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Abstract: Supercapacitors have been one of the highest potential candidates for energy storage
because of their significant advantages beyond rechargeable batteries in terms of large power
density, short recharging time, and long cycle lifespan. In this work, Cu–Co sulfides with uniform
flower-like structure have been successfully obtained via a traditional two-step hydrothermal method.
The as-fabricated Cu–Co sulfide vulcanized from precursor (P–Cu–Co sulfide) is able to deliver
superior specific capacitance of 592 F g−1 at 1 A g−1 and 518 F g−1 at 10 A g−1 which are surprisingly
about 1.44 times and 2.39 times higher than those of Cu–Co oxide electrode, respectively. At the
same time, excellent cycling stability of P–Cu–Co sulfide is indicated by 90.4% capacitance retention
at high current density of 10 A g−1 after 3000 cycles. Because of the introduction of sulfur during
the vulcanization process, these new developed sulfides can get more flexible structure and larger
reaction surface area, and will own richer redox reaction sites between the interfaces of active
material/electrolyte. The uniform flower-like P–Cu–Co sulfide electrode materials will have more
potential alternatives for oxides electrode materials in the future.
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1. Introduction

With the urgent targets to deal with the crisis of energy depletion, enthusiastic exploration of
the environmental and efficient energy materials are engaged [1–3]. Supercapacitors, as a type of
newly-emerging energy storage devices, have attracted tremendous attention for their ultrahigh power
density and excellent electrochemical stability [4–9]. Therefore, lots of research has been conducted
to improve the energy density under the precondition of maintaining their power density and long
lifespan [10–15].

It is well-known that cobalt oxides are putative promising materials as electrodes with outstanding
electrochemical property [16–19]. However, the single-metal oxides are sometimes limited to their
broad application which are suffering from poor rate capability, poor charge-discharge reversibility,
high cost for their raw materials, and high toxicity [20,21]. Sorts of attempts have been implemented
to seek eco-friendly and less expensive metal element (such as Cu, Zn, Ni, Mg, and Fe) to replace
the toxic and expensive Co aiming at the development of low cost and sustainable electrodes [21–27].
MnCo2O4, synthesized via facile hydrothermal method, has been designed as an energy storage
device which displays excellent electrochemical properties [28]. As well, ternary metal oxides with
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nanowires [29], nanosheets [30,31], hollow spheres [32], core/shell [25,32–35], and flower-like [36,37]
structures directly arraying on Ni foam exhibit significantly enhanced electrochemical performance.

Copper has been considered as a fascinating candidate instead of cobalt, due to its abundant
natural resources, low cost, excellent chemical stability, and environmentally friendly capability.
Due to its lots of advantages for electrochemical sensing, a sequence-specific DNA electrochemical
biosensor was designed successfully based on CuS nanosheets [38]. Wang et al. reported core@shell
CuCo2O4@MnO2 nanoarchitectures with a heightening specific capacitance, outstanding rate capability,
and long-term lifespan in different bent states [25]. At the same time, novel and efficient flexible
electrodes based on CuCo2O4 nanowires grown on Ni wire exhibit outstanding cycling stability and
excellent flexible feature, which will make it possible to design wearable electronic devices [39].

In particular, notable transition metal sulfide electrode materials with high electrochemical
activity have attracted amount of attention. Generally, due to the lower band gap, transition metal
sulfides may exhibit much higher conductivity and lower electronegativity than corresponding
transition metal oxides [40–42]. Ni@rGO-Co3S4 and Ni@rGO-Ni3S2 were synthesized as electrodes
of advanced aqueous asymmetric supercapacitors, which are beneficial for improving the energy
density accompanied by high cycle stability [43]. Yu et al. fabricated NixCo3−xS4 electrodes with
hollow prisms microstructure via self-templating method, which exhibit high specific capacitance,
desirable rate capability and good capacitance retention [26]. In our previous work, we successfully
synthesized flower-like Mn–Co oxysulfide in which oxygen element in Mn–Co oxide is partially
substituted by sulphur [37]. Recently, hierarchical CuCo2S4 hollow nanoneedles are synthesized
via template-free hydrothermal method and designed as notable high-performance electrodes with
superior electrochemical performances [44].

Based on the above considerations, we prepared the uniform flower-like Cu–Co sulfides arraying
on Ni foam by traditional hydrothermal method for the first time. In particular, after making
a comparison between Cu–Co oxides and Cu–Co sulfides which are respectively treated from Cu–Co
precursor or Cu–Co oxide, we conclude the specific capacitance and rate capability of Cu–Co sulfides
are superior to those of Cu–Co oxides. Besides, Cu–Co sulfide by vulcanizing from precursor has
advantages over Cu–Co sulfide from oxide in those aspects. As a result, hopeful electrodes with
fancy specific capacitance, wonderful rate capability, and interesting long-term cycling stability were
synthesized, which is expected to be potential candidates for designing, constructing, and developing
novel energy storage devices.

2. Results

Regardless of the two highest peaks indicating Ni foam, all the diffraction peaks in Figure 1a
can be well indexed as CoO (JCPDS 48-1719) and CuO (JCPDS 01-1117), which indicate that the
Cu–Co oxides is polycrystalline. After Cu–Co precursor being vulcanized by Na2S·9H2O, four peaks
corresponding to the (113), (004), (115), and (044) diffraction planes are in accordance with the cubic
phase of CuCo2S4 (JCPDS 42-1450). The other diffraction peaks about (102), (110), and (103) can be well
indexed to the standard X-Ray Diffraction (XRD) patterns of Cu2S (JCPDS 26-1116). It is manifested
that the Cu–Co precursor is completely vulcanized and transformed into the polycrystalline CuCo2S4

and Cu2S (Figure 1b). As for O–Cu–Co sulfide, Cu1.96S (JCPDS 29-0578) whose diffraction peaks
correspond to the (103), (104), and (202) diffraction planes are accompanied with the phase of CuCo2S4,
indicating sulphur can entirely take the place of oxygen in the Cu–Co oxides during the vulcanizing
process, and finally polycrystalline CuCo2S4 and Cu1.96S sulfides can be obtained (Figure 1c).

In Figures 2a and 3a, the presence of Cu, Co, and S elements in the Cu–Co sulfides are indicated in
the full-survey scan spectrum. Meanwhile, O 1s peaks can also be found because the surface of samples
were oxidized in the air [45]. According to XPS spectrum for Co 2p in Figures 2b and 3b, the binding
energies at 781.0 and 797.2 eV of Co 2p3/2 and 2p1/2 peaks accompanied with two satellite peaks at
around 786.4 and 802.9 eV are found, which demonstrate the existence of Co2+. Two peaks at binding
energies of 932.5 and 952.4 eV (∆E = 19.9 eV) are shown in Figures 2c and 3c which corresponds to
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the Cu 2p3/2 and 2p1/2 matched with Cu0 or Cu1+. According to XRD analysis, the pure copper does
not appear in P–Cu–Co sulfide and O–Cu–Co sulfide, so the copper element exists as Cu1+. At the
same time, there is a weak peak at binding energies of 934.8 eV with a satellite peak at 943.3 eV,
which indicate the Cu2+ [46,47]. As for the S 2p XPS spectrum (in Figures 2d and 3d), the major peak at
the binding energy of 162.5 eV coupled with satellite peak attribute to metal-sulfur bonding (Cu–S and
Co–S bonding) [40]. Meanwhile, the binding energy centered at 168.0 eV matches with S–O bonding
due to the oxidation effect on the samples in air. The XPS results, being consistent with the XRD results,
indicate that the vulcanizing process is effective for Cu–Co compounds.
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Figure 4 exhibits the Scanning Electron Microscope (SEM) images of Cu–Co oxide (Figure 4a,b),
P–Cu–Co sulfide (Figure 4c,d) and O–Cu–Co sulfide (Figure 4e,f) supported on nickel foam. Cu–Co
oxides and sulfides nanoparticles evenly array on the Ni foam with flower-like structures. As seen from
Figure 4b, the uniform flower-like structure of Cu–Co oxide is stacked by interconnecting nanosheets in
different orientations, and the surfaces of nanosheets are regular and smooth. The average diameter of
flower structure is about 6.5 µm and the nanosheets’ thickness is about 160 nm. Normally, the contact
area with the perfect flower-like structure between active material and the electrolyte must be much
larger than that of other structures. As a result, the uniform flower-like structure must be more suitable
for Faradaic reaction. For P–Cu–Co sulfide, the edges of nanosheets are dimmed, and every nanosheet
seems to be crosslinked to make the petal grown after sulfuration. The average diameter of flowers
grow up to 10.5 µm. On the contrary, O–Cu–Co sulfide also displays the flower-like structure, but
plenty of circular particles appear on the regular and smooth nanosheets. During the vulcanization
of Cu–Co precursor without any calcining whose nanosheets have not yet fully formed, OH− in
precursor are substituted by S2− leading to the flower growing larger and the nanosheets dimming.
In contrast, Cu–Co oxide has stable structure after calcination, and the nanosheets do not change
when S2− replaces O2− during the vulcanization process, only some spherical particles appear on it.
Therefore, the flower-like morphology of Cu–Co sulfides provides vast channels and large surface
areas for electrolyte ions which can make more efficient use of the electrode active materials.
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O–Cu–Co sulfide.

In the cyclic voltammetry (CV) curves of Cu–Co oxide (Figure 5a), it is clear that two pairs of
redox peaks can be observed which indicates the typical Faradaic redox reactions occurring in the
electrochemical process. At a scan rate of 100 mV s−1, peaks of redox pairs are respectively located at
0.30 V, 0.41 V and 0.42 V, 0.49 V which represent the conversion of Cu(I)/Cu(II) and Co–O/Co–O–OH
respectively. The redox reactions of Cu–Co oxide are described by the Equations (1)–(6) [46–48].
The pair of redox peaks for two kinds of Cu–Co sulfides are also testified that they belong to typical
electrode material for Faradaic pseudo capacitor, respectively (Figure 5b,c). Meanwhile, the oxidation
peaks move to high voltage accompanied with sweep rates growing, and the reduction peaks shift into
low voltage synchronously, which is conformed to quasi-reversible characteristic of redox reaction [45].
In term of the shape of CV curves, it is relatively stable when the sweep rates increase, indicating the
electrode material have excellent rate capability.

Cu2O + 2OH− ↔ 2CuO + H2O + 2e− (1)

Cu2O + H2O + 2OH− ↔ 2Cu(OH)2 + 2e− (2)

CuOH + OH− ↔ CuO+H2O + e− (3)

CuOH + OH− ↔Cu(OH)2 + e− (4)

CoO + OH− ↔ CoOOH + e− (5)

CoOOH + OH− ↔ CoO2 + H2O + e− (6)

In Figure 5d, the plateau regions in galvanostatical charged and discharged (GCD) curves of
Cu–Co oxide are not distinct because their two couples of redox peaks display slightly difference
in potential. As a result, more various redox reactions for Cu–Co oxide will occur. While the GCD
curves of Cu–Co sulfides exhibit distinct plateau regions which correspond to the redox peaks in
the CV curves, giving the evidence of the faradaic behaviors during redox reaction process between
electrode/electrolyte interfaces. Meanwhile, for comparison, the discharged times of Cu–Co sulfides
are almost 2–2.5 fold to those of Cu–Co oxides at a current density of 1 A g−1. The specific capacitance
(F g−1) of Cu–Co oxide and sulfides are counted using different discharge current densities as shown
in Figure 5g. At current densities of 1 A g−1, the specific capacitance of Cu–Co oxide, P–Cu–Co sulfide
and O–Cu–Co sulfide is 243, 592, and 482 F g−1, respectively. Surprisingly, specific capacitance of
P–Cu–Co sulfide is 1.44 times higher than that of Cu–Co oxide. To increase current densities to 10 A g−1,
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specific capacitance of Cu–Co oxide, P–Cu–Co sulfide, and O–Cu–Co sulfide can maintain 153, 518,
and 341 F g−1, separately. Fascinatedly, specific capacitance of P–Cu–Co sulfide is 2.39 times higher
than that of Cu–Co oxide. In addition, when the discharge current densities increase, Cu–Co oxide
only keep 63.0% retention of the capacitance, but P–Cu–Co sulfide unexpectedly hold 87.5% retention
which implies good rate capability. By comparison, the specific capacitance and rate capability of
Cu–Co sulfides can be superior to those of Cu–Co oxide, and P–Cu–Co sulfide have advantages over
O–Cu–Co sulfide in those aspects. When the discharge current density increases, the migration and
diffusion of electrolyte ions does not catch up with the reaction rate, as a result the specific values
decrease gradually. This phenomenon gives the indirect evidence to the existence of the faradaic
behaviors in the redox reaction [49].
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sulfide; (d) GCD plots of Cu–Co oxide; (e) GCD plots of P–Cu–Co sulfide; (f) GCD plots of O–Cu–Co
sulfide; (g) Specific capacity of Cu–Co oxide, P–Cu–Co sulfide, and O–Cu–Co sulfide; (h) Cycling
performance of Cu–Co oxide, P–Cu–Co sulfide, and O–Cu–Co sulfide at a current density of 10 A g−1.

Moreover, repeating GCD measurements for 3000 cycles were investigated in order to test the
cycle stabilities of Cu–Co oxides or sulfides at a current density of 10 A g−1, as shown in Figure 5h.
Due to the deformation of the nanosheets structure during the repetitive charge/discharge process,
the specific capacities have a gradual decline along with the cycle number increasing. After 3000 cycles,
P–Cu–Co sulfide still keeps a high specific capacitance of 468 F g−1 with 9.6% degradation (90.4%
retention) but the degradation of Cu–Co oxide is 14.7% and that of O–Cu–Co sulfide is 18.5%, which
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indicates that P–Cu–Co sulfide has excellent cycle stability. Figure 6 shows the morphology of electrode
materials after 3000 cycles at a current density of 10 A g−1, the frameworks of Cu–Co oxide and sulfides
still remain well after cycling, which indicate that they have good stiffness and structural stability.Nanomaterials 2017, 7, 140  7 of 11 
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3. Discussion

The electrochemical property of Cu–Co sulfides are meaningfully superior to that of Cu–Co
oxides. However, more importantly, P–Cu–Co sulfide is surprisingly superior to O–Cu–Co sulfide in
terms of electronic properties. The first factor of excellent performances of Cu–Co sulfides is that the
flower-like nanosheet structure effectively provide the numerous electroactive sites bring the wide
electrode-electrolyte surface/interface and facilitate the charge-transfer reactions [31,32,34]. Secondly,
it is helpful to promote the conductivity property because the electroactive material connects directly
to Ni foam substrate without binders [25,43]. Thirdly, Cu–Co sulfides have richer redox reaction due to
the lower electronegativity of sulfur and more flexible structure owing to the substitution of oxygen to
sulfur [42–44]. Finally, without calcination process, P–Cu–Co sulfide with low crystallinity is beneficial
for faradaic reaction [26,33,36].

4. Materials and Methods

4.1. Reagents and Method

All the reagents are of analytical grade. Co(NO3)2·6H2O, Cu(NO3)2·3H2O, Na2S and urea were
supplied by Sinopharm Chemical Reagent Co. Ltd (Beijing, China).

The as-pressed nickel foam substrates with 2 × 2 cm2 in size were cleaned in HCl solution
and deionized water for each 15 min under ultrasonication. Typically, 1 mmol of Cu(NO3)2·3H2O,
2 mmol of Co(NO3)2·6H2O and 9 mmol of urea were dissolved in 35 mL of deionized water under
magnetic stirring for 30 min. The solution was poured in 50 mL Teflon-lined stainless steel autoclave
with a pretreated and weighted Ni foam, and then maintained at 120 ◦C for 4 h. Subsequently,
the as-synthesized Cu–Co precursor loaded on Ni foams were ultrasonically cleaned with water for
1 min. The Cu–Co precursor was annealed at 350 ◦C in air for 2 h in order to fabricate Cu–Co oxide.
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The Cu–Co sulfides were prepared by the sulfuration of Cu–Co precursor or Cu–Co oxide with 10 mL
0.1 M sodium sulfide at 120 ◦C for 6 h. The Cu–Co sulfide obtained from precursor was recorded as
P–Cu–Co sulfide, while the sulfide from Cu–Co oxide was marked as O–Cu–Co sulfide.

4.2. Electrochemical Measurements

In traditional three-electrode cell configuration, electrolyte is 1 M KOH aqueous solution, and the
as-synthesized Cu–Co oxides or sulfides electrodes were used as the working electrodes, while Pt wire
and Ag/AgCl electrodes were used as reference and counter electrodes, respectively. CV measurements
were performed in the voltage range of 0 to 0.6 V (vs. Ag/AgCl). The as-synthesized Cu–Co oxides
or sulfides electrodes were galvanostatically charged and discharged at different current densities
between 1 and 10 A g−1.

5. Conclusions

To sum up, this work successfully synthesized uniform flower-like Cu–Co sulfide supported on
nickel foam by facile two-step hydrothermal method. The differences of Cu–Co oxide, P–Cu–Co sulfide,
and O–Cu–Co sulfide in morphology and electrochemical properties are systematically discussed.
According to the results, P–Cu–Co sulfide electrode displays dramatically excellent electrochemical
properties which performs superior specific capacity of 592 F g−1 at 1 A g−1 and 518 F g−1 at
10 A g−1, about 1.44 times and 2.39 times higher than those of Cu–Co oxide electrode, respectively.
Therefore, the P–Cu–Co sulfide is expected to be a potential candidate for manipulating, controlling,
and investigating novel rechargeable charge storage devices. Further works are ongoing with the
research on electrochemical performance of shape-controlled hierarchical multi-metal sulfides.
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