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Abstract: The surface of ZnWO4 nanorods was decorated with Cu2O nanoparticles (Cu2O/ZnWO4)
prepared through a precipitation method. The Cu2O nanoparticles were tightly deposited on the
ZnWO4 surface and had average diameters of 20 nm. The nanoparticles not only promoted the
absorption and utilization of visible light but also facilitated the separation of photogenerated charge
carriers. This brought an improvement of the photocatalytic activity. The 5 wt % Cu2O/ZnWO4

photocatalyst displayed the highest degrade efficiency for methylene blue (MB) degradation under
visible light, which was 7.8 and 2 times higher than pure ZnWO4 and Cu2O, respectively. Meanwhile,
the Cu2O/ZnWO4 composite photocatalyst was able to go through phenol degradation under visible
light. The results of photoluminescence (PL), photocurrent, and electrochemical impedance spectra
(EIS) measurements were consistent and prove the rapid separation of charge, which originated from
the match level structure and the close contact with the interface. The radical and hole trapping
experiments were carried out to detect the main active substances in the photodegradation process.
The holes and ·O2

− radicals were predicted to dominate the photocatalytic process. Based on the
characterization analysis and experiment results, a possible photocatalytic mechanism for enhancing
photocatalytic activity was proposed.
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1. Introduction

Photocatalytic technology can directly use solar energy to degrade organic pollutants using
super oxidation capacity, mild reaction conditions, and no secondary pollution. The development
of an efficient semiconductor photocatalyst plays an important role in the practical application of
photocatalytic technology [1]. Recently, ZnWO4 received widespread attention due to its excellent
performance in degrading organic pollutants under ultraviolet light [2,3]. Meanwhile, the ZnWO4

photocatalyst also has the advantages of stable chemical properties and is easy to develop. However,
the pure ZnWO4 photocatalyst suffers from a higher photogenerated charge recombination rate and a
low utilization rate of sunlight, which severely limits its practical application ability [4,5]. Therefore,
the key problem for improving the photocatalytic performance of ZnWO4 is to boost the rapid
separation of photo-generated electron-hole pairs on the basis of efficient utilization of solar energy.

Noble metal decorated ZnWO4 can promote the rapid separation of photogenerated charge through
the schottky barrier since the Fermi level of noble metal is more positive than ZnWO4 [5,6]. Additionally,
ion doping, such as seen in fluorine and chlorine [7–10], could greatly enhance photocatalytic
performance since the doped atoms can act as electron traps and promote photogenerated charge
separation. In addition, construction of heterojunction photocatalyst by combining ZnWO4 with other
semiconductors, such as Bi2WO6/ZnWO4 [11], ZnWO4/BiOI [12], and BiOBr/ZnWO4 [13], provides
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a feasible route to facilitate the effective transmission of the charge through interfacial interfaces.
Additionally, by combining ZnWO4 with material that has a π–π conjugated structure like C3N4 [14,15]
and graphene [16] could effectively inhibit the combination of photo-generated carriers due to the special
conductivity of the conjugate material. Recently, Niu [17] and Li [18] prepared Ag/AgCl and Ag@AgBr
nanoparticles decorate ZnWO4 nanorods, respectively, to obtain more visible light utilization efficiency
for the surface plasmon resonance of Ag nanoparticles. In addition, surface modification of ZnWO4

with narrow band-gap and matching energy level semiconductors not only improved the visible light
response but promoted the separation of the photogenerated charges.

As commonly known, Cu2O can absorb the most visible light for the band gap at about 2.2 eV [19]
when using Cu2O nanoparticles modified for the wide bandgap semiconductor. Modifications such
as TiO2 [20], BiVO4 [21], and BiOBr [22] can greatly enhance the absorption of visible light on the
composite. Moreover, based on the morphology, the grain size of the catalyst has an important influence
on the activity. Various morphologies of Cu2O can be prepared through multiple methods [23] and
exhibit excellent photocatalytic performance. Some studies have pointed out that Cu2O nanoparticles
were recently modified on the TiO2 nanosheets or multi-walled carbon nanotubes not to enhance the
light absorption but to improve the separation of the photogenerated carriers. This generates a higher
photocatalytic performance [24,25]. Considering the criteria, this action loaded the Cu2O nanoparticles
onto the surface of the ZnWO4 nanorods to further improve the utilization rate of visible light and then
to stimulate production of more electron–holes. Meanwhile, the match between the level structure and
the intimately contacted interface of ZnWO4 and Cu2O are beneficial for accelerating the separation of
the photogenerated charge carriers, which improves the photocatalytic activity. In fact, there are no
previous studies about using Cu2O nanoparticles to decorate ZnWO4 nanorods.

Herein, we modified Cu2O nanoparticles onto the surface of ZnWO4 nanorods. The Cu2O
nanoparticles were tightly deposited on the ZnWO4 surface with average diameters of 20 nm.
Our results proved that the Cu2O nanoparticles greatly promoted the absorption and utilization
of visible light. Meanwhile, the introduction of Cu2O nanoparticles provides a new channel for charge
transfer. This greatly inhibited photo-generated carrier recombination and accelerated the migration
of interfacial charge carriers. The effects of different Cu2O nanoparticles content on the visible light
absorption and charge separation of the composites were investigated. The 5 wt % Cu2O/ZnWO4

photocatalyst displays the highest degrade efficiency for methylene blue (MB) degradation, which was
7.8 and 2 times more than seen in pure ZnWO4 and Cu2O. Based on the characterization analysis and
experiment results, a possible photocatalytic mechanism on enhancement of photocatalytic activity
was proposed.

2. Experimental

2.1. Synthesis of Photocatalysts

The catalyst is prepared with deionized water. The activity test process uses ultrapure water.
All of the reagents are analytically graded. Initially, the synthesis of ZnWO4 was carried out using
the hydrothermal method based on previous work [26]. Typically, Na2WO4·2H2O (3 mmol) and
Zn(NO3)2·6H2O (3 mmol) were dispersed in 25 mL distilled water with magnetic stirring for 15 min.
Then, the two above aqueous solutions were mixed together through magnetic stirring at room
temperature for 30 min. Afterward, the mixture was transferred into a Teflon-lined steel autoclave and
the autoclaves were heated in a convection oven at 180 ◦C for 12 h. The resulting precipitates were
collected and washed with deionized water and absolute ethanol. The samples were then dried at
80 ◦C for 10 h.

Then, Cu2O/ZnWO4 composite was prepared using a simple reductive solution chemistry route
based on a previous report [22]. First, measured amounts of cetyl trimethyl ammonium bromide
(CTAB) and ethylene diamine tetra acetic acid (EDTA) were dissolved in 50 mL deionized water
and stirred until a stable suspension was obtained. Then, 0.5 g ZnWO4 was added into the uniform
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suspension and stirred for 30 min, followed by the addition 0.06 g Cu(Ac)2. Thirty minutes later, 25 mL
NaOH solution (0.45 mol·L−1) was added dropwise to the mixed solution. The color of the solution
became blue, demonstrating the formation of Cu(OH)2. After 30 min, the solution color slowly turned
to orange by adding 25 mL of ascorbic acid (AA) (0.3 mol·L−1) solution dropwise. Finally, composites
were washed with ethanol and water and dried at 60 ◦C for 6 h to obtain Cu2O/ZnWO4.

2.2. Characterization

The crystal structure and phase analysis of the Cu2O/ZnWO4 composite was analyzed through X-ray
diffraction (XRD) using a Rigaku D/MAX2500 PC diffractometer (D/MAX2500 PC, Rigaku Corporation,
Tokyo, Japan) with Cu Kα radiation, with an operating voltage of 40 kV and an operating current
of 100 mA. The morphology and particle size of the catalyst were observed through transmission
electron microscopy (TEM, JEM-2010, JEOL Ltd., Akishima, Japan). The UV-visible light (UV-Vis)
was used to determine the light absorption properties of the catalyst (Puxi, UV1901, Beijing, China).
The surface chemical state was analyzed by an X-ray photoelectron spectroscope (XPS, Shimadzu
Kratos, AXIS-Ultra DLD, Tokyo, Japan) with a monochromatized Al Kα radiation source (1486.6 eV).
We performed electrochemical and photoelectrochemical measurements using a three-electrode
quartz (CHI-660E, Chen Hua Instruments, Shanghai, China). Photoluminescence (PL, Hitachi F-7000,
Tokyo, Japan) Spectra were collected to explore the recombination of photogenerated carriers.

2.3. Photocurrent and Electrochemical Impedance Spectra Measurements

The photocurrent and electrochemical impedance spectra (EIS) measurements were conducted
using an electrochemical analyzer (CHI660E, Chen Hua Instruments, Shanghai, China) with a standard
three-electrode configuration. A standard three-electrode cell was used in the photoelectric studies
including a working electrode (as-prepared photocatalyst), a platinum wire as the counter electrode,
and a standard calomel electrode (SCE) as the reference electrode. An amount of 0.1 M Na2SO4 was
used as the electrolyte solution. The visible light irradiation was obtained from a 500 W Xe lamp with
a 420 nm cutoff filter.

2.4. Photocatalytic Activity

The photocatalytic gradation of organic pollutants was carried out in a tube photoreactor. In order
to eliminate the effect of temperature on the rate of photocatalytic degradation, the photochemical
reaction apparatus was connected to a circulating cooling device (Bilon, Xi’an, China) to control the
temperature of the reaction solution in the test tube at 25 ± 2 ◦C. The irradiation light source was
a 400 W metal halide lamp. Adding the filter glass sheets between the metal halide lamp and the
reaction tube filtered wavelengths <420 nm. The catalyst activity was analyzed primarily by degrading
10 ppm MB by 0.1 g of catalyst. After stirring for 30 min under dark, 1 mL of sample was taken every
15 min. The collected supernatant solutions were analyzed by the spectrometer at the characteristic
absorption peak of 664 nm. The samples obtained during the photocatalytic test were filtered through
a filter. Additionally, the degradation of phenol solution was detected by using high performance
liquid chromatography (HPLC).

3. Results and Discussion

The crystallographic structures of ZnWO4 and Cu2O/ZnWO4 samples were confirmed by XRD
measurements. As seen in Figure 1, the diffraction peaks were observed at 18.91◦, 23.84◦, 24.58◦,
30.72◦, 36.31◦, 41.15◦, and 53.63◦, corresponding to the (110), (200), (210), (211), (220), (310), (222),
(320), (321), (400) and (421) crystal surfaces of ZnWO4, respectively. This aligns with the standard card
(JCPDS 15-0774) [27]. The standard card and the characteristic diffraction peaks were narrow and sharp,
indicating that the composites possessed of high crystallinity. Meanwhile, the composites showed high
purity since there were no traces of other phases examined. Compared with pure ZnWO4, the XRD
patterns of the Cu2O/ZnWO4 composites did not vary in shapes or peaks and it was presumed that the
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addition of Cu2O did not change the crystal form of ZnWO4. Additionally, no characteristic diffraction
peaks attributed to Cu2O were detected in the Cu2O/ZnWO4 composites (as seen the Cu2O JCPDS
65-3288) [22], which was caused by the small amounts and the particle size of Cu2O nanoparticles
(max 7 wt %) as well as the high dispersion of Cu2O nanoparticles.
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Figure 1. X-Ray Diffraction (XRD) patterns of ZnWO4 and Cu2O/ZnWO4 photocatalysts.

The TEM was performed on the ZnWO4 and 5 wt % Cu2O/ZnWO4 composite to investigate the
morphology and detail structural information of the Cu2O/ZnWO4 composite catalyst. As seen in
Figure 2a, the pure ZnWO4 nanorods have a smooth surface with a length of 200–500 nm and a width
of 20–30 nm. In comparison, as seen in Figure 2b, the Cu2O nanoparticles, with average diameters of
20 nm, were coated on the surface of ZnWO4 nanorods uniformly. The Cu2O nanoparticles did not
significantly change its morphology or the size of ZnWO4 photocatalysts, which was consistent with the
XRD results. Meanwhile, the Cu2O nanoparticles were beneficial for separating the photo-generated
carriers and improving the degradation performance of composites.
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Figure 2. Transmission Electron Microscopy (TEM) images of (a) ZnWO4; (b) Cu2O/ZnWO4.

Figure 3a shows the UV-visible diffuse reflectance pattern of ZnWO4, Cu2O and Cu2O/ZnWO4

samples. As seen in Figure 3a, the pure ZnWO4 shows its fundamental absorption edge at 320 nm
due to its large band-gap energy while the Cu2O exhibited strong absorption in the λ < 600 nm
region. When Cu2O nanoparticles were modified on the ZnWO4 surface, it brought more visible light
absorption for all of the Cu2O/ZnWO4 composites, and red shifted into the visible light region because
of the photosensitizing effect of the incorporated Cu2O nanoparticles. Additionally, the visible light
absorption edge increased with rising Cu2O content. The forbidden band width of a semiconductor
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catalyst can be calculated using the Kubelka-Munk equation [28]. The result is shown in Figure 4b.
According to the literature [21,29], the Cu2O was a direct transition semiconductor and the ZnWO4

was an indirect transition. As such, the band gap of pure Cu2O and ZnWO4 was calculated to be 1.9
and 3.7 eV (as seen in Figure 3b), respectively.
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Figure 4. X-Ray Photoelectron Spectroscopy (XPS) spectra of Cu2O/ZnWO4 sample: (a) Survey of the
sample; (b) Zn 2p; (c) Cu 2p and (d) W 4f.

So as to demonstrate the interaction between Cu2O and ZnWO4 in Cu2O/ZnWO4 composites,
the valence state and the binding energy in Cu2O/ZnWO4 were determined by using XPS. The results
show that the element of Cu, O, Zn, W and C all appear in the full XPS spectrum of Cu2O/ZnWO4

and the corresponding high resolution spectra, which are noted in Figure 4b–d. Zn 2p binding
energy position was shown in Figure 4b. In Figure 4b, we can observe that the characteristic peaks
appear at 1022.1 and 1044.5 eV, respectively, which corresponds to the peak position of Zn 2p3/2 and
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Zn 2p1/2 [14]. Figure 4c is the spectrum result of Cu 2p. There are two peaks shown at 931.9 and
951.9 eV, which corresponds to Cu 2p3/2 and Cu 2p1/2, respectively. The experimental results are
consistent with reports in the literature [22]. The XPS spectrum of W 4f (as seen in Figure 4d) shows
that two binding energy peaks appear at 35.0 eV and at 37.4 eV, respectively for W 4f7/2 and W 4f5/2,
which determines the existence of W [30]. After the analysis of XRD and XPS, it can be concluded that
Cu2O and ZnWO4 coexist in the Cu2O/ZnWO4 sample.

The photoluminescence (PL) spectra can evaluate the transfer and recombination processes of
photogenerated e−/h+ pairs in semiconductors. It is widely accepted that the lower PL intensity,
the lower photo-carrier recombination rate and the higher photocatalytic performance [31]. The excitation
wavelength ZnWO4 and Cu2O in the Cu2O/ZnWO4 architectures was 315 nm. The comparison of PL
spectra is shown in Figure 5. The main emission peak is centered at 465 nm for the ZnWO4 sample due
to the recombination of photogenerated carriers in the ZnWO4. Once Cu2O nanoparticles were added,
the photoluminescence dropped markedly and the 5 wt % Cu2O/ZnWO4 composites displayed the
lowest PL intensity, which indicates that the photogenerated carriers were effectively separated in the
composite semiconductors. This shows that the process was conducive to promoting the photocatalytic
properties of the composite material.
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In order to better explain the photogenerated carriers, the Cu2O/ZnWO4 composites should
be effectively separated. The transient photocurrent responses of the ZnWO4 and Cu2O/ZnWO4

composites were recorded for several on/off cycles of irradiation. It was generally considered that
the higher the peak intensity, the higher the separation efficiency of the photogenerated carriers [32].
As shown in Figure 6, when visible light is irradiated, the photocurrent increases sharply. In contrast,
in the dark environment, the photocurrent was immediately reduced to zero. A significant photoelectric
response was observed from the on/off photoperiod. In addition, ZnWO4 showed almost no
photocurrent response due to its lack of visible light response while the Cu2O/ZnWO4 composites
displayed much higher photocurrent intensity, where the 5 wt % Cu2O/ZnWO4 composites exhibited
the highest photocurrent density. This shows that the introduction of Cu2O nanoparticles will greatly
improve the photocurrent response. The Cu2O/ZnWO4 composites exhibit faster charge separation
efficiency, which originates from the ZnWO4 and Cu2O matching energy level structure that rapidly
separates photogenerated hole pairs.
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To further test the transport rate of the electrons more intuitively, the electrochemical impedance
spectra (EIS) of the prepared materials was carried out. The size of the Nyquist curve reflects
the reaction rate and resistance between grain and grain, grain boundaries, and after polarization.
The electrode reaction rate decreases due to a larger radius. Small arc radii imply a faster interface
electron transfer for better photocatalytic ability [33]. The EIS response of ZnWO4 and Cu2O/ZnWO4

composites in visible light irradiation is shown in Figure 7. Obviously, the semicircular diameter of the
composite was smaller than pure ZnWO4, which demonstrates that the photo-generated charge can
be effectively separated due to the strong interaction between ZnWO4 and Cu2O. The radius is the
smallest when the composite ratio of Cu2O is 5 wt %. All these results of EIS, photocurrent, and PL
were consistent and illustrated that the introduction of Cu2O could greatly accelerate the separation
and transfer of photoelectron-hole pairs and improve the degradation performance of composites.

Nanomaterials 2018, 8, 33  7 of 13                             

 

Figure 6. Photocurrent-time curves of bulk ZnWO4 and Cu2O/ZnWO4 composites under visible light 
(>420 nm) irradiation with 30 s light on/off cycles. 

To further test the transport rate of the electrons more intuitively, the electrochemical 
impedance spectra (EIS) of the prepared materials was carried out. The size of the Nyquist curve 
reflects the reaction rate and resistance between grain and grain, grain boundaries, and after 
polarization. The electrode reaction rate decreases due to a larger radius. Small arc radii imply a 
faster interface electron transfer for better photocatalytic ability [33]. The EIS response of ZnWO4 
and Cu2O/ZnWO4 composites in visible light irradiation is shown in Figure 7. Obviously, the 
semicircular diameter of the composite was smaller than pure ZnWO4, which demonstrates that the 
photo-generated charge can be effectively separated due to the strong interaction between ZnWO4 
and Cu2O. The radius is the smallest when the composite ratio of Cu2O is 5 wt %. All these results of 
EIS, photocurrent, and PL were consistent and illustrated that the introduction of Cu2O could 
greatly accelerate the separation and transfer of photoelectron-hole pairs and improve the 
degradation performance of composites. 

 

Figure 7. Electrochemical Impedance Spectra (EIS) plots of pure ZnWO4 and as-prepared various 
Cu2O/ZnWO4 samples irradiated with visible light. 

To determine the photocatalytic performance of the catalyst, the activity of degradation MB by 
ZnWO4, Cu2O, and Cu2O/ZnWO4 were compared under the same experimental conditions. As seen 
in Figure 8a, the characteristic absorption peak of MB was 664 nm, and the intensity decreased 
gradually in the absence of 5 wt % Cu2O/ZnWO4 composite under visible light irradiation, and 
finally disappears at 90 min. Figure 8b displays the change of MB concentration (C/C0) against 
photodegradation time for the prepared catalyst samples. The experimental results show that MB 
was not degraded in the absence of a photocatalyst or light irradiation. The MB degradation is a 
photocatalytic process, in which the photocatalysts generate photo-generated electron-hole pairs 
under illumination and further act on the target degradation product. Pure ZnWO4 has almost no 

Figure 7. Electrochemical Impedance Spectra (EIS) plots of pure ZnWO4 and as-prepared various
Cu2O/ZnWO4 samples irradiated with visible light.

To determine the photocatalytic performance of the catalyst, the activity of degradation MB by
ZnWO4, Cu2O, and Cu2O/ZnWO4 were compared under the same experimental conditions. As seen in
Figure 8a, the characteristic absorption peak of MB was 664 nm, and the intensity decreased gradually
in the absence of 5 wt % Cu2O/ZnWO4 composite under visible light irradiation, and finally disappears
at 90 min. Figure 8b displays the change of MB concentration (C/C0) against photodegradation time for
the prepared catalyst samples. The experimental results show that MB was not degraded in the absence
of a photocatalyst or light irradiation. The MB degradation is a photocatalytic process, in which the
photocatalysts generate photo-generated electron-hole pairs under illumination and further act on
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the target degradation product. Pure ZnWO4 has almost no photocatalytic activity because it does
not respond to visible light. At the same time, the degradation rate of Cu2O to MB was only 47%,
which was due to the high recombination rate of excited electron-hole pairs [34]. As a comparison,
the 5 wt % Cu2O/ZnWO4 composites could be degraded at about 90% MB solution, which was
derived from the synergic effect of the Cu2O/ZnWO4 composites, and achieved the rapid separation
of photogenerated carriers at the heterojunction. Meanwhile, it was observed that a higher amount
of Cu2O would decrease the photocatalytic activities. At higher content, the Cu2O nanoparticles
may agglomerate and reduce the specific surface area of the composites. Additionally, extra Cu2O
particles may become the new photogenerated recombination centers and, thereby, reduce the effective
photogenerated pairs. Then the particles may inhibit the composite photocatalytic performance.
All these results were consistent with the PL, photocurrent, and EIS test results of the composites.
Therefore, the 5 wt % Cu2O/ZnWO4 composite exhibited better photocatalytic activity.
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Catalyst stability and reusability are also very important from the viewpoint of the catalyst’s
practical applications. The photocatalytic activity of the 5 wt % Cu2O/ZnWO4 composites in the
degradation of MB was studied in consecutive cycles under the same conditions (as seen in Figure 9).
The degradation efficiency was slightly decreased after five cycles and the final degrade rate was
approximately 83%, which indicates that the Cu2O nanoparticles modified in ZnWO4 surface
preparation of composite photocatalyst could improve the recycling performance of the catalyst
and the practical application value. It could act as a potential photocatalyst for water pollution.
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In order to further study the photocatalytic degradation performance of the composites, phenol
was used as the degradation object, and the same conditions were tested. It can be seen from
Figure 10 that the photolysis of the phenol solution in the blank condition is negligible, and the
adsorption capacity of the composite material to the phenol in the dark environment is also very
limited. In contrast, the Cu2O/ZnWO4 photocatalysts exhibit higher catalytic degradation properties
for phenol solution. The 5 wt % Cu2O/ZnWO4 composite photocatalyst exhibits better photocatalytic
performance, which was much higher than pure Cu2O and ZnWO4. This is due to the composite
having a bigger advantage than Cu2O and ZnWO4. More visible light responses can be excited to
produce more photogenerated pairs and the photogenerated pairs can be effectively separated between
the two composite interfaces, which ultimately promote the photocatalytic performance.
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Quenching experiments explain the photodegradation process. In the free radical capture
experiments of photodegradation, tert-butanol (TBA) and EDTA-2Na were used as capture agents for
·OH and h+, respectively [30]. Meanwhile, during the course of the experiment, nitrogen was used to
remove oxygen to test whether the superoxide free radicals were active species during the degradation
process. As seen in Figure 11, the photodegradation efficiency was significantly suppressed when the
EDTA-2Na and in the N2-saturated experiment condition was added, which indicates that the h+ and
O2

− were likely the dominant active species in this process. In contrast, the dissolved ·OH was not the
main active species due to the degradation rate constant showing only a slight decline when added to
the TBA solution. Therefore, the photodegradation of MB over Cu2O/ZnWO4 photocatalyst can be
mainly associated with direct holes and O2

− radicals for the photocatalytic degradation.
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The photocatalytic degradation kinetic curve was investigated by the first-order simplification
of Langmuir-Hinshelwood (L-H) kinetics, which is well established for photocatalysis at low initial
pollutant concentrations [31]. The relevant equation is as follows:

ln
C0

C
= kt

where C0 and C are the concentrations of dye in solution at times 0 and t, respectively, and kapp
is the apparent first-order rate constant (min−1). The k value is obtained from the gradient of the
graph of ln(C/C0) versus time (t). Based on the characterization analysis and the experimental
data, the mechanism of the high photocatalytic activities of Cu2O/ZnWO4 composites is discussed.
Since the light absorption extends from ultraviolet light to visible light, there is no doubt that more
visible light absorption can stimulate the generation of more photo-generated carriers, which could
be effectively separated between the two composite interfaces because of the match level structure
and ultimately promote the photocatalytic performance. According to the conduction band (CB) and
valence band (VB) potentials of Cu2O (−1.2 and 0.7 eV, respectively [22]) and those of ZnWO4 (−0.8 and
2.9 eV, respectively [10]), it can be seen that Cu2O/ZnWO4 composites have matching energy levels.
The staggered energy level structure contributes to the fast separation of photo-generated carriers.

The possible mechanism of improved photocatalytic performance of Cu2O/ZnWO4 composite
formed by Cu2O nanoparticles loading on ZnWO4 was deduced based on above experimental results,
as seen in Figure 12. This can be explained as follows: Under visible irradiation, Cu2O could stimulate
the generation of photogenerated hole pairs while the electrons on the conduction band can quickly
migrate to the conduction band of ZnWO4 at the close interface of the composites since the conduction
band of Cu2O is more negative than the conduction band of ZnWO4. Then the electrons transferred
to the ZnWO4 react with the adsorbed oxygen molecules to produce O2

− radicals and participate in
the photocatalytic oxidation degradation and the organic pollution process photocatalytic reaction.
Simultaneously, after the transition stay in the Cu2O valence band hole, another active species can
directly oxidize organic pollutants involved in the reaction. Furthermore, this photo-assisted electron
transfer method can effectively avoid the photo-generated carrier recombination, improve the utilization
of the quantum pair, and promote the photocatalytic activity of the composite. This is consistent with the
PL, photoelectric experiment results, and the active species of the quenching experiment.
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4. Conclusions

The surface of ZnWO4 nanorods was decorated with Cu2O nanoparticles (Cu2O/ZnWO4)
prepared through the precipitation method. The 5 wt % Cu2O/ZnWO4 composites displayed the best
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photocatalytic performance under visible light irradiation and the degradation rate of MB solution
was 91%. The improvement in the photocatalytic performance of Cu2O/ZnWO4 composites due to
the Cu2O nanoparticles not only promoted the absorption and utilization of visible light, but also
facilitated the migration of photogenerated charge carriers due to the matched level structure and
the intimately contacted interface. In addition, the O2

− and holes were predicted to be the main
active species in the photocatalytic degradation process based on free-radical scavenging experiments.
In conclusion, the Cu2O/ZnWO4 composite is a highly efficient and stable photocatalyst that can
effectively degrade organic pollutants in order to protect the environment.
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