
nanomaterials

Article

Effects of Reorientation of Graphene Platelets (GPLs)
on Young’s Modulus of Polymer Composites under
Bi-Axial Stretching

Chuang Feng ID , Yu Wang ID and Jie Yang *

School of Engineering, RMIT University, P.O. Box 71, Bundoora, VIC 3083, Australia;
chuang.feng@rmit.edu.au (C.F.); s3415279@student.rmit.edu.au (Y.W.)
* Correspondence: j.yang@rmit.edu.au; Tel.: +61-3992-56169

Received: 10 November 2017; Accepted: 4 January 2018; Published: 7 January 2018

Abstract: Effects of bi-axial stretching induced reorientation of graphene platelets (GPLs) on the
Young’s modulus of GPL/polymer composites is studied by Mori-Tanaka micromechanics model.
The dispersion state of the GPLs in polymer matrix is captured by an orientation distribution
function (ODF), in which two Euler angles are used to identify the orientation of the GPLs.
Compared to uni-axial stretching, the increase of the stretching strain in the second direction
enhances the re-alignment of GPL fillers in this direction while it deteriorates the re-alignment
of the fillers in the other two directions. Comprehensive parametric study on the effects of the
out-of-plane Young’s modulus, stretching strain, strain ratio, Poisson’s ratio and weight fraction
and GPL dimension on the effective Young’s moduli of the composites in the three directions are
conducted. It is found that the out-of-plane Young’s modulus has limited effects on the overall
Young’s modulus of the composites. The second stretching enhances the Young’s modulus in this
direction while it decreases the Young’s modulus in the other two directions. The results demonstrate
the increase of Poisson’s ratio is favorable in increasing the Young’s modulus of the composites.
GPLs with larger diameter-to-thickness ratio have better reinforcing effect on the Young’s modulus of
GPL/polymer nanocomposites.

Keywords: micromechanics; graphene platelets; nanocomposites; bi-axial stretching; orientation
distribution

1. Introduction

Recently, adding graphene and its derivatives to polymers as reinforcements to produce high
performance composites and structures has stimulated a surge of scientific interest from various
engineering fields [1–6]. Such interests stem from graphene and its derivatives’ excellent mechanical
and physical properties and improved reinforcing effects compared to other carbon-based fillers,
such as carbon fibers (CFs) and carbon nanotubes (CNTs). For example, the in-plane Young’s modulus
and tensile strength of graphene are measured to be as high as 1 TPa and 130 GPa, respectively [7].
With the same reinforcement loading, i.e., 0.1% weight fraction (w.t.), Rafiee et al. [8] found the Young’s
modulus of graphene platelet (GPL) reinforced epoxy composites was increased by 31%, but only a 3%
increases was achieved by using CNT fillers. Liang et al. [9] also demonstrated that adding 0.7 w.t. %
graphene oxide (GO) into poly(vinyl alcohol) increased the tensile strength and Young’s modulus by
76% and 62%, respectively. It was experimentally evidenced by Lee et al. [10] and Shokrieh et al. [11]
that the addition of graphene into epoxy could significantly enhance the strength and toughness
of the composites. Recently, Liu et al.’s [12] experiments showed that the addition of GPL could
significantly improve the tensile and dynamic mechanical properties of Poly(methyl methacrylate)
(PMMA) nanocomposites. Their examination on GPL thickness effects found that better mechanical
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properties of the nanocomposites could be achieved by using GPLs with thinner thickness. It is
also found that the dispersion of graphene in polymer can significantly influence the properties of
the graphene reinforced polymer composites. For example, Tang et al. [13] studied the effects of
dispersion of graphene on the properties of polymer composites. It was observed that highly dispersed
graphene produced better mechanical and electrical properties of the composites than the poorly
dispersed case. Kim et al. [14] found that different processing routes to prepare graphene/polymer
composites could have difference effects on the electrical conductivity of the composites due to the
different dispersion level of graphene in the polymer matrix. In addition to experiments, extensive
theoretical investigations, including molecular dynamics (MD) simulation [15–18], micromechanics
modelling [19,20] and finite element method (FEM) [21–25], also observed the significant reinforcing
effects of graphene and its derivatives. The mechanisms that underpin the prominent reinforcing effects
can be attributed to graphene and its derivatives’ 2D structure features and their extremely high surface
area, which result in excellent load transfer from the matrix to the reinforcements [1,8,11,20,26,27].
Moreover, the abundance of graphite in nature can significantly reduce the cost of some graphene’s
derivatives, such as GO and GPL, which enables their applications in large scale engineering structures
possible and practical.

An understanding on the mechanical properties of graphene-based polymer composites is of great
importance for the material design and engineering application. Although lots of efforts have been
devoted to investigating the mechanical properties of the composites as mentioned above, the majority
of previous studies are focused on preparing composites with well-dispersed graphene fillers or
predicting the overall mechanical properties of the composites without considering the effects of
fillers’ orientation and distribution. However, it has been experimentally demonstrated that the
mechanical properties of the composites are highly dependent on the orientation of the reinforcing
fillers. For example, exposing CNT reinforced composites to a magnetic field, Camponeschi et al. [28]
found the Young’s modulus of the composites was considerably improved due to the re-alignment of
CNTs. Using Raman spectroscopy, Li et al.’s [29] experiments showed the Young’s modulus of CNT
reinforced composites was much smaller than that of the composites with perfect alignment of CNTs
in the longitudinal direction. Deniz Ürk et al. [30] obtained the same conclusion by doing dynamic
analysis on CNT reinforced composites. More work on the effects of nanofillers’ orientation and
distribution on mechanical properties of composites can be found in [31–36]. In addition to applying
electrical field [37–39] and magnetic field [28,40,41], mechanical stretching [42–45] is also recognized as
a simple but effective way to re-orientate nanofillers in composites. An investigation on the effects of
mechanical stretching induced filler’s re-orientation will offer suggestions on tailoring the mechanical
properties of the composites. Recently, Feng et al. [46] studied the uni-axial stretching induced
re-orientation effects on Young’s modulus. Unfortunately, to the best of the authors’ knowledge,
limited theoretical work has been done to quantify the effects of bi-axial stretching, which is recognized
as a typical stretching mode for re-orientation of reinforcing fillers [47,48], induced re-orientation of
fillers on the mechanical properties of the composites.

This paper investigates the effects of bi-axial stretching induced re-orientation of GPLs on the
Young’s modulus of the GPL/polymer composites by employing Mori-Tanaka micromechanics model.
The re-orientation of GPLs is captured through an orientation distribution function (ODF), in which the
variations of two Euler angles, identifying filler’s orientation, are considered. To simplify the modelling,
the micromechanics model in present work assumes perfect bonding between the two phases of the
composite, i.e., GPLs and the polymer matrix, when subjected to small deformation. The interfacial
effects caused by the interaction between graphene and the polymer matrix are also neglected in
present paper. However, it should be noted that as evidenced by Skountzos et al. [18] such interfacial
effects could have significant impact on the mechanical properties of the composites. Moreover,
when the composites are subjected to large deformation, debonding/slipping between the fillers and
the matrix may become significant. Under such circumstances, a cohesive law may be needed in the
micromechanics model to capture the above mentioned limitations.
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2. Effective Mechanical Properties of GPL/Polymer Composites

Assuming GPLs as flat disks [31,49,50] dispersed in polymer matrix, the mechanical properties
of this composite can be studied by choosing a representative volume element (RVE), containing
enough fillers distributed in any possible orientations (as shown in Figure 1). To identify the GPL
in the RVE, three Euler angles are normally required to depict the orientation of the fillers in three
dimensional geometry. Since perfect bonding between the reinforcements and the polymer is assumed,
the GPLs in the polymer matrix will not be capable of moving freely when the composites are
subjected to bi-axial stretching. Under such circumstances, the orientation of each individual GPL
disk in this RVE can be characterized by two Euler angles, i.e., polar angle θ and azimuth angle ϕ.
When the GPL disks, with diameter and thickness being dGPL and tGPL, respectively, are randomly
and uniformly distributed in the RVE before applying stretching. The overall mechanical properties
of this two phase composites can be homogenized and approximated by a micromechanics model.
In present work, Mori-Tanaka method is adopted as the micromechanics model for the GPL reinforced
polymer composites. As a typical mean field approximation method, Mori-Tanaka model is based on
Eshelby’s elasticity solution for the inhomogeneities, i.e., GPL fillers. It uses concentration tensors
to correlated average state variables, i.e., stress or strain, in inhomogeneities and polymer matrix to
the average macroscopic variables of the composites. Compared to other micromechanics model,
Mori-Tanaka micromechanics model is able to take the interaction among inhomogeneities into account.
Using Mori-Tanaka model, the overall mechanical properties of the two-phase GPL/polymer composite
can be obtained by averaging the contribution of the fillers from all possible orientations [51–53] as
shown in Figure 1.
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Ceff = CM + VGPL

〈(
C̃GPL − CM

)
Ãdil

〉[
(1−VGPL)I + VGPL

〈
Ãdil

〉]−1
(1)

where Ceff and CM are the effective elastic stiffness tensors of the composite and the polymer matrix in
the global coordinate system (X1, X2, X3) of the RVE, respectively, C̃GPL is the stiffness tensor of the
GPL in the local coordinate system (x1, x2, x3), VGPL is the volume fraction of the GPL, and the angle
bracket ‹ › represents term averaging over all orientations in the global coordinate system. Here the
stiffness tensor in present work does not consider the tangent stiffness to simplify the model. Then the
stiffness tensors for polymer matrix and the GPL in the composite are reduced to CM = EMI and
C̃GPL = (Ein, Eou, Ein)I, respectively, where EM is the Young’s modulus of the polymer matrix and Ein
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and Eou are the in-plane and out-of-plane Young’s moduli of the GPL in the local coordinate system,
respectively. Ã in Equation (1) is the dilute mechanical strain concentration tensor for the filler, i.e.,

Ãdil =

{
I + S̃

(
C̃M

)−1(
C̃GPL − CM

)}−1
(2)

S is the Eshelby tensor for disk shape filler written as [51]

S̃ =

 S11 0 0
0 S22 0
0 0 S33

 (3)

where S11 = S33 = πtGPL
4dGPL

and S22 = πtGPL
2dGPL

, respectively. Accounting for all possible orientations of the
fillers in the composite, the average of dilute concentration tensor can be written as [52,54]

〈
Ã
〉
=

∫ 2π
0

∫ π
0 Ãρ(ϕ, θ) sin θdθdϕ∫ 2π

0

∫ π
0 ρ(ϕ, θ) sin θdθdϕ

(4)

where ρ(ϕ,θ) is the orientation distribution function (ODF) describing the probability density of GPL
distribution for a given set of Euler angles. When GPLs are randomly and uniformly dispersed in
polymers before stretching, each orientation will have the same probability density and the ODF is
equal to unity, i.e., ρ(ϕ,θ) = 1. However, when subjected to deformation, fillers in the composites will
be re-orientated due to the transferred shear force from the polymer matrix. Under such circumstance,
the ODF becomes dependent on the distribution of the fillers. This will lead to the variation of the
mechanical properties of the composites.

The concentration tensor of the filler in the local coordinate system (x1, x2, x3) can be transformed
into the one in the global coordinate system as [51,55,56]

A = QTÃ
dil

Q
{
(1−VGPL)I +

VGPL

4π

∫ 2π

0

∫ π
0

{
QTÃ

dil
Q
}

sin θdθdϕ
}−1

(5)

where Q is the transformation matrix in terms of the two Euler angles written as [54]

Q =

 sin θ cosϕ − cos θ cosϕ sinϕ
sin θ sinϕ − cos θ sinϕ − cosϕ

cos θ sin θ 0

 (6)

Combining Equations (1)–(5), the overall elastic stiffness tensor for the GPL/polymer
composites becomes

Ceff = CM +

∫ 2π
0

∫ π
0 ρ(ϕ, θ)VGPL(CGPL − CM)A sin θdθdϕ∫ 2π

0

∫ π
0 ρ(ϕ, θ) sin θdθdϕ

(7)

where CGPL = QTC̃GPLQ denotes the stiffness tensor of the GPL in the global coordinate system.

3. Orientation Distribution Function (ODF)

To determine the ODF for the fillers in the RVE after stretching, a unit cell containing one GPL disk
(as shown in Figure 2) is considered. The three dimensions in X1, X2 and X3 directions are h0, w0 and
l0, respectively. The original polar and azimuth angles of the filler are θ and ϕ, respectively. When this
unit cell is subjected to a bi-axial stretching, i.e., ε3 and ε2 in X3 and X2 directions, respectively,
the three dimensions of the cell become l = l0(1 + ε3), ω = ω0(1 + ε2) and h = h0(1 + ε1), respectively.
In the following, ε3 and ε2 are defined as principle and the second stretching strains, respectively,
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which satisfy ε3 ≥ ε2. The resultant strain ε1 in X1 direction due to the bi-axial stretching can be
determined by Equation (8),
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dε3 = − ν

1− ν
(dε1 + dε2) (8)

where ν is the Poisson’s ratio of the unit cell. Integrating this expression over the elongations in the
three directions, i.e., ∆l, ∆ω and ∆h, the strain ε1 can be derived as [57]

ε1 = [(1 + ε3)(1 + ε2)]
− ν

1−ν − 1 (9)

In particular, when ε2 = (1 + ε3)−ν − 1, the bi-axial stretching reduces to uni-axial stretching case,
i.e., ε1 = ε2 = (1+ ε3)−ν − 1. Since the stiffness of the GPL is much higher than that of the polymer
matrix, when subjected to stretching, the deformation of the composite is mainly accommodated
by the polymer matrix while the GPL’s deformation, i.e., elongation, can be neglected. Under such
circumstance, the effective volume fraction of the GPLs in the composite after the bi-axial stretching is
updated as

Vupdate =
VGPL

[(1 + ε3)(1 + ε2)]
1−2ν
1−ν

(10)

In addition to the deformation of the unit cell, the GPLs will be re-orientated under the assumption
of perfect bonding between the GPL and the polymer matrix. This will result in the variations of the
two Euler angles that identify the orientation of GPLs, i.e., θ to θs and ϕ to ϕs. The coordinates of
point A as shown in Figure 2 at the rim of the GPL disk in the global coordinate system before bi-axial
stretching can be expressed as

x′1 =
d′GPL

2
sin θ cosϕ, x′2 =

d′GPL
2

sin θ sinϕ, x′3 =
d′GPL

2
cos θ (11)

and after stretching as

x1 =
dGPL

2
sin θs cosϕs, x2 =

dGPL

2
sin θs sinϕs, x3 =

dGPL

2
cos θs (12)
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where d′GPL denotes the GPL diameter before stretching. Combining Equations (11) and (12), we have
the following expressions

x1
x′1

= dGPL sinθs cosϕS
d′GPL sinθ cosϕ = [(1 + ε3)(1 + ε2)]

− ν
1−ν

x2
x′2

= dGPL sinθs sinϕS
d′GPL sinθ sinϕ = 1 + ε2

x3
x′3

= dGPL cosθs
d′GPL cosθ = 1 + ε3

(13)

Neglecting the elongation of the GPL as discussed, the Euler angles after stretching can be derived
in terms of the two original Euler angles from Equation (13) as{

tan θS = 1+ε2
1+ε3

· sinϕ
sinϕs

tan θ

tanϕS = (1 + ε3)
ν

1−ν (1 + ε2)
1

1−ν tanϕ
(14)

Equation (14) indicates that the filler in the unit cell is re-orientated and its Euler angles depend
on bi-axial stretching strains. Therefore, the ODF required for micromechanics becomes a function
of stretching strains instead of unity as that for composites with random and uniform distribution
of reinforcing fillers. As mentioned previously, ODF is defined as the probability density of GPL
orientation. For any distribution of fillers, it needs to satisfy [58,59]

ρ(ϕ, θ) ≥ 0 and
1

4π

∫ 2π

0

∫ π
0
ρ(ϕ, θ) sin θdθdϕ = 1 (15)

Assume a total number of G fillers are randomly and uniformly dispersed in the RVE before
stretching (as shown in Figure 1). Then the number of fillers dispersed in the ranges (θ, θ + dθ) and
(ϕ, ϕ + dϕ) in the RVE can be determined as [60]

dN
θ, θ+ dθ
ϕ,ϕ+ dϕ

=
1

4π
Gρ(ϕ, θ) sin θdθdϕ (16)

After applying bi-axial stretching, these fillers within the ranges (θ, θ + dθ) and (ϕ, ϕ + dϕ) will
be re-orientated to the ranges (θs, θs + dθs) and (ϕs, ϕs + dϕs). The same number of the fillers within
the new ranges after stretching can be expressed as [61]

dN
θs, θs+dθs

ϕs,ϕs+dϕs

=
1

4π
Gρ(ϕs, θs) sin θsdθsdϕs = dN

θ, θ+ dθ
ϕ,ϕ+ dϕ

(17)

where ρ(ϕs, θs) is the ODF after bi-axial stretching. Based on Equation (14), ϕs, θs, sin θs, dθs and dϕs

can be derived in terms of the original Euler angles ϕ and θ. Then the ODF after bi-axial stretching can
be derived as

ρ(ϕs, θs) =

(
1+ε3
1+ε2

× sinϕs
sinϕ

)1/2

(1+ε3)
ν

1−ν (1+ε2)
1

1−ν cos2ϕs+
1

(1+ε3 )
ν

1−ν (1+ε2)
1

1−ν

sin2ϕs[(
1+ε3
1+ε2

)−1
·
(

sinϕs
sinϕ

)−1
cos2 θs +

1+ε3
1+ε2

· sinϕs
sinϕ sin2 θs

]3/2 (18)

This obtained new ODF can be reduced to uni-axial stretching case when ε1 = ε2 = (1 + ε3)−ν − 1.
Equation (18) indicates that the ODF after stretching depends on the Poisson’s ratio of the

composites, which relies on both the concentration and orientation of the GPL reinforcements.
For random and uniform distribution of reinforcing fillers, rule of mixture can be used to approximate
the Poisson’s ratio. However, to the best of our knowledge, no related work has been found on
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determining Poisson’s ratio with the consideration of the GPL concentration as well as the filler
orientation. Regardless of the composition of the two-phase composites, it can be expected the
Poisson’s ratio of the composites should be falling between the values of the GPL and the polymer.
To simplify the modelling, the Poisson’s ratio of the GPL/polymer composites will be fixed as constant
and typical values, i.e., ν = 0.1, 0.3 and 0.5, will be selected for the micromechanics model.

Figure 3 demonstrates the ODF after stretching with for different strain ratios. The strain in X3

direction and Poisson’s ratio are fixed as constants, i.e., ε3 = 5% and ν = 0.5, respectively. Here it
should be noted that for most polymers, the Poisson’s ratio is normally smaller than 0.5. However,
for composites with certain polymers as matrix, i.e., rubber, it is well-accepted to adopt 0.5 as the
Poisson’s ratio due to their very limited compressibility. Taking the Poisson’s ratio as 0.5 in present
work is for case study to eliminate the effects of volume expansion, which results in reduction in filler’s
concentration. So we can focus on the study of the re-orientation effects. Therefore, unless stated
otherwise, Poisson’s ratio will be chosen as 0.5 for parametric study thereafter. Obviously, GPLs tend to
re-align along the principle stretching direction (θs = 0◦) as indicated by the value of the ODF, which is
larger than 1. The increase of the stretching strain in X2 direction enhances the re-alignment of GPLs in
this direction (ϕs = 90◦). Seen from Figure 3a, the ODF drops in X2 direction (ϕs = 90◦) compared to
the ODF for uni-axial stretching. This is because when ε2 = –ε3, the composite is compressed in X2

direction, which deteriorates the re-alignment of fillers along X2 direction.
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The comparison in Figure 3 indicates that compared to uni-axial stretching, there exists critical
Euler angles, for which the stretching in X2 direction does not change the ODF. For example, the contour
graph in Figure 4 shows the difference between the two ODFs, i.e., ρbi-axial − ρuni-axial, where ρuni-axial
and ρbi-axial denote the ODFs under uni-axial stretching (ε3 = 5%) and equal bi-axial stretching
(ε3 = ε2 = 5%), respectively. The flat plane represents the limiting case when ρbi-axial − ρuni-axial = 0.
The two curves intersected by the contour and the plane result in the critical Euler angles. Obviously,
bi-axial stretching increases the ODF above the flat plane while it decreases the ODF under the plane.
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Figure 4. Difference between two ODFs.

Figure 5 plots the shape of the critical Euler angles with considering the effects of Poisson’s ratio,
strain ratio and stretching strain in X3 direction. The significant variations in the shape and area of
region I in Figure 5a indicate that Poisson’s ratio has considerable effects on the critical Euler angles
and Young’s modulus of the composites. With fixed Poisson’s ratio, Figure 5a,b suggests that the
stretching strain ratio and the stretching strain in X3 direction have limited effects on the critical
Euler angles.Nanomaterials 2018, 8, 27  10 of 19 
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4. Results and Discussion

To validate the micromechanics model, Young’s modulus predicted in present study will be
compared to the experimental results by Wang et al. [49]. In Wang’s experiments, two grades of
GPL, namely GnP-5 and GnP-C750, were used as the reinforcing fillers and epoxy 828 together with
curing agent m-phenylene diamine (m-PDA) were selected as the constituents of the polymer matrix.
The two grades of GPL have the same thickness, i.e., tGPL = 5–10 nm, but they have different diameters
and surface areas. The diameter and surface area of GnP-5 are 5 µm and 150 m2/g, respectively,
while they are less than 1 µm and 750 m2/g, respectively, for GnP-C750. Utilizing various methods,
including stirring, sonication and milling, the fabricated nanocomposite sample was observed to
be a homogeneous mixture with well-distributed GPLs [49]. The mass densities of the epoxy and
the GPL are ρM = 1.2 g/cm3 and ρGPL = 2.0 g/cm3 [49,50]. The Young’s modulus of the epoxy is
EM = 2.72 GPa and the in-plane Young’s modulus of the GPLs is Ein = 1.0 TPa. According to previous
studies, the out-of-plane Young’s modulus of the GPL was predicted to be within 20–60 GPa [16],
which was argued to be the modulus of exfoliation in the graphite c-axis (out-of-plane) [50,62]. Before
validating the micromechanics modelling, Figure 6 investigates the effects of the out-of-plane Young’s
modulus of GPL on the overall Young’s modulus of the composites, in which the Young’s modulus
change ratio is defined as η = (ECS − ECO)/ECO, where ECO and ECS are the Young’s moduli of the
composites before and after stretching, respectively. It can be seen that Young’s modulus change ratios
in the three directions are not sensitive to the out-of-plane Young’s modulus of GPLs, which agrees
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with previously reported observations [16,19,21]. The same trend can also be found for other Poisson’s
ratios. Therefore, unless stated otherwise, the out-of-plane Young’s modulus of the composites will be
chosen as Eou = 40 GPa.
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GPL/epoxy nanocomposites.

Figure 7 compares the present modelling results with experimental data. Seen from this figure,
both theoretical and experimental results exhibit that GPLs with larger diameter-to-thickness ratio,
dGPL/tGPL, have better reinforcing effect on the Young’s modulus of the composites. This phenomenon
was explained by Wang et al. [49] that larger GPL diameter-to-thickness ratio facilitated better load
transfer from the matrix to the GPL, leading to higher modulus. Compared to experimental results,
the micromechanics model approximately overestimates the Young’s for both GnP-5 and GnP-C750
reinforced epoxy composites by 15–20%. Such overestimation can be attributed to the assumptions
made for the micromechanical model. For example, GPLs were assumed as flat disks randomly and
uniformly dispersed in the polymer matrix. However, curvature and agglomeration usually exist in
GPLs due to their large diameter-to-thickness ratio and strong Van der Waals force among neighboring
fillers, which were evidenced to deteriorate the mechanical properties of the composites. In addition,
perfect bonding with no slipping between GPLs and the polymer matrix is assumed. However,
from the perspective of manufacturing, the bonding between GPLs and the polymer matrix can be
significantly weakened by unexpected bubbles and contamination, which obviously results in the
decrease of the bonding strength and the load transfer between the reinforcing fillers and the polymer
matrix. As indicated by Skountzos et al. [16], better interaction between graphene and polymer will
result in more significantly improved mechanical properties. Therefore, the perfect bonding with
neglection of interfacial effects will overestimate the Young’s modulus of the composites. It should be
pointed out that in addition to the above comparison, more experimental results, especially the ones
with considering stretching effects on Young’s modulus of the composites, should be used to further
validate the model. However, this paper is the first attempt to quantitatively identify the effects of
stretching induced reorientation of GPLs on the mechanical properties of the composites. To the best of
the authors’ knowledge, no related experimental or theoretical results have been found on such effects.
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Figure 7. Comparison between present results and experimental data.

Figure 8 plots the variation of Young’s modulus change ratio with the stretching strain ε3.
With fixed GPL weigh fraction, i.e., f GPL = 1.0%, the increase of stretching strain in X3 direction
significantly decreases/increases the Young’s moduli in X1/X3 directions, respectively, regardless of
the strain ratio. For fixed stretching strain ε3, the Young’s modulus change ratio in X1 and X3 direction
increases as the strain ratio increases. In addition, the Young’s modulus change ratio is less sensitive to
the strain ratio in X3 direction than that in X1 direction. In contrast, the variation of Young’s modulus
change ratio in X2 direction heavily depends on the strain ratio. For example, as the stretching strain
ε3 increases, the Young’s modulus change ratio increases in X2 direction when ε2/ε3 = −0.5 and 0
while it increases when ε2/ε3 = 0.5. These phenomena can be explained by the fact the stretching
enhances the re-alignment of GPL fillers in this direction while it deteriorates the re-alignment in the
other two directions. Therefore, the re-alignment of GPL fillers in X3 and X2 directions due to the
increased strains decreases the Young’s modulus change ratio in X1 direction. Figure 8b indicates that
for smaller strain ratio, i.e., ε2/ε3 = −0.5 and 0, the decrease in Young’s modulus by the stretching
strain ε3 in X2 direction dominates the variation of the Young’s modulus. However, for larger strain
ratio, i.e., ε2/ε3 = 0.5, the increase in Young’s modulus by the stretching in X2 direction becomes the
prominent. Apparently, Figure 8c advises the stretching in X3 direction always governs the variation
of the Young’s modulus in this direction.

Figure 9 shows the variation of the Young’s modulus change ratio with GPL weight fraction f GPL

for nanocomposites subjected to different stretching strain ratios, where the stretching strain in X3

direction is fixed as a constant, i.e., ε3 = 5%. When the GPL/epoxy nanocomposites are subjected to
stretching, the variation of the Young’s modulus change ratio is sensitive to smaller f GPL, especially
in X1 and X3 directions. As f GPL increases to sufficiently large, the variation of Young’s modulus
change ratio becomes negligible. This can be explained by the fact that for composites with lower filler
concentration, a limited number of GPLs exist in the matrix, any small changes in the GPL distribution,
i.e., the re-alignment along the stretching direction, will affects the magnitude of the Young’s modulus
significantly. In contrast, a larger number of GPLs are dispersed in polymer matrix with higher filler
concentration and any change to the fillers will have relatively limited effects on the composites.
The comparisons among the three figures indicate that increase of the stretching strain in X2 direction
increases the Young’s modulus in X2 direction while it decreases the Young’s modulus in X1 and X3

direction, which agrees with the observations in Figure 8.
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Figure 8. Variation of Young’s modulus change ratio of GPL/epoxy nanocomposites with stretching 
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Figure 8. Variation of Young’s modulus change ratio of GPL/epoxy nanocomposites with stretching
strain ε3 (a) X1-direction; (b) X2-direction; (c) X3-direction.
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Figure 10 investigates the effects of Poisson’s ratio on the Young’s modulus change ratio of the
GPL/epoxy nanocomposites when subjected to stretching. As indicated in Figure 5, larger Poisson’s
ratio is beneficial for the re-alignment of GPLs in stretching directions. Thus, it is easily understood that
the Young’s modulus change ratio increases in the two stretching directions (as shown in Figure 10b,c).
The improvement of re-alignment of GPLs in X2 and X3 directions due to larger Poisson’s ratio is
expected to decrease the Young’s modulus in X1 direction. However, Figure 10a shows the Young’s
modulus increases with the increase of the Poisson’s ratio. This is because larger Poisson’s ratio induces
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less volume expansion when nanocomposites are stretched, resulting in higher effective concentration
and Young’s modulus. Thus, the increase of the Young’s modulus in X1 direction suggests that the
Poisson’s ratio induced volume expansion effects dominate the variation of the Young’s modulus over
the effects of GPL re-alignment in X1 direction.
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The effects of the GPL geometry on the Young’s modulus of GPL/epoxy composites are presented
in Figure 11. The diameter of the GPL is fixed as a constant while its thickness varies. From the figures,
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it can be seen that the Young’s modulus in X2 direction is less sensitive to GPL diameter-to-thickness
ratio dGPL/tGPL compared to the variations in X1 and X3 directions. The Young’s modulus decreases
and increases significantly in X1 and X3 directions, respectively, when the diameter-to-thickness ratio
is relatively small, i.e., dGPL/tGPL < 500. This indicates that GPLs with larger diameter-to-thickness
ratio have better reinforcing effects on the Young’s modulus of the nanocomposites in the principle
stretching direction. This agrees with the findings reported by Liu et al. [12]. Again, similar trend of
the effect of stretching strain in X2 direction on the Young’s modulus of the composites in the three
directions is observed.
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5. Conclusions

The re-orientation effects of GPLs induced by bi-axial stretching on the Young’s modulus of the
GPL/polymer composites are investigated by Mori-Tanaka micromechanics model, where the GPL
orientation distribution is characterized by ODF. It is found that GPLs tend to re-align along stretching
directions. The modelling results demonstrate that the out-of-plane Young’s modulus of the GPL has
limited effect on the overall Young’s modulus of the composites. Higher Poisson’s ratio is beneficial
for the re-alignment of the GPL fillers along stretching direction, resulting in the increase of Young’s
modulus. Compared to uni-axial stretching, the stretching in X2 direction increases the Young’s
modulus in this direction while it decreases the Young’s modulus in X3 direction. It is observed that
GPLs with larger diameter-to-thickness ratio are better reinforcing fillers. The study on the effects of
bi-axial stretching on the Young’s modulus will provide guidelines for the design and prediction of the
mechanical properties when mechanical stretching is adopted as method to re-align GPL fillers.
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