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Abstract: Crystalline nanoparticles or nanoprecipitates with a cubic structure often have near
polyhedral shapes composed of low-index planes with {100}, {111} and {110}. To consider such
near polyhedral shapes, algebraic formulas of extended superspheres that can express intermediate
shapes between spheres and various polyhedra have been presented. Four extended superspheres,
(i) {100} regular-hexahedral; (ii) {111} regular-octahedral (iii) {110} rhombic-dodecahedral and (iv)
{100}-{111}-{110} rhombicuboctahedral superspheres are treated in this study. A measure

ś

to indicate
the degree of polyhedrality is presented to discuss shape transitions of the extended superspheres.
As an application of

ś

superspherical coherent precipitate is shown.
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1. Introduction

To consider intermediate shapes of nanoparticles or nanoprecipitates between a sphere and cube,
a solid figure called a supersphere was discussed in previous studies [1,2]. An equation describing the
supersphere is

|x{R|p ` |y{R|p ` |z{R|p “ 1 pR ą 0, p ě 2q (1)

and expresses a sphere with radius R when p = 2 and a cube with edges 2R as p Ñ8 . It is reported in [3]
that Equation (1) first appeared in a paper by Gabriel Lamé, the 19th century French mathematician.
When |x| ą |y| , |z| and p Ñ8 , Equation (1) becomes |x{R| “ 1. This explains the reason why the
limit for Equation (1) gives a cube surrounded by three sets of parallel planes |x| “ R, |y| “ R and
|z| “ R [4]. Shape transition from a sphere to cube can be represented by increasing p. Figure 1 shows
the shape given by Equation (1) for p “ 8 and R “ 1.
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1. Introduction 

To consider intermediate shapes of nanoparticles or nanoprecipitates between a sphere and 
cube, a solid figure called a supersphere was discussed in previous studies [1,2]. An equation 
describing the supersphere is 

x / R p + y / R p + z / R p = 1 (R > 0, p ≥ 2)  (1) 

and expresses a sphere with radius R when p = 2 and a cube with edges 2R as p→ ∞ . It is reported in 
[3] that Equation (1) first appeared in a paper by Gabriel Lamé, the 19th century French 
mathematician. When x > y , z  and p→ ∞ , Equation (1) becomes x / R = 1. This explains the 
reason why the limit for Equation (1) gives a cube surrounded by three sets of parallel planes x = R , 
y = R  and z = R  [4]. Shape transition from a sphere to cube can be represented by increasing p. 

Figure 1 shows the shape given by Equation (1) for p = 8 and R = 1. 

 
Figure 1. The shape given by Equation (1) for p = 8  and R = 1. Figure 1. The shape given by Equation (1) for p “ 8 and R “ 1.
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In the case of crystals having cubic structures, nanoparticles or nanoprecipitates often have near
polyhedral shapes composed of low-index planes with {100}, {111} and {110} [5,6]. These planes have
lower values of the surface-energy density and the anisotropy of surface-energy density affects the
equilibrium shapes [7,8]. The anisotropy of elastic moduli also affects equilibrium shapes of misfit
nanoprecipitates in alloys [9,10]. The nearly polyhedral shapes of the nanoparticles or nanoprecipitates
have been often explained by such anisotropies [7–10].

Onaka recently extended Equation (1) and derived algebraic formulas to describe intermediate
shapes between spheres and various convex polyhedra [4,11]. Now superspheres mean shapes
intermediate between spheres and various polyhedra [4]. The original supersphere given by
Equation (1) can be called a cubic or hexahedral supersphere to distinguish these from other
superspheres such as an octahedral supersphre. The extended superspheres have been used to
approximate various near polyhedral shapes of nanoparticles and nanoprecipitates [8,12].

The superspherical-shape approximation is useful to discuss various near polyhedral shapes of
crystalline nanomaterials [1,8,10,12–15]. The extended superspheres are also treated in mechanics
as possible shapes of inclusions and pores in materials [16–21]. When we use the superspherical-
shape approximation, a measure of the degree of polyhedrality is needed to discuss the shape
transitions [2,8,10]. Equations to describe the extended superspheres essentially have the same form
as Equation (1) [4,11]. Since the shapes of the extended superspheres also change from spheres to
polyhedra with increasing the power exponent p in Equation (1), p has been hence used as the measure
of the degree of polyhedrality[2,4]. Instead of p without the upper bound, a parameter η given by

η “
?

2 ¨ 2p´1{pq (2)

which satisfies η “ 1 when p “ 2 and η “
?

2 when p Ñ8 has also been used [2]. Since η is the ratio
of the maximum to minimum radii on the cross-sections of the cubic supersphere, it is a convenient
parameter to grasp the shape transition [2]. However, for the other extended superspheres, η does
not generally have such geometrical meaning. As will be shown later, p or η is not appropriate as
a common measure of the degree of polyhedrality of the extended superspheres. In the present paper,
we propose a new parameter Π as the measure of the degree of polyhedrality. As an application of
Π, we will show the precipitate-shape dependence of elastic-strain energy of a material containing
a superspherical coherent precipitate.

2. Equations of Extended Superpheres

Here we show equations of the extended superspheres that become polyhedra composed of {100},
{111} and {110} as the limiting shapes [4].

‚ {100} Regular-hexahedral supersphere:

rhhexa px, y, zqs1{p “ R (3a)

where
hhexa px, y, zq “ |x|p ` |y|p ` |z|p (3b)

Here the x, y and z axes mean x100y of a crystal with a cubic structure. Equations (3) are the same as
Equation (1) for the original supersphere.

‚ {111} Regular-octahedral supersphere:

rhocta px, y, zqs1{p “ R (4a)

where
hocta px, y, zq “ |x` y` z|p ` |´x` y` z|p ` |x´ y` z|p ` |x` y´ z|p (4b)
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‚ {110} Rhombic-dodecahedral supersphere:

rhdodeca px, y, zqs1{p “ R (5a)

where
hdodeca px, y, zq “ |x` y|p ` |x´ y|p ` |y` z|p ` |y´ z|p ` |x` z|p ` |x´ z|p (5b)

‚ {100}-{111}-{110} Polyhedral supersphere:

„

hhexa px, y, zq `
1
ap hocta px, y, zq `

1
bp hdodeca px, y, zq

1{p
“ R (6)

This Equation (6) is an equation combining hhexa, hocta and hdodeca and gives superspheres
which become the {100}-{111}-{110} polyhedra as the limiting shapes. When p Ñ8 , we find that the
innermost surfaces of the polyhedra are retained to form the combined polyhedron among the three
polyhedra given by rhhexa px, y, zqs1{p “ R, rhocta px, y, zqs1{p “ aR and rhdodeca px, y, zqs1{p “ bR [4].
The parameters a and b are those for determining the ratios of the {100}, {111} and {110} surfaces
of the limiting shapes. Figure 2 shows the shapes of the polyhedra as a function of a and b [4].
In the present study, we will consider the supersphere with a “

`

2
?

2´ 1
˘

and b “
?

2 that becomes
a rhombicuboctahedron (RCO) with six square {100}, eight equilateral-triangular {111} and twelve
square {110} when p Ñ8 .
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Figure 2. Diagram showing the variations of polyhedra composed of {100}, {111} and {110} as the
limiting shapes of the extended superspheres The parameters a and b are those for determining
the ratios of the {100}, {111} and {110}. The points P, R and S respectively correspond to the {100}
hexahedron, the {111} octahedron and the {110} dodecahedron. Polyhedra composed of one or two of
the crystallographic planes can be shown around the quadrilateral surrounded as shown in the insets.
The {100}-{111}-{110} polyhedra with different ratios of the three crystallographic planes are expressed
inside of the quadrilateral.

3. Geometrical Changes in Superpheres and Measure of the Degree of Polyhedrality

Sphere is the solid figure having the minimum surface area under constant volume. The shape
transitions of the extended superspheres from spheres to polyhedra cause the increase of surface area
when the volume is kept constant. When A and V respectively denotes the surface area and volume of
a solid figure, N given by

N “ A{V2{3 (7)

is a measure of the surface area under constant volume [8,12]. The cube of N,

S “ N3 “ A3{V2 (8)

is known as the Steinitz number that has been used to discuss geometrical characteristics of
polyhedral [22,23].
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The shape transitions of the extended superspheres from spheres to various polyhedra represented
by the relationship between N and η are shown in Figure 3 for the hexahedral, octhedral and
dodecahedral superspheres respectively given by Equations (3)–(5) and RCO supersphere given
by Equation (6) with a “

`

2
?

2´ 1
˘

and b “
?

2. In Figure 3, the results are shown with the insets
of the polyhedral shapes when η “

?
2. Although N monotonically increases from that for a sphere

N psphereq “ p36πq1{3 « 4.84 to those of the polyhedra, the change in N with increasing η is not the
same among the four superspheres.
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given by Equation (6) with a “

`

2
?

2´ 1
˘

and b “
?

2. The results for the superspheres are shown
with insets of the polyhedral shapes when η “

?
2.

To compare the changes in N from spheres to the polyhedra, we introduce the normalized change
Π given by:

Π pηq “
N pηq ´ N psphereq

N ppolyhedronq ´ N psphereq
(9)

For a sphere and polyhedron, we have Π “ 0 and Π “ 1 respectively. Figure 4 shows the changes
in Π as a function of η for the hexahedral, octhedral, dodecahedral and RCO superspheres. The η
dependence of Π shown in Figure 4 is quite different among the superspheres. The shape transitions
from spheres to the polyhedra are delayed in the order of the hexahedral, octhedral, dodecahedral and
ROC superspheres. For example, although the hexahedral supersphere with η « 1.3 pp « 8q has a near
polyhedral shape as shown in Figure 1, the RCO supersphere with the same value of η still has the
values of N and Π almost the same as those of a sphere. The shape transition of the RCO supersphere
is not noticeable at η « 1.3.
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The parameter Π given by N is a more reasonable measure of the degree of polyhedrality than p
or η. Figure 5 shows the shape variations of the superspheres at various values of Π. The values in
a parenthesis separated by a slash in Figure 5 are those of p (left) and η (right) for the shape. For the
initial shape transitions at lower Π, p and η at the same Π are much different among the various
superspheres. For example, when Π “ 0.25, we have 1.216 and 1.365 for the values of η for the
hexahedral and RCO superspheres, respectively.
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We have considered Π given by N, since N has a clear geometrical-meaning, the surface area
under constant volume. If we use the Steinitz number S given by Equation (8) instead of N, the
normalized change Ξ given by

Ξ pηq “
S pηq ´ S psphereq

S ppolyhedronq ´ S psphereq
(10)

is obtained. It is interesting to note that even if we consider Ξ given by S, we have the Ξ´ η relation
(Figure 6) which is very similar to the Π´ η relation (Figure 4).
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4. Example of Applications of the Polyhedrality

It is well known that the total surface or interface energy changes when shapes of particles or
precipitates change. Similarly, mechanical energy such as elastic strain energy is also changed by shape
changes of misfit precipitates in alloys [9,10,14]. As an example of applications of the polyhedrality Π,
here we show the precipitate-shape dependence of the elastic-strain energy for coherent precipitates in
a matrix.

The situation to consider the elastic-strain energy is summarized in Figure 7a. The matrix with
a face-centered cubic structure contains a coherent precipitate having the same elastic moduli as the
matrix. Those of the extended superspheres treated in the present study give possible shapes of the
precipitate. The precipitate has a purely dilatational misfit strains ε˚ij “ δijε

˚ and causes elastic strains
in the material including the precipitate [24], where δij the Kronecker delta giving the components of
the strain tensor. The elastic strain energy E due to the superspherical precipitate can be numerically
calculated as a function of the misfit strain ε˚, the volume of the precipitate V, the elastic modulus of
the material including their anisotropy and the shape factor of the superspherical precipitate such as p,
η or Π [10]. Figure 7b shows the relationship between the normalized elastic-strain energy EN and the
polyhedrality Π, where

EN “ E{
”

C44 pε
˚q

2 V
ı

(11)

and C44 is one of the elastic modulus of the cubic material. The anisotropy of elastic moduli of Cu is
used to show Figure 7b. EN for precipitates with sharp edges are evaluated by extrapolation [10] as
shown by broken lines in Figure 7b.

As shown in Figure 7b, the values of EN for the {100}-{111}-{110} RCO supersphere are always
almost the same as that for a sphere at Π “ 0. The {100} hexahedral and the {111} octahedral
polyhedra have the minimum and the maximun EN among the polyhdron. Including the {110}
dodecahedral superspheres, the increasing and decreasing behavior of EN for these superspheres
with shape transitions from the sphere are similar when we adopt Π as a measure of the degree of
polyhedrality. The introduction of the polyhedrality Π is convenient to discuss such changes in EN

with the shape transitions. Other applications of Π will be shown in our future work.
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used to show Figure 7b. EN  for precipitates with sharp edges are evaluated by extrapolation [10] as 
shown by broken lines in Figure 7b. 

As shown in Figure 7b, the values of EN  for the {100}-{111}-{110} RCO supersphere are always 
almost the same as that for a sphere at Π = 0 . The {100} hexahedral and the {111} octahedral 
polyhedra have the minimum and the maximun EN  among the polyhdron. Including the {110} 
dodecahedral superspheres, the increasing and decreasing behavior of EN  for these superspheres 
with shape transitions from the sphere are similar when we adopt Π  as a measure of the degree of 
polyhedrality. The introduction of the polyhedrality Π  is convenient to discuss such changes in 
EN  with the shape transitions. Other applications of Π  will be shown in our future work. 
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Figure 7. (a) Schematic illustration showing a superspherical coherent precipitate in a matrix with a 
cubic structure. The precipitate has a purely dilatational misfit strains εij

* = δijε
*  and causes elastic 

strains in the material containing the precipitate. (b) The precipitate-shape dependence of the 
elastic-strain energy shown by the relationship between the normalized elastic-strain energy EN  

and the polyhedrality Π . The results for the precipitate shapes of the hexahedral, octhedral, 
dodecahedral and RCO superspheres are shown. 

5. Conclusions 

Crystalline nanoparticles or nanoprecipitates often have near polyhedral shapes composed of 
low-index planes. Intermediate shapes between spheres and various convex polyhedra can be 

Figure 7. (a) Schematic illustration showing a superspherical coherent precipitate in a matrix with
a cubic structure. The precipitate has a purely dilatational misfit strains ε˚ij “ δijε

˚ and causes
elastic strains in the material containing the precipitate. (b) The precipitate-shape dependence of the
elastic-strain energy shown by the relationship between the normalized elastic-strain energy EN and
the polyhedrality Π. The results for the precipitate shapes of the hexahedral, octhedral, dodecahedral
and RCO superspheres are shown.

5. Conclusions

Crystalline nanoparticles or nanoprecipitates often have near polyhedral shapes composed
of low-index planes. Intermediate shapes between spheres and various convex polyhedra can
be approximated with the concept of the extended superspheres. Four extended superspheres,
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(i) {100} regular-hexahedral; (ii) {111} regular-octahedral, (iii) {110} rhombic-dodecahedral and (iv)
{100}-{111}-{110} rhombicuboctahedral superspheres have been treated in this study. A measure Π to
indicate the degree of polyhedrality has been presented to discuss shape transitions of the extended
superspheres. As an application of Π, the precipitate-shape dependence of elastic-strain energy of
a material containing the superspherical coherent precipitate has been shown.
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