe-Al

GPa GPa

GPa

Figure 5. Directional dependencies of Young’s modulus of the ground-state configuration of Fe3Al
compound (a); disordered Fe-Al (b) and the nanocomposite consisting of these two phases (c). All three
dependencies were visualized using the SC-EMA software package (see it freely available at the web
page scema.mpie.de) [88–90].

The calculated values for Fe3Al compound are C11 = 211 GPa, C12 = 161 GPa and C44 = 139 GPa.
The elastic constants computed for the disordered Fe-Al phase were projected onto a set of elastic
constants possessing a cubic symmetry according to the rigorous mathematical theory by Moakher
and Norris [85]. Similar concepts are often used in case of systems with any form of disorder (see e.g.,
Refs. [91–95]). The resulting cubic-symmetry elastic constants are C11 = 217 GPa, C12 = 131 GPa and
C44 = 120 GPa. As seen in Figure 5, both Fe3Al compound and Fe-Al nanocomposite have qualitatively
the same type of the elastic anisotropy with the 〈111〉 directions being the hard ones while the 〈001〉
being the soft ones.

The nanocomposite consisting of these two phases turned out to have an orthorhombic symmetry
and its elastic properties are characterized by elastic constants C11 = 182 GPa, C12 = 146 GPa,
C13 = 139 GPa, C22 = 202 GPa, C23 = 147 GPa, C33 = 194 GPa, C44 = 124 GPa, C55 = 128 GPa and
C66 = 128 GPa. As it may be seen from Figure 5c, behavior of Young’s modulus of the nanocomposite
is not very different from that of cubic symmetry. Therefore, we will use only three independent elastic
constants for the nanocomposite in the text below.

Inspecting values for the ordered Fe3Al in Table 3 it is clear that there is rather significant
scatter in the previously published results [96–98]. Moreover, all theoretical values differ quite
significantly from the experimental data [99]. While also our predicted elastic constants differ from
the experiment, they are nevertheless either the closest to the experimental values (in the case of C11

and C44) or nearly equal to the values which are the closest (as in the case of C12). Now, it should be
pointed out that both the theoretical and experimental elastic constants are only partly determined

scema.mpie.de
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directly and, in fact, mostly indirectly. The theoretical values are, in the case of the stress-strain method,
obtained from six sets of six coupled linear equations. On the other hand, the experimental data [99]
listed in Table 3 were only indirectly derived from elastic characteristics C′ = (C11 − C12)/2, C44 and
CL = (C11 + C12 + 2C44)/2 evaluated from direct measurements of the speed of sound. This aspect can
introduce some systematic errors. Another reason for the differences from our values may consist in
the use of a different computational software tool. Surprisingly, the best agreement is then reported in
Ref. [100] where the authors combined the tight-binding linear-muffin-tin-orbital (TB-LMTO) method
calculations and the inversion of the inter-atomic potentials based on the lattice inversion method.
Despite of this agreement, their approach represents essentially only a pair-potential method what is
seen in the fact that their Cauchy pressure C12–C44 is zero. On the other hand, let us note that from
experimental elastic constants extrapolated to 0 K [99], a negative value of -7 GPa is obtained.

Table 3. The computed anisotropic elastic constants C11, C12 and C44 together with homogenized bulk
modulus B, Young’s modulus E, shear modulus G, Poisson ratio ν and the Cauchy pressure C12–C44.
The Table also contains previous theoretical results [96–98] as well as available experimental data [99].
All elastic constants (except for Poisson’s ratio) and moduli are given in GPa.

C11 C12 C44 B G

ordered Fe3Al-D03 211 161 139 178 73
225 [96] 160 [96] 147 [96] 180 [96] 101 [96]
283 [97] 206 [97] 149 [97] 232 [97] 87 [97]
285 [98] 208 [98] 151 [98] 233 [98] 88 [98]

159 [100] 138 [100] 138 [100] 144* [100], 170** [100] –
experiment 179 [99] 131 [99] 138 [99] 147 [99] –

disordered Fe-Al 217 131 120 160 80
nanocomposite 193 144 127 160 68

E ν B/G C12–C44

ordered Fe3Al-D03 193 0.319 2.438 22
347 [96] 0.179 [96] 1.782 [96] 13 [96]

– 0.400 [97] 2.632 [97] 57 [97]
234 [98] 0.333 [98] 2.65 [98] 57 [98]

disordered Fe-Al 206 0.285 2.000 11
nanocomposite 178 0.314 2.353 17

* derived from elastic constants, ** directly from TB-LMTO calculations.

Using the anisotropic elastic parameters for each phase (see Table 3) we can also evaluate
their homogenized isotropic polycrystal properties, such as bulk modulus B, Young’s modulus E,
shear modulus G or Poisson’s ratio ν. These were calculated employing the SC-EMA software
package (see it freely available at scema.mpie.de) [88–90] employing Green’s-function-based
approach described, for example, in Ref. [89]. The SC-EMA software tool implements different
homogenization techniques. First, two classical schemes of Voigt [101] (assuming equal strain in all
grains) and Reuss [102] (supposing equal stress in all grains) are applied which represent the upper
and lower bound, respectively. However, it also computes homogenized moduli for the cubic systems
according to Hershey [103] scheme providing values which are typically close to the average of Voigt
and Reuss ones (and often close to experiments in the case of texture-free samples). We used Hershey’s
method for our analysis. Interestingly, the B, G and E parameters of the nanocomposite are not in
between the values of the constituting phases. The values are either equal to the lower of the two values
(such as bulk modulus B) or even lower (G and E) than the lowest values predicted for individual
phases. The interfaces thus represent elastically weaker links within the composite.

Comparing our values of polycrystalline elastic moduli with the previously published ones we
observe that they are quite different. In particular, B/G ratio from Ref. [96] is very low but this is the
consequence of the use of Voigt homogenization scheme which provides the upper limit of the shear
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modulus G while the bulk modulus B is equal to the same value for Voigt, Reuss and Hershey method
in the case of cubic-symmetry systems (see them compared, e.g., in our paper [104]).

The values of Poisson’s ratio ν, the B/G ratio as well as the values of the Cauchy pressure C12–C44

can be further used to estimate ductile/brittle behavior of the studied materials. In particular, the B/G
ratio was introduced by Pugh [105] based on empirical data and the value over 1.75 was suggested to
indicate a ductile behavior while lower values mean a brittle type. Cauchy pressure [106] can also be
indicative regarding the ductility of materials (with positive values associated with ductile behavior).
Ductility is also associated with larger values of Poisson’s ratio, typically over 0.31–0.32. Two of
these three parameters, B/G and the Cauchy pressure, indicate that all three studied materials are
ductile (B/G > 1.75, C12–C44 positive) but the value of Poisson’s ratio is only 0.285 for the disordered
Fe-Al phase and the values for ordered Fe3Al and the nanocomposite are within the border range of
values (0.31–0.32). Again, let us note that the experimental value of the Cauchy pressure obtained
from measurements of elastic constants extrapolated to 0 K is slightly negative (−7 GPa) and becomes
negative up to 300 K (−1.1 GPa [99]).

Now, as far as the loaded states are concerned, the first stability condition is not satisfied [87]
in Fe3Al compound when the axial strain ε reaches 0.26 and the phase is thus mechanically unstable.
The instability is related to the C′ elastic constant. There is no doubt that the tensile strength σts

determined from the stress-strain curves for Fe3Al in Figure 2a must be adjusted (decreased) according
to this instability. In the corresponding stress-strain curve the axial strain value εax = 0.26 corresponds
to 22 GPa and hence this value is the reduced tensile strength σts for the quasi-static simulations
(0 K temperature). The corresponding value is also highlighted in Figure 2a and marked as the
“instability”. This adjustment of the tensile strength σts clearly demonstrates that the stress-strain
curves obtained from the quasi-static simulations are not sufficient to determine the strength and other
possible instability effects should be included.

Regarding the disordered phase and the nanocomposite, the instabilities occur in the case of the
former for the OUD conditions and in the case of the latter under both types of simulated conditions
(OUD and OUL). The instability of the nanocomposite loaded under OUD conditions is related to
both C′ and C66 while the other two instabilities are related solely to C′.

3.6. Fracture of the Nanocomposite upon Loading

The last part of our study is devoted to identification of the weakest bonding in the nanocomposite,
i.e., the location where a fracture appears and two new surfaces are created. This place is characterized
as a plane with the lowest cleavage stress. The selected deformation modes use the optimization of
ionic positions in the simulation cell during each strain increment and hence it is not necessary to
predict its location as in the models where the ionic optimization is not employed. In deformation
modes used in the present work the cleavage plane is found as a result of optimization of ionic positions
when the critical strain is reached. Thus, the locations of the cleavage plane in the nanocomposite
and the disordered phases were found via a detail examination of their configurations after each
strain increment.

However, before describing the cleavage plane location we would like to point out that the
stress-strain curves obtained from the atomistic simulations can be separated into two groups according
to character of their dependencies. The first one is represented by smooth and continual increases of the
stress up to its maximum followed by smooth decreases. Thus, the stress-strain curve does not contain
any sudden drops or increases and its entire shape is smooth. This behavior is typical for tensile tests
in atomistic simulations of perfect crystals where no irregularities such as vacancies, interfaces or
grain boundaries, are present in the structure. As a typical example we may mention the stress-strain
curve for the perfect Fe3Al compound in Figure 2a for both OUD and OUL deformation modes.
This material behavior is often found also in structures with defects subjected to uniaxial loading only.
This type of the dependence usually indicates that the studied material has many degrees of freedom
and instead of a brittle fracture it rather transforms into a different structural configuration [65]. This is
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also the case of the stress response of the nanocomposite in Figure 2c for the OUL mode. On the
other hand, the second type of the behavior is represented by stress-strain curves that contain abrupt
drops of the stress immediately after its maximum. This drop represents a structure failure which
usually means that the bonds between atoms at the weakest plane were broken and two new surfaces
were created, i.e., a fracture appears. This behavior is typical for crystal structures containing defects
that are subjected to triaxial loading state.

The detailed examination of the stress-strain curves displayed in Figure 2a and of corresponding
structure configurations reveals that Fe3Al phase does not exhibit any abrupt drop and therefore there
is no fracture around the maximum of the stress. On the other hand, the nanocomposite subjected to
uniaxial deformation (OUD) fails due to fracture (there is an abrupt drop in Figure 2c). Fracture is
located at the cleavage plane with the lowest cleavage stress. This conclusion was confirmed when
examining the structure at each strain increment and it has been found that the fracture appears in the
disordered phase as it is marked in Figure 6. The location of the plane with the lowest cleavage stress
is highlighted by the red color. Therefore, the disordered phase represents the weakest part of the
studied nanocomposite in terms of tensile loading. The cleavage plane is identical to that one obtained
for the perfect disordered phase. It is also evident that there is no fracture for uniaxial loading.

disordered ordered D03

Figure 6. The location of the cleavage plane highlighted by the red plane. The blue planes mark the
interfaces between D03 and disordered phases.

4. Conclusions

We have performed an ab initio study of ordered Fe3Al compound with the D03 structure, a
disordered Fe-Al solid solution with 18.75 at.% Al and of a nanocomposite consisting of an equal molar
amount of both phases under uniaxial loading conditions along the [001] direction. By comparing the
behavior of individual phases with that of the nanocomposite we find that the disordered Fe-Al phase
represents the weakest point of the studied nanocomposite in terms of tensile loading. The cleavage
plane of the whole nanocomposite is identical to that identified when loading solely the disordered
Fe-Al phase.

It also turns out that the strength of Fe3Al compound strongly depends on triaxiality of
the loading state, i.e., increasing of the lateral stresses significantly increases the tensile strength.
This dependence has a linear character and therefore it can be described via a simple formula.
For Fe-Al-based materials studied here, its slope is higher than for that perfect Fe crystal in the
corresponding direction and completely different when compared with perfect Al crystal. Therefore,
the strain response of the Fe-Al alloy and of a nanocomposite cannot be predicted on the basis of the
knowledge of the strain response of Fe or Al.

The mechanical stability is found to be closely interlinked with elastic constants (in particular C′

and/or C66) which soften with increasing uniaxial loading and eventually violate stability conditions.
Next, we also conclude that there is no brittle-type fracture for uniaxial loading and the nanocomposite
transforms rather continuously and diffusionlessly into a face-centered cubic-like structure, although
it fails due to fracture under uniaxial deformation. Finally, our atomistic Embedded Atom Method
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(EAM) simulations show that temperature significantly affects the mechanical properties compared to
those obtained from quasi-static simulations. For example, at room temperature of 300 K the strength
decreases to as low as 75% of the zero-Kelvin static lattice value.
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