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Abstract: Low contact resistance between graphene and metals is of paramount importance to
fabricate high performance graphene-based devices. In this paper, the impact of both defects induced
by helium ion (He+) bombardment and annealing on the contact resistance between graphene
and various metals (Ag, Pd, and Pt) were systematically explored. It is found that the contact
resistances between all metals and graphene are remarkably reduced after annealing, indicating that
not only chemically adsorbed metal (Pd) but also physically adsorbed metals (Ag and Pt) readily
form end-contacts at intrinsic defect locations in graphene. In order to further improve the contact
properties between Ag, Pd, and Pt metals and graphene, a novel method in which self-aligned
He+ bombardment to induce exotic defects in graphene and subsequent thermal annealing to form
end-contacts was proposed. By using this method, the contact resistance is reduced significantly by
15.1% and 40.1% for Ag/graphene and Pd/graphene contacts with He+ bombardment compared to
their counterparts without He+ bombardment. For the Pt/graphene contact, the contact resistance
is, however, not reduced as anticipated with He+ bombardment and this might be ascribed to
either inappropriate He+ bombardment dose, or inapplicable method of He+ bombardment in
reducing contact resistance for Pt/graphene contact. The joint efforts of as-formed end-contacts
and excess created defects in graphene are discussed as the cause responsible for the reduction of
contact resistance.
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1. Introduction

In the past decade, graphene has attracted worldwide attention as a miracle material with
unique electrical and physical properties [1–3]. Graphene holds great promise in a range of
device applications, such as field effect transistors, photo-detectors, radio frequency (RF) devices,
and spintronics [4–8]. For all these application scenarios, the large specific contact resistance (Rc)
between graphene and metals is one of grand challenges which hinders the progressive improvement
on device performance [9–18]. In order to access the intrinsic excellent electrical properties of
graphene, the Rc between graphene and metals as low as possible is desired. There has been plentiful
studies on the properties of graphene-metal (G-M) contact [11,16,19–21] and methods to reduce
G-M contact resistance. Choi et al. [22] and Robinson et al. [23] proposed a plasma treatment to
make the graphene surface hydrophilic, thus enhancing the bonding between graphene and metals.
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By using this method Robinson got as low contact resistance as 10−7 Ω·cm2. Similar to this plasma
treatment, ultraviolet/ozone (UVO) was used to clean the graphene surface after lithography which
reduced contact resistance to 7 × 10−7 Ω·cm2 and 568 Ω·µm respectively [24,25]. Nevertheless, due
to the difficulty in tuning the processing parameters properly when applying these methods, the
excellent uniformity in reduced Rc over a wide range cannot be easily realized, or even the Rc will
be degraded under some circumstances. Alternatively, the graphene/metals end-contacts, initially
disclosed in a theoretical work [26], is claimed to possess great potential in improving Rc dramatically.
The utilization of end-contacts in reducing Rc is also confirmed by experimental efforts [20,27,28].
In those works, notably reduced Rc were demonstrated by introducing holes (~2.2 × 10−9 Ω·cm2) [20],
etched zigzag edges (100 Ω·µm) [27], or line cuts (125 Ω·µm) [28] in the contact area of graphene to
form end-contacts with metals. It is worth noting that although Rc can be reduced using end-contacts,
the approach to introducing various patterns in the contact area of graphene is too complicated
to be implemented in practical applications, since in these cases the lithography and subsequent
dry etching is usually needed in order to shape the holes, zigzag edges, or line cuts [20,27,28].
Moreover, this additional lithography for introducing patterns in the contact area of graphene may
incur the problem of polymer residues on graphene, which would possibly degrade Rc. In this regard,
a simple while efficient method featuring the end-contacts concept to reduce Rc is of great importance
and interest. In this work, a novel method to form end-contacts between graphene and various
metals (Ag, Pd, and Pt) is explored. In this method, defects are introduced to graphene by light He+

bombardment and thereafter end-contacts are formed between graphene and metals. Since the thermal
annealing treatment is a common yet effective way to reduce Rc [29,30], the effect of annealing on Rc

with and without He+ bombardment is also investigated in this work.

2. Experiment

Thermal chemical vapor deposition (CVD) grown graphene [31,32] was transferred onto a heavily
p-type doped silicon wafer with 100 nm thermal oxide [33]. The optical microscopy (OM) and atomic
force microscopy (AFM) were employed to inspect the morphology of transferred graphene, as shown
in Figure 1a,b. The results display that the graphene film is continuous with a large single layer ratio.
To further characterize the quality of the graphene, Raman scattering spectroscopy was implemented
and the Raman spectrum is shown in Figure 1c. The Raman scattering measurement was performed in
air using a 50× objective and the excitation laser energy was 2.41 eV (514 nm). Low laser power was
used to avoid the sample damage caused by heating. The G peak and 2D peak appearing at ~1585 and
~2700 cm−1 respectively are observed and the ratio of 2D/G peaks is higher than 2 indicating that the
transferred graphene is single layer.

Nanomaterials 2016, 6, 158  2 of 13 

 

Robinson got as low contact resistance as 10−7 Ω·cm2. Similar to this plasma treatment, 

ultraviolet/ozone (UVO) was used to clean the graphene surface after lithography which reduced 

contact resistance to 7 × 10−7 Ω·cm2 and 568 Ω·μm respectively [24,25]. Nevertheless, due to the 

difficulty in tuning the processing parameters properly when applying these methods, the excellent 

uniformity in reduced Rc over a wide range cannot be easily realized, or even the Rc will be degraded 

under some circumstances. Alternatively, the graphene/metals end-contacts, initially disclosed in a 

theoretical work [26], is claimed to possess great potential in improving Rc dramatically. The 

utilization of end-contacts in reducing Rc is also confirmed by experimental efforts [20,27,28]. In those 

works, notably reduced Rc were demonstrated by introducing holes (~2.2 × 10−9 Ω·cm2) [20], etched 

zigzag edges (100 Ω·μm) [27], or line cuts (125 Ω·μm) [28] in the contact area of graphene to form  

end-contacts with metals. It is worth noting that although Rc can be reduced using end-contacts, the 

approach to introducing various patterns in the contact area of graphene is too complicated to be 

implemented in practical applications, since in these cases the lithography and subsequent dry 

etching is usually needed in order to shape the holes, zigzag edges, or line cuts [20,27,28]. Moreover, 

this additional lithography for introducing patterns in the contact area of graphene may incur the 

problem of polymer residues on graphene, which would possibly degrade Rc. In this regard, a simple 

while efficient method featuring the end-contacts concept to reduce Rc is of great importance and 

interest. In this work, a novel method to form end-contacts between graphene and various metals 

(Ag, Pd, and Pt) is explored. In this method, defects are introduced to graphene by light He+ 

bombardment and thereafter end-contacts are formed between graphene and metals. Since the 

thermal annealing treatment is a common yet effective way to reduce Rc [29,30], the effect of annealing 

on Rc with and without He+ bombardment is also investigated in this work. 

2. Experiment 

Thermal chemical vapor deposition (CVD) grown graphene [31,32] was transferred onto a 

heavily p-type doped silicon wafer with 100 nm thermal oxide [33]. The optical microscopy (OM) and 

atomic force microscopy (AFM) were employed to inspect the morphology of transferred graphene, 

as shown in Figure 1a,b. The results display that the graphene film is continuous with a large single 

layer ratio. To further characterize the quality of the graphene, Raman scattering spectroscopy was 

implemented and the Raman spectrum is shown in Figure 1c. The Raman scattering measurement 

was performed in air using a 50× objective and the excitation laser energy was 2.41 eV (514 nm). Low 

laser power was used to avoid the sample damage caused by heating. The G peak and 2D peak 

appearing at ~1585 and ~2700 cm−1 respectively are observed and the ratio of 2D/G peaks is higher 

than 2 indicating that the transferred graphene is single layer. 

 

Figure 1. (a) Optical and (b) Atomic force microscopy (AFM) images of chemical vapor deposition 

(CVD)-grown graphene that is transferred onto SiO2/Si substrate; (c) showing the Raman spectrum of 

the as-transferred graphene. The color scale of AFM image is −20–20 nm. 

Transferring line method (TLM) is used to extract the contact resistance between graphene and 

metals. The fabrication of TLM test structures is schematically shown in Figure 2a–f. Note that 

conventionally in the fabrication of graphene-based devices, photoresist (PR) is spin-coated directly 

on graphene and thereafter the contact window is opened by lithography. In such a case, PR residues 

usually occur which cannot be removed effectively. PR residues not only influence the properties of 

graphene but also impede the good contact between graphene and metals. In order to eliminate the 

 (a) (b) (c)

G

2D

20 mm

Figure 1. (a) Optical and (b) Atomic force microscopy (AFM) images of chemical vapor deposition
(CVD)-grown graphene that is transferred onto SiO2/Si substrate; (c) showing the Raman spectrum of
the as-transferred graphene. The color scale of AFM image is −20–20 nm.

Transferring line method (TLM) is used to extract the contact resistance between graphene
and metals. The fabrication of TLM test structures is schematically shown in Figure 2a–f. Note
that conventionally in the fabrication of graphene-based devices, photoresist (PR) is spin-coated
directly on graphene and thereafter the contact window is opened by lithography. In such a case,
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PR residues usually occur which cannot be removed effectively. PR residues not only influence the
properties of graphene but also impede the good contact between graphene and metals. In order
to eliminate the adverse effect of PR residues on the contact properties, a ~12-nm-thick aluminum
oxide (AlOx) isolation layer is deposited between PR and graphene as a hardmask by Atomic Layer
Deposition (ALD) [34] (cf. Figure 2a,b). The graphene diffusion strips were protected by patterned
positive PR followed by Ar plasma etching to remove un-protected AlOx and underneath graphene
(cf. Figure 2c). After the definition of a graphene diffusion strip, another lithography using negative
PR was used to define the contact windows followed by wet etching using dilute solution of H3PO4

(1:3) at 40 ◦C to remove the unwanted AlOx layer in these contact windows (cf. Figure 2d). Afterwards,
the samples were categorized into two sets. For the first set without He+ bombardment, metals
(X/Au = 40/10 nm, X = Ag, Pd or Pt) were deposited directly on graphene by e-beam evaporation
(cf. Figure 2e). For another set, the contact windows were shot by energetic He+ and then the same
metals were deposited by e-beam evaporation (cf. Figure 2d,e). The fabrication of TLM test structures
was finished by a lift-off process to remove unwanted PR and metals (cf. Figure 2f). For both
sets, the TLM test structures were electrically characterized before and after a thermal annealing.
The thermal annealing process was implemented in a tube furnace at 420 ◦C/30 min under a low
pressure of 40 Pa. During the whole annealing process, 50 sccm argon (Ar) gas was steadily pumped
into the tube furnace. Scanning electron microscope (SEM) images of as-fabricated TLM test structures
are shown in Figure 2g,h. The width of defined graphene diffusion strips is 15 µm and the gap between
two G-M contacts varies from 3 to 40 µm. The characterizations of specific contact resistance for
different G-M contacts were performed using a Keithley 4200 semiconductor parameter analyzer
(IMECAS, Beijing, China).
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Figure 2. Schematics of the process showing the fabrication flow of transferring line method (TLM) test
structures. (a) CVD-grown graphene is transferred onto SiO2/Si substrate; (b) The AlOx isolation layer
is deposited on graphene by Atomic Layer Deposition (ALD); (c) The definition of graphene diffusion
strip by the first lithography and plasma etching; (d) The opening of contact windows by a second
lithography and wet etching (Afterwards, optional He+ bombardment); (e) Metals are deposited by
e-beam evaporation; (f) Lift-off process to remove unwanted photoresist (PR) and metals; (g,h) showing
the scanning electron microscope (SEM) images of as-fabricated TLM test structures. The gap between
two G-M contacts varies from 3 to 40 µm.
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3. Results

3.1. Effect of Annealing on the G-M Contact Properties

For the extraction of G-M contact resistance, four probe configuration illustrated in Figure 3a is
employed in TLM test structures. The current flows from probe 1 to probe 4 and the voltage drop is
measured between probe 2 and probe 3 at the same two landing pads. The ideal linear relationship
between voltage drop and input current shown in Figure 3b demonstrates good ohmic contacts
between graphene and metals. It is well known that, for the TLM test structures, the measured total
resistance (RT) consists of graphene sheet resistance (RS), G-M contact resistance (RGM), metal wire
resistance (RW), and probe-pad contact resistance (RPP) as seen in Equation (1).

RT = RS (lG) + 2RGM + RW (lW) + 2RPP (1)

Among them, RS relates to the length of graphene diffusion strip (lG) between two G-M contacts
and the value of RW depends on the length of metal wires between pads and G-M contact windows (lW).
Benefitting from the four point probe configuration in TLM method, RPP can be ignored. The slope in
Figure 3b yields RT which is the sum of RS, 2RGM, and RW. Normally, Rw is small which can be omitted
in Equation (1) if metal wires are thick and/or short. However, since in this work the deposited metal
wires are thin i.e., 50-nm-thick and long, Rw cannot be omitted which is also a disturbing factor for the
linear plotting of RT vs. lG. In order to get a perfect linear plotting, it is a must to subtract Rw from RT.
The sheet resistances of metal wires are extracted to be 0.96, 3.72 and 4 Ω/� for Ag/Au, Pd/Au and
Pt/Au, respectively. As a result, the values of Rw can be calculated according to lW and the width of
metal wires and be subtracted from RT. After the Rw subtraction, perfect linear relationships between
RT and lG for all G-M contacts are accomplished as shown in Figure 4.

For the contacts between Ag, Pd, Pt, and graphene without He+ bombardment, the linear plots of
RT vs. lG before annealing (a–c) and after annealing (d–f) are shown in Figure 4. For each lG, 10 data
points are used and the linear fitting is performed using concatenate fit method. The perfect linear
fittings for all G-M contacts are evident demonstrating the validity of employed method to extract Rc

in this work. The interception of the fitted red line with RT (Y-axis) yields the value of 2RGM. Since the
width of the graphene diffusion strip is 15 µm, Rc is therefore calculated by RGM × 15 µm which is also
offered in each corresponding plot. For all three G-M contacts, it is clearly observed that Rc values are
reduced significantly after annealing which confirms the effectiveness of the annealing in improving
G-M contacts [30].

Except the plot of Rc with different metal work functions [35,36] in Figure 5a for three G-M
contacts before annealing, all extracted Rc data in Figure 4 are summarized in Figure 5b for the sake
of easy comparison. In Figure 5a, filled black circles represent the extracted Rc values for different
metals (Ag, Pd, and Pt) and filled red squares depict the mean Rc values with error bar. As seen,
albeit the metal work function alters from ~4.26 to ~5.65 eV for different metals, the Rc value remains
nearly invariable, manifesting that Rc is barely—or even not—relevant to metal work functions before
annealing. This observation is also in accordance with previous finds of E. Watanabe’s et al. [37] in
which different G-M contacts were investigated. It seems that the work function of the graphene
under different metals is pinned to a particular value regardless of the work function of used metals as
indicated in [38].
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Figure 3. (a) Four probe configurations and (b) measured current-potential drop characteristics of
typical G-M contact with different lG in TLM test structures.
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Figure 4. The linear plots of RT vs. lG for the contacts between Ag, Pd, Pt and graphene without He+

bombardment before annealing (a–c) and after annealing (d–f). For each lG, 10 data points are used
and the liner fitting is performed using concatenate fit method. Extracted Rc value is shown in each
corresponding plot.
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Figure 5. (a) Specific contact resistance as a function of metal work functions (Ag, Pd, and Pt).
Filled black circles ( ) represent extracted Rc values for different metals (Ag, Pd, and Pt). Filled red
squares (�) depict the mean Rc values with error bar; (b) Extracted average Rc values with error bar
for all G-M contacts (Ag, Pd and Pt/graphene) before and after annealing.

By comparing Rc values for all G-M contact before and after annealing shown in Figure 5b,
it is obvious that thermal annealing is helpful in reducing G-M contact resistance. In [30], it is
argued that the mechanism behind improved G-M contact property after thermal annealing is,
however, not attributed to the removal of resist residues, instead to numerous end-contacts between
metals and dangling bonds in graphene formed by the reaction of dissolved carbon atoms from
graphene lattice sites with metals [30]. It is not unexpected for Ni used in [30] that the Rc value is
reduced significantly after annealing since it is a chemically adsorbed metal. The intriguing point
in this work is why physically adsorbed metals like Pt and Ag also show remarkably reduced Rc

values after annealing, i.e., from 247.43 and 285.07 to 180.75 and 227.81 Ω·µm for Pt/graphene and
Ag/graphene contacts, respectively. In order to clarify this point, elaborate characterizations of
graphene in G-M contact windows before and after annealing are implemented by Raman scattering
spectrum. The contact windows are opened using aqua regia (HCl:HNO3 = 3:1) to remove metals
thus exposing the graphene under metals [30]. The Raman spectra of as-exposed graphene (before
and after annealing) are displayed in Figure 6. As obviously seen, for all G-M contacts (Ag, Pd,
and Pt), a distinct D peak appears at ~1350 cm−1 for the graphene after annealing in comparison
to the graphene before annealing. Note that the Raman spectra of the graphene before annealing
resemble those of as-transferred graphene on SiO2 (cf. Figure 1c), indicating that the D peak does
not originate from the metal deposition and aqua regia attack and this is also in consistent with
Ref. [30]. Consequently, the appearance of D peak can be solely attributed to the structural defects in
the graphene after annealing. As aforementioned, these structural defects result from the formation of
numerous end-contacts between graphene and metals after annealing and this enhances G-M contact
property prominently. Along with this guideline, the presence of end-contacts between graphene and
metals is critical to achieve extremely low specific contact resistance for G-M contacts. The approach to
introduce defects thus forming end-contacts is, therefore, naturally brought up which is investigated
in the following part. In the following part, a self-aligned He+ bombardment method to induce defects
in the graphene within the contact windows and therefore to form end-contacts after annealing is
explicitly illustrated.
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3.2. Effect of He+ Bombardment on the G-M Contact Properties

The graphene in G-M contact windows was bombarded by He+ to intentionally induce defects
within it. The energy and dose of impinging He+ is 35 keV and 2 × 1013 cm−2. After He+ bombardment,
the graphene in the contact windows is inspected by Raman scattering spectrum. The Raman spectra
of the bombarded and un-bombarded graphene as reference are shown in Figure 7a. Qualitatively,
the D peak for the bombarded graphene is much more pronounced compared to that for the
un-bombarded one, illustrating that the graphene is indeed impaired by the He+ bombardment.
To reckon quantitatively the damage created by He+ bombardment in the graphene, a parameter ID/IG

is given in Equation (2) [39]:

ID

IG
= CA

r2
A − r2
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r2

A − 2r2
S

[
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(
−
π
(
r2

A − r2
S
)

L2
D

)]
+ CS[1 − exp(−

πr2
S

L2
D
)] (2)

where rS and rA are length scales that determine the region where the D band scattering takes
place. rS determines the radius of the structurally disordered area and rA is the radius of the area
surrounding the point defects in which the D band scattering takes place. CA is a measure of the
maximum possible value of the ID/IG ratio in graphene. CS is the value of the ID/IG ratio in the highly
disordered limit [39,40]. LD is the mean defect distance and the defect density is proportional to 1/LD

2.
In accordance with the empirical data in [39], CA = (4.2 ± 0.1), CS = (0.87 ± 0.05), rA = (3.00 ± 0.03)
nm, and rS = (1.00 ± 0.04) nm, the ID/IG as a function of LD for the graphene with and without He+

bombardment is plotted in Figure 7b. It can be seen that as the ID/IG increases from 0.032 for the
un-bombarded graphene to 0.143 for the bombarded one, the LD increases dramatically from 58.05 nm
to 27.56 nm. This means that the defect density in the graphene is increased approximately 4.4 times
using He+ bombardment.
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before metal depositions; (b) The calculated relationship between ID/IG and mean defect distance (LD).
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For Ag, Pd, and Pt/graphene contacts with He+ bombardment, the linear plots of RT vs. lG before
annealing (a–c) and after annealing (d–f) are shown in Figure 8. Similarly to the G-M contacts without
He+ bombardment, 10 data points are used and the linear fitting is performed using concatenate fit
method. As seen, the effectiveness of annealing in improving the G-M contacts with He+ bombardment
is also evident. However, how the He+ bombardment impacts the specific contact resistance is still
not clear. In order to provide a direct comparison for the readers, the Rc values for the G-M contacts
with/without He+ bombardment are summarized in Figure 9. In Figure 9a, the comparison is made
for three G-M contacts with and without He+ bombardment before annealing. It is obvious that except
Pd, He+ bombardment leads to an increase in Rc value for the Ag/graphene and Pt/graphene contacts.
The defects induced by He+ bombardment should be blamed for the increase of Rc value and this
observation also agrees well with the G-M contacts formed by metal sputtering on graphene [41].
The defects in graphene will probably result in the scattering of carriers and thereof the carriers’
mean free path is shortened, which in turn, gives rise to the increase of Rc [11]. In Figure 9b,
the comparison is made for three G-M contacts with and without He+ bombardment after annealing.
As seen, for Ag/graphene and Pd/graphene contacts with He+ bombardment, the Rc values are
reduced dramatically by 15.1% and 40.1% compared to their counterparts without He+ bombardment.
Note that the obtained Rc values in this work for all three G-M contacts, i.e., 193.33, 118.28 and
189.15 Ω·µm for Ag, Pd, Pt/graphene contacts respectively, are among the lowest specific contact
resistances [11,29,37]. Nevertheless, for Pt/graphene contact with He+ bombardment after annealing,
the Rc value is increased a little bit compared to its counterpart without He+ bombardment and this
could be tentatively interpreted as what follows.
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Figure 8. The linear plots of RT vs. lG for the Ag, Pd, and Pt/graphene contacts with He+ bombardment
before annealing (a–c) and after annealing (d–f). For each lG, 10 data points are used and the liner fitting
is performed using concatenate fit method. Extracted Rc value is shown in each corresponding plot.
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Figure 9. The comparison of Rc for three G-M contacts with and without He+ bombardment (a) before
annealing and (b) after annealing; (c) Detailed Rc values in (a,b) are summarized. B.A.: Before
Annealing; A.A.: After Annealing.

In Figure 10, an attempt is made to schematically illustrate why the Rc value is lower for
Ag/graphene and Pd/graphene contacts whereas is higher for Pt/graphene with He+ bombardment
after annealing. We think the discussion about the higher or lower of contact resistance after annealing
should take both the capability of metals forming end-contacts with defects and carrier scattering
induced by defects within graphene into account [41–44]. It is assumed that for each G-M contact
there is an optimum dose (Doptimum) of He+ bombardment where the lowest Rc value (Rcmin) takes
place. Four cases happen to the dose of He+ bombardment. (1) If He+ dose is Doptimum, the created
defects in graphene can be completely consumed by the formation of end-contacts between metals
and graphene. As a result, Rcmin can be obtained; (2) If He+ dose is less than Doptimum, Rc value is
reduced but not to Rcmin in that as-formed end-contacts are not saturated; (3) On the other hand,
if He+ dose is more than Doptimum but less than Dmax, though the formation of saturated end-contacts
leads to the reduction of Rc, excess created defects enhance the carriers scattering which unfortunately
degrades Rc concurrently. The joint efforts of as-formed end-contacts and excess created defects
render the Rc value not the lowest Rcmin; (4) If He+ dose is more than Dmax, the effort of excess
created defects prevails over that of saturated end-contacts and this leads to drastically increased Rc

value that is even larger than Rc0 i.e., the Rc value for G-M contacts without He+ bombardment after
annealing. Specifically, for the Ag/graphene and Pd/graphene contacts, they belong to cases (2) and
(3) where their Rc values are reduced but possibly not to the lowest values Rcmin. It is worth noting
that for Pd/graphene contact, the employed dose 2 × 1013 cm−2 is even closer to its Doptimum since its
reduction percentage 40.1% is much bigger than 15.1% for Ag/graphene contact. For Pt/graphene
contact, it belongs to case (4) where the effort of excess created defects prevails over that of as-formed
saturated end-contacts, resulting in even larger Rc value compared to its counterpart without He+

bombardment after annealing. The specific contact resistance as a function of ion bombardment dose
is still under investigation and will be revealed as a continuation of this work in the near future.
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bombardment dose.

Similarly to the discussions in previous section, the elaborate characterizations of graphene in
G-M contact windows with He+ bombardment before and after annealing are also performed by
Raman scattering spectrum. The Raman spectra of as-exposed graphene with He+ bombardment
(before and after annealing) are depicted in Figure 11. As can be seen, for all Ag, Pd, and Pt/graphene
contacts, a tiny D peak appears at ~1350 cm−1 for the graphene before annealing in comparison
to as-transferred graphene in Figure 1c and this is ought to be the result of He+ bombardment.
However, for the graphene with He+ bombardment after annealing, the D peak becomes startlingly
conspicuous. If scrutinized, the intensities of D peak for the graphene with He+ bombardment in all
G-M contact windows are higher than those for the graphene without He+ bombardment in Figure 6.
This observation is good evidence that the formation of end-contacts is favorable in the presence of He+

bombardment. We believe the key to achieve extremely low specific contact resistance is to introduce
defects in graphene thus forming plenty of end-contacts after annealing like other methods to form
end-contacts [20,27,28]. The approaches to introduce defects into graphene can be diverse, not only by
He+ bombardment, but also by the implantation of other ion species. It is a remarkable fact that the
optimum dose to achieve the lowest specific contact resistance may vary depending on the ion species
used or on the implantation energy.
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4. Conclusions

To summarize, the specific contact resistance for three G-M contacts (Ag, Pd, and Pt/graphene) are
all reduced after annealing from 285.07, 267.60, and 247.43 Ω·µm to 227.81, 197.33, and 180.75 Ω·µm,
respectively. This indicates that not only chemically adsorbed metal (Pd) but also physically adsorbed
metals (Ag and Pt) readily form end-contacts at intrinsic defect locations in graphene. Along with
this guideline, a novel method, in which self-aligned He+ bombardment to induce exotic defects
in graphene and subsequent thermal annealing to form end-contacts, was proposed in order to
further reduce the specific contact resistance. Achieved results show that the specific contact
resistances are reduced significantly by 15.1% and 40.1% for Ag/graphene and Pd/graphene contacts
with He+ bombardment compared to their counterparts without He+ bombardment, respectively.
For the Pt/graphene contact, the contact resistance is, however, not reduced as anticipated with
He+ bombardment and this might be ascribed to either inappropriate He+ bombardment dose,
or inapplicable method of He+ bombardment in reducing contact resistance for Pt/graphene contact.
The effort of as-formed end-contacts prevailing over that of excess created defects is attributed to the
reduction in Rc values for G-M contacts with He+ bombardment after annealing. By manipulating the
He+ bombardment dose in conjunction with Ag, Pd, and Pt metals, the lowest Rc value for each G-M
contact could be possibly accomplished. It is worth noting that the proposed He+ bombardment and
metal depositions share the same lithography mask and this processing simplicity demonstrates that
our proposed method is very efficient in improving the contact properties for graphene-based devices
in the future.
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