

Correction

MDPI

Correction: Chatterjee, A.; et al. Transition Metal Hollow Nanocages as Promising Cathodes for the Long-Term Cyclability of Li–O₂ Batteries. *Nanomaterials* 2018, *8*, 308

Amrita Chatterjee ¹, Siu Wing Or ^{1,*} and Yulin Cao ^{1,2}

- ¹ Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; amrita.chatterjee@polyu.edu.hk (A.C.); caoyulin@szpt.edu.cn (Y.C.)
- ² Physics Laboratory, Industrial Training Center, Shenzhen Polytechnic, Shenzhen 518055, China
- * Correspondence: eeswor@polyu.edu.hk; Tel.: +852-34003345

Received: 4 September 2018; Accepted: 18 September 2018; Published: 20 September 2018

The authors wish to add the following information to this paper [1].

The last paragraph of Section 1 in the Introduction has been replaced by the following two paragraphs:

One of the drawbacks of using these spinel structured oxides is their low surface area [12]. In our previous work [16], we have announced the preliminary results and initial observations on the basic morphology and magnetism of a highly porous spinel-type, Mn_3O_4 , called Mn_3O_4 hollow nanocages (MOHNs), in addition to the general electrochemical performance of MOHNs/Ketjenblack (KB) cathode-based Li $-O_2$ batteries. It has been demonstrated that the use of a simple facile template assisted growth technique is capable of producing crystalline paramagnetic MOHNs composed of many 25 nm mean diameter Mn_3O_4 nanoparticles, loosely agglomerated together to form the shell of a mesoporous hollow nanocage structure with a large mean diameter of 250 nm and a high surface area of 90.65 m²·g⁻¹. Moreover, the resulting MOHNs/KB cathode-based Li $-O_2$ batteries exhibit more than 50 discharge–charge cycles at a reversible restrained specific capacity of 600 mAh·g⁻¹ and a specific current of 400 mA·g⁻¹.

This paper is extended from the previous proceedings paper [16]. It broadens the previous focus on the physical aspect of MOHNs to the physicochemical aspect of MOHNs. We thereby provide a more comprehensive evaluation and elaboration on the physicochemical properties and formation mechanism of MOHNs, as well as the electrochemical performance of MOHNs/KB cathode-based Li–O₂ batteries. An analysis of death batteries is also performed, in order to understand how the mesoporous hollow nanocage structure of MOHNs provides a pathway for better diffusion of reactants and products, how it prevents the blockage of pores from Li_2O_2 , and how it improves the cyclic stability of Li–O₂ batteries.

The figure captions of Figures 2–5 are added with the following statements:

Figure 2a is reproduced with permission from [16]. Copyright IEEE, 2016. Figure 3b is reproduced with permission from [16]. Copyright IEEE, 2016. Figure 4a,d are reproduced with permission from [16]. Copyright IEEE, 2016. Figure 5 is reproduced with permission from [16]. Copyright IEEE, 2016.

The authors regret any inconvenience or misunderstanding caused by these errors. The manuscript will be updated and the original will remain available on the article webpage.

Reference

1. Chatterjee, A.; Or, S.W.; Cao, Y.L. Transition Metal Hollow Nanocages as Promising Cathodes for the Long-Term Cyclability of Li–O₂ Batteries. *Nanomaterials* **2018**, *8*, 308. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).