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Abstract: A supramolecular heterogeneous catalyst was developed by assembly and stabilization of
gold nanoparticles on the surface of carbon nanotubes. A layer-by-layer assembly strategy was
used and the resulting nanohybrid was involved in the catalytic oxidation of hydroxylamines
under mild conditions. The nanohybrid demonstrated high efficiency and selectivity on
hydroxylamine substrates.
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1. Introduction

Besides stoichiometric approaches that are routinely used for the oxidation of organic
substrates [1,2], catalytic processes have also been devised to perform selective oxidation reactions [3].
With heterogeneous catalytic systems, obtained by assembling the metallic catalysts on a solid support,
facile reclaim and reuse of the catalytic species can be achieved [4]. Among the various platforms used
as supports, allotrope forms of carbon, in particular carbon nanotubes (CNTs), have been shown to
provide some key advantages [5]. The latter include chemical, thermal, and mechanical stability, high
specific surface area, inertness, and adjustable topography. CNTs are also able to act in a synergistic
fashion to enhance the performances of the supported catalytic metal [6,7]. With these features in mind,
we sought to develop a catalyst that could catalyze some oxidation reactions under mild conditions of
temperature and pressure using low catalytic loadings. Herein, we report the assembly of a CNT-gold
nanohybrid catalyst and its application to the selective oxidation of hydroxylamines into either nitroso
or azoxy derivatives.

2. Results and Discussion

2.1. Assembly of the AuCNT Nanohybrid

Although gold has long been regarded as a poor catalytic metal, its nanosized forms [8], including
supported ones [9,10], have recently been shown to be able to catalyze a wide array of chemical
transformations. Our CNT-gold catalyst was built using a layer-by-layer approach that was adapted
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from our previous work [11–23]. Carbon nanotubes were first dispersed in an aqueous solution by
ultrasonication in the presence of an amphiphilic nitrilotriacetic-diyne (DANTA) surfactant. This
first step led to the non-stochastic assembly of the amphiphilic units on the CNT surface and to
the formation of supramolecular structures with a nanoring-like shape (Figure 1a,c). This type
of well-ordered supramolecular assembly on CNTs was first reported in 2003 [24]. Amphiphilic
DANTA adsorbed at the surface of the nanotubes by hydrophobic interactions while its hydrophilic
polar head was pointing toward the aqueous medium. The rings were polymerized by ultraviolet
(UV) irradiation in a second step. In fact, irradiation of the sample for 6 h at 254 nm led to a
topochemical polymerization of the diyne motif incorporated in the hydrophobic part of the starting
amphiphile [25,26]. Polymerization takes place within individual half-cylinders and strengthens the
cohesion of the assembly. After UV irradiation, the DANTA-decorated nanotubes became resistant to
dialysis against water and to ethanol washes, indicating that the lipid assemblies had been polymerized.
The second layer was thereafter deposited by stirring the suspended nanotubes with a cationic polymer,
poly(diallyldimethylammonium chloride) (PDADMAC), which adsorbed on the nanotube’s surface
by electrostatic interactions with the primary anionic layer. The double-coated CNTs were then
recovered by centrifugation before the final deposition of gold nanoparticles (AuNPs). The latter were
prepared in parallel by reduction of HAuCl4 in the presence of tetrahydroxymethylphosphonium
chloride [27]. The colloidal suspension of gold nanoparticles (AuNPs) was then sequentially added to
the coated CNTs in which the polyammonium network provided robust anchoring and stabilization of
the metallic nanoparticles (Figure 1b,d). The AuCNT nanohybrid was finally suspended in water and
used for the catalysis of the reported reactions.
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Nanomaterials 2016, 6, 37 3 of 8

2.2. Characterization of the AuCNT Nanohybrid

Transmission electron microscopy (TEM, Philips CM12 microscope, Amsterdam, the Netherlands)
indicated that the AuNPs were of spherical shape. The average size of the supported nanoparticles
was measured using TEM pictures. Statistical measurement indicated that the supported AuNPs had
an average diameter of ca. 3 nm (Figure 2a). The metal content of the aqueous AuCNT suspension
was determined by inductively coupled plasma mass spectrometry (ICP-MS) ([Au] = 1.2 mM). Finally,
the metallic character of the supported gold nanoparticles was established by X-ray photoelectron
spectroscopy (XPS, VG ESCALAB 210 spectrometer, Waltham, MA, USA) analysis which showed
characteristic Au 4f-binding energies contributions of Au [28] (Figure 2b).
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Figure 2. (a) Size distribution obtained from the measurement of 250 gold particles; (b) X-ray
photoelectron spectroscopy (XPS) analysis (Au 4f core level) of the AuCNT nanohybrid.

2.3. Oxidation of Hydroxylamines with the AuCNT Nanohybrid

With the gold-based nanohybrid in hand, we investigated its potential in the aerobic oxidation
of hydroxylamines. In the latter transformation, we expected the formation of the corresponding
nitroso derivatives [29]. The nanohybrid-catalyzed oxidation of tert-butyl hydroxylamine (1a) in
CHCl3/H2O afforded tert-butyl nitroso compound 1b in 81% yield after 12 h of reaction (Table 1,
Entry 1). The use of a binary solvent mixture permitted us to increase the rate of the reaction and
afforded a more selective transformation. The reaction of N-cyclohexylhydroxylamine (2a) also cleanly
produced nitrosocyclohexane (2b) in 83% yield (Entry 2). It is noteworthy that no isomerization of
nitrosocyclohexane (2b) into the corresponding cyclohexanone oxime was detected. This result is to be
noted since tautomerization of nitroso compounds to oximes is classically observed when working
with substrates carrying Cα-protons. The reaction of aliphatic substrates thus satisfactorily provided
access to nitroso compounds in high yields, but aromatic hydroxylamines did not behave similarly.

Table 1. Oxidation of various hydroxylamines with AuCNT [a].
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For example, the reaction of phenylhydroxylamine (3a) with AuCNT in CHCl3 gave a dimeric
product in the form of the azoxy derivative 3b in 2 h only (Entry 3). It is noteworthy that the
binary solvent system was not required in the case of aromatic hydroxylamine substrates. A possible
mechanism for the conversion observed in entry 3 (formation of the azoxy compound) could involve
the oxidation of phenylhydroxylamine (3a) into the corresponding nitroso derivative 3a’ (Scheme 1).
As 3a’ accumulates in the solution, its condensation with the unreacted phenylhydroxylamine (3a)
leads to the formation of azoxy derivative 3b, after the elimination of a molecule of water.
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The same type of reactivity was also evidenced for other aromatic substrates such as
4-chlorophenylhydroxylamine (4a, Entry 4) and 4-fluorophenylhydroxylamine (5a, Entry 5). Indeed,
we detected the formation of azoxy dimers 4b (98% yield) and 5b (92% yield) starting from
compounds 4a and 5a, respectively. The transformation worked equally well on benzylhydroxylamine
(6a) in 94% yield (Entry 6) but failed on the more hindered 2,6-dimethylphenylhydroxylamine
(7a, Entry 7) which remained unaffected.
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2.3.1. Recycling of the AuCNT Nanohybrid

To assess the recyclability of the AuCNT nanohybrid, multiple oxidation cycles were carried out by
successive reuse of the same sample of catalyst. A classical oxidation reaction was set using the general
procedure described above which was applied to N-phenylhydroxylamine (3a). After completion,
the catalyst was recovered by centrifugation, and the supernatant was worked up. The catalyst was
washed with tetrahydrofuran (THF) and reused in subsequent oxidation reactions. This process was
repeated over five consecutive cycles and showed no significant decrease in yields of oxidized azo
product 3b (Table 2). After the fifth run, TEM analysis showed no major alteration of the nanohybrid
morphology. The use of non-supported AuNPs provided lower yields of product and the catalyst
could not be recycled.

Table 2. Recycling of AuCNT for the oxidation of N-phenylhydroxylamine.
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1 fresh 96
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2.3.2. Is AuCNT a Heterogeneous Catalyst?

The involvement of the nanohybrid in the oxidation process was demonstrated by the following
experiment. A standard oxidation reaction of N-phenylhydroxylamine (3a) was run and, after 45 min,
split into two. At this stage, approximately 50% conversion of 3a into the corresponding azoxy
derivative 3b was detected by 1H-NMR (Bruker Avance DPX 400 MHz spectrometer, Billerica, MA,
USA). The AuCNT catalyst was removed by centrifugation in one sample, whereas it was left in
the other. Both reactions were further stirred for additional time before analysis. While the reaction
was nearly quantitative (ca. 95% yield) in the AuCNT-containing sample, no further conversion
was detected in the absence of the nanohybrid. These observations confirmed that oxidation of
N-phenylhydroxylamine (3a) occurred at the surface of the AuCNT nanohybrid which acted as
a solid catalyst [30] and whose performances are comparable to that of a previously developed
rhodium-carbon nanotube catalytic system [23].

3. Experimental Section

3.1. Assembly of the Nanohybrid

Amphiphilic DANTA (20 mg) was dissolved in 2 mL of 25 mM pH 8 aqueous Tris-buffer before
multiwalled carbon nanotubes (50 mg) were added. The dispersion was sonicated and the stable
suspension transferred into two tubes. The tubes were centrifuged at 5000ˆ g and the supernatants
were collected. The latter were centrifuged at 15,000ˆ g for 45 min. The supernatant was discarded
and the pellets taken in buffer and centrifuged again at 15,000ˆ g for 45 min. The pellets were finally
resuspended in 1.5 mL of buffer and submitted to UV irradiation at 254 nm for 6 h.

After polymerization, the buffer volume was adjusted to 1.5 mL. The suspension was stirred in
the presence of the cationic polymer PDADMAC (700 µL of a 20% water solution) for 1 h. The ensuing
centrifugation at 15,000ˆ g for 30 min permitted to get rid of the polymer in excess. The pellets were
taken in 2 mL of buffer. This operation was repeated twice using the buffer solution and two more
times using pure water.
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The final pellets were resuspended in 1 mL of water. Then 50 µL of the latter suspension was
transferred to Eppendorf® tubes (ˆ20). To each tube was added 1 mL of a 1 mM colloid suspension of
the gold nanoparticles [27] and the mixture was vortex-stirred at room temperature for 1 min every
30 min (during 4 h). The suspension was then centrifuged at 3000ˆ g for 5 min. The supernatant
was discarded and 1 mL of a fresh gold colloid suspension was added. The same process was
repeated two more times. The pellets were washed three times by centrifugation/redispersion in water.
The 20 pellets were combined and 4 mL of water was finally added.

3.2. Procedure for the Oxidation of Hydroxylamines

A typical procedure is given for the oxidation of N-cyclohexylhydroxylamine 2a. Under air,
to a stirred solution of N-cyclohexylhydroxylamine hydrochloride (2a.HCl, 0.1 mmol) in 2 mL of
CHCl3/H2O (1:1) was added K2CO3 (2 equivalents) and 0.5 mol % of the suspension of the AuCNT
catalyst. The reaction mixture was stirred at room temperature for 12 h. The aqueous layer was
extracted with CHCl3. The combined organic layer was dried over anhydrous Na2SO4, filtered, and
concentrated under vacuum. The crude residue was purified by column chromatography to afford
nitroso-cyclohexyl amine 2b in 83% yield. 1H-NMR (400 MHz, CDCl3) δ (ppm) 5.07 (triplet of triplet,
J = 3.8 Hz, J = 11.6 Hz, 1H), 1.97–1.94 (multiplet, 2H), 1.89–1.86 (multiplet, 2H), 1.69–1.65 (multiplet,
2H), 1.43–1.31 (multiplet, 2H), 1.28–1.20 (multiplet, 2H); 13C-NMR (100 MHz, CDCl3) δ (ppm) 65.6,
28.2 (2C), 25.0, 24.5 (2C).

4. Conclusions

A nanohybrid catalyst was produced by the layer-by-layer supramolecular assembly of gold
nanoparticles on carbon nanotubes. The gold-based nanohybrid (AuCNT) was employed in the
oxidation of hydroxylamines to provide straightforward access to the corresponding oxidized products
in good to excellent yields. The transformation led either to nitroso derivatives in the case of aliphatic
hydroxylamines or azoxy derivatives in the case of aromatic/benzylic hydroxylamines. Selectivity,
low catalyst loading and mild reaction conditions (e.g., room temperature, open air) are the salient
features of the AuCNT methodology.
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