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Abstract: The optimum conditions for the fabrication of zein/Ag composite nanoparticles
from ethanol/H2O cosolvents using electrospinning and the properties of the composite were
investigated. The zein/Ag nanoparticles were characterized using field-emission scanning electron
microscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and thermogravimetric
analysis. The antibacterial activity of the zein/Ag composite nanoparticles was also investigated.
The XRD patterns and TEM images indicate the coexistence of a zein matrix and well-distributed
Ag nanoparticles.
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1. Introduction

Polymer nanocomposites can exhibit beneficial properties that cannot be attained from their
individual components. Inorganic nanomaterials are generally dispersed in an organic polymer matrix
to prepare these nanocomposites by simply mixing the required organic and inorganic components.
The introduction of inorganic nanoparticles into the polymer matrix has been demonstrated to be an
effective and low-cost method of improving the performance of polymer materials [1–6].

Zein is the major storage protein in corn. It is hydrophobic, renewable, biodegradable, exhibits low
toxicity, and is a relatively straightforward biopolymer that can be prepared using electrospinning [7–12].
Alcohols are excellent solvents for zein; however, a water-ethanol mixture has been shown to be the
best solvent for zein [13–18]. The major structure of zein is a helical wheel conformation in which
nine homologous repeating units are arranged in an anti-parallel form stabilized by hydrogen bonds.
The presence of two important polar amino acids, proline and glutamine, is responsible for the good
cell compatibility and additional hydrophobic characteristics of zein compared to other proteins.
However, the high proportion of non-polar amino acid residues in zein controls its solubility [8,9,19].
Since zein can form tough, glossy, hydrophobic coatings and exhibits antibacterial activity, it is used in
the food industry. Zein is also used in the manufacture of plastics, paper coatings, textiles, adhesives,
substitutes for shellac, laminated board, and solid color printing films. In the pharmaceutical industry,
zein is widely used for coating capsules for protection, controlled-release drugs, and masking of flavors
and aromas [9,18].
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Ag nanoparticles are widely used as photosensitive components and catalysts. They are used to
fight infections and prevent spoilage. Due to their comparatively high safety, as well as antibacterial
and multi-functional properties, many researchers have successfully developed antibacterial and
disinfectant agents that combine Ag nanoparticles with various polymers. Most microorganisms are
not resistant to Ag nanoparticles. Ag nanoparticles have an extremely large specific surface area and
can significantly increase the antibacterial efficiency [5,20–24].

Electrospinning is a unique and convenient method of producing nanofibers from various
polymers for a wide range of applications [11,25–33]. Other nanostructures, such as nanoparticles
and nanobeads, can be obtained using electrospinning depending on the processing conditions [10].
These nanometer-scale electrospun materials exhibit excellent properties that cannot be attained from
their bulk counterparts [31,32]. In the electrospinning process, a high voltage is applied to a polymer
solution to create electrically-charged jets. The structures and properties of the electrospun end
products strongly depend on certain variables related to the polymer solution and/or processing
parameters. Nanostructured materials with different morphologies can be produced by controlling
these variables [27,31,32,34]. There are many parameters that will influence the morphology of the
resultant electrospun fibers, which range from beaded fibers to fibers with pores on their surface.
The parameters affecting electrospinning and the fiber mat are broadly classified into polymer solution
parameters and processing conditions that include the applied voltage, temperature and effect of
the collector, and ambient conditions. With an understanding of these parameters, it is possible
to create nanofibers with different morphologies by varying these parameters. Electrospinning is
a complicated process that involves solvent diffusion/evaporation/cooling, heat transfer, water
condensation, and polymer diffusion, in addition to the operation variables [35,36]. Khanum et al.
reported on the morphology control of a thiophene derivative through electrospinning using various
solvents [37]. In the same study, they investigated the influence of various solvents on the crystallite
size of thiophene derivatives using electrospinning and suggested their potential as drug carrier
hollow microspheres and for obtaining a spiked morphology. Our group investigated the effect of
polymer concentration, tip-to-collector distance, and applied voltage in an electrospinning system. We
prepared poly(vinyl alcohol) microfibers, poly(vinyl alcohol)/chitosan oligosaccharide/clay nanofibers,
pullulan/poly(vinyl alcohol)/montmorillonite nanofibers, etc., by controlling the electrospinning
conditions and characterized them [38–40].

Since Ag nanoparticles are widely used in various polymer composites to improve their
physicochemical properties, and hence expand their applications, the aim of this study was to evaluate
the effects of Ag content on the morphologies and properties of the zein/Ag composite nanoparticles
prepared from aqueous solutions using electrospinning. The effect of the Ag nanoparticles on the
thermal properties and morphologies of the zein nanoparticles was examined using thermogravimetric
analysis (TGA), field-emission scanning electron microscopy (FE-SEM), transmission electron
microscopy (TEM), and X-ray diffraction (XRD). Furthermore, this study demonstrates the effectiveness
of the zein/Ag composite nanoparticles in terms of antibacterial performance, which provides an
opportunity for developing a new preservative and may have medical applications.

2. Experimental

2.1. Materials

All of the chemicals used in this study were used as received without further purification. Zein
obtained from corn (molecular weight = 35,000) was purchased from the Tokyo Chemical Industry
Co. Ltd., Tokyo, Japan, and 96% (v/v) ethanol was obtained from Daejung Chemical and Materials Co.
Ltd., Daejeon, Korea. An aqueous Ag nanoparticle dispersion (AGS-WP001 10,000 ppm) with particle
diameters of approximately 15–30 nm was obtained from Miji Tech., Ansan, Korea. Doubly-distilled
water was used with ethanol as a co-solvent to prepare all of the solutions.
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2.2. Preparation of Zein/Ag Blend Solutions

The zein/Ag blend solutions for electrospinning were prepared as reported previously [41].
To optimize the pure zein nanomaterials, the zein solutions were prepared by dissolving zein at
different volume ratios of ethanol/water, and various zein concentrations were used (10, 15, 20 wt %).
Afterward, variable amounts (2 and 4 wt % based on the final solution concentration) of Ag nanoparticle
dispersions were added separately to the zein solutions at 25 ◦C with continuous stirring for another 1 h.

2.3. Electrospinning Process

Nanoparticles were prepared by electrospinning the pure zein and zein/Ag blend solutions.
During electrospinning, a voltage of 15 kV (Chungpa EMT Co. Ltd., Seoul, Korea; model CPS-60K02VIT)
was applied to the zein/Ag solution contained in a syringe via an alligator clip attached to the syringe
needle. The solution was delivered to a blunt needle tip via a syringe pump to control the solution flow
rate. The prepared nanoparticles were collected on an electrically-grounded piece of Al foil placed at a
vertical distance of 15 cm from the needle tip. The needle size (length = 20 mm, diameter = 1 mm) was
controlled on the spinneret for electrospinning. For electrospinning, the flow rate was 0.04 mL/h and
was performed at 25 ◦C and 60% relative humidity.

2.4. Characterization

The morphologies of the electrospun zein and zein/Ag composite nanoparticles were examined
using FE-SEM and TEM. Photoshop CS 6 (Adobe, San Jose, CA, USA) was used to measure the
average diameter and at least 25 different particles and 100 different segments were randomly selected
from each image. The FE-SEM images were collected using a JEOL JSM-6380 microscope (JEOL,
Peabody, MA, USA) after coating with Au. The TEM analysis was conducted on a Hitachi H-7600
machine (Hitachi, Tokyo, Japan) with an accelerating voltage of 100 kV. Reflection-type XRD (Philips
model X’Pert APD) using Cu Kα radiation with a wavelength of 0.154 nm was used to investigate
the crystallinity of the composite nanoparticles. The viscosity of zein and zein/Ag solution was
measured using a viscometer (A & D Ltd., Tokyo, Japan, SV-10) at 25 ◦C. The thermal stability of
the zein/Ag nanoparticles was studied using TGA (TA Instruments, New Castle, DE, USA, Q-50)
at a heating rate of 10 ◦C/min from room temperature to 600 ◦C under a nitrogen gas atmosphere.
The antibacterial performance of the zein/Ag composite nanoparticles was investigated against
Staphylococcus aureus (ATCC6538) using KSM 0146 (the shake flask method). The release of Ag+

ion by the zein/Ag nanoparticles was monitored by inductively coupled plasma spectrophotometer
(PerkinElmer, Waltham, MA, USA, Optima 7300DV) analyzing solutions obtained by the interaction of
the solvent with the nanoaprticles samples at different time.

2.5. Anti-Microbial Performance Test

Anti-bacterial performance of zein/Ag nanoparticles was investigated using Staphylococcus aureus
(ATCC6538). Samples were prepared by dispersing the nanoparticles into a viscous aqueous solution
containing 0.05 wt % of polyoxyethylenesorbitan monooleate (Sigma Aldrich, St. Louis, MO, USA
tween 80). A mixed culture of microorganisms was obtained on tryptone soya broth after 18 h of
incubation at 32 ◦C. Then, 0.5 g of sample was inoculated with 0.2 g of the microorganism suspension
to adjust the initial concentration of bacteria to 106 CFU/g. Subsequently, the inoculants were mixed
homogeneously with the samples and stored at 32 ◦C. The microbial counts were performed using the
pour plate count method.
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3. Results and Discussion

3.1. Particle Morphology

The diameter of electrospun nanomaterials plays a key role in their final properties. It is well
known that the diameter and morphology of electrospun nanomaterials are strongly dependent on
several processing parameters [31] including the polymer conformation, solution viscosity, elasticity,
electrical conductivity, polarity, and surface tension of the solvent. Moreover, operational conditions,
such as the strength of the applied electric field, distance between the spinneret and the collector, and
the feed rate of the polymer solution also affect the characteristics of the electrospun nanomaterials.
In addition to these variables, the humidity and temperature of the surroundings may also play an
important role in determining the morphology and diameter of the electrospun nanomaterials.

Figure 1 shows the variation in the morphologies, imaged using FE-SEM, of the 10, 15 and
20 wt % zein electrospun nanomaterials prepared from the 7/3, 8/2 and 9/1 (v/v) ethanol/water
co-solvents. At a low zein concentration (10 wt %), beads with uniform shape and size were obtained.
As the concentration and viscosity of the zein solutions increased (Table 1), the morphology of the
nanomaterials changed. Zein with a higher viscosity tended to attain a highly elongated shape, like
a fibrous structure, more easily than zein at low concentration. This suggests that increasing the
entanglement of zein chains by increasing the concentration contributes to the formation of the fibrous
structure. As shown in Figure 1, zein not only formed nanoparticles, but also just formed a crinkled
shape at low concentration. On the contrary, when we used zein with a 8/2 ethanol/H2O ratio
(Figure 1), nanoparticles were easily obtained at 10 wt % zein concentration. Another concentration
of zein showed a more beaded morphology than zein in because of the low viscosity of the spraying
solution. The reason for obtaining different shapes at each concentration is that the Raleigh forces,
which assist in particle formation, were able to overcome the viscous forces to enable the formation
of particles [42]. At high zein concentration (above 20 wt %), the zein nanomaterials exhibited
a fiber shape. The FE-SEM results indicate that uniform nanoparticles were obtained from the
8/2 (v/v) ethanol/water solvent with a zein concentration of 10 wt %. FE-SEM and TEM images
of the prepared zein/Ag composite nanoparticles with various Ag content are presented in Figures 2
and 3, respectively. Our previous work indicated that the 10 wt % zein solution in an 8/2 (v/v)
ethanol/water mixture solvent was the optimum polymer concentration for producing uniform zein
nanoparticles by electrospinning [41]. Figure 2 presents the FE-SEM images obtained from electrospun
zein nanoparticles containing 0, 2 and 4 wt % Ag nanoparticles. Figure 2 demonstrates that the addition
of even a very small amount of Ag nanoparticles affects the morphology of the zein/Ag composite
nanoparticles, causing the zein nanoparticles to crinkle up and, consequently, contract, which might
be caused by the increase in the solution concentration and viscosity (Table 2). This shrinkage of the
zein/Ag nanoparticles increased slightly with increasing Ag content. Moreover, a few nanofibers
connected with nanoparticles are observed in Figure 2c, which were obtained from the 10 wt % zein
solution containing 4 wt % Ag nanoparticles. The additional viscosity and increased concentration
with increasing Ag content might cause these morphological changes.

Table 1. The viscosity value of electrospun zein nanomaterials from ethanol aqueous solutions with
ethanol/water ratios of 7/3, 8/2 and 9/1 (v/v) according to polymer concentrations of 10, 15 and
20 wt %, respectively (Tip-to-collector distance (TCD) = 15 cm and applied voltage = 15 kV) at 25 ◦C.

Concentration 10 wt % 15 wt % 20 wt %

EtOH/H2O = 7/3 8.7 ± 1.6 mPa·s 20.8 ± 2.6 mPa·s 38.2 ± 2.7 mPa·s
EtOH/H2O = 8/2 9.1 ± 1.8 mPa·s 28.7 ± 2.1 mPa·s 45.2 ± 3.4 mPa·s
EtOH/H2O = 9/1 9.8 ± 1.4 mPa·s 35.1 ± 2.7 mPa·s 52.1 ± 3.5 mPa·s
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Table 2. The viscosity of zein/Ag nanoparticles electrospun from ethanol aqueous solutions with
an ethanol/water ratio of 8/2 (v/v) according to Ag concentrations of 0, 2 and 4 wt % (polymer
concentration = 10 wt %, TCD = 15 cm, and applied voltage = 15 kV) at 25 ◦C.

Ag Concentration 0 wt % 2 wt % 4 wt %

EtOH/H2O = 8/2 9.1 ± 1.8 mPa·s 11.8 ± 2.1 mPa·s 12.4 ± 2.6 mPa·s
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from ethanol aqueous solutions with an ethanol/water ratio of 8/2 (v/v) at Ag concentrations of (a) 0, 
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ethanol aqueous solutions with an ethanol/water ratio of 8/2 (v/v) at Ag concentrations of (a) 0, (b) 2 
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Figure 1. Field emission scanning electron microscopy (FE-SEM) images of zein nanomaterials
electrospun from ethanol aqueous solutions with ethanol/water ratios of 7/3, 8/2 and 9/1 (v/v)
at polymer concentrations of 10, 15 and 20 wt % (Tip-to-collector distance (TCD) = 15 cm and applied
voltage = 15 kV).
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Figure 2. FE-SEM images, average diameter, and distribution of zein/Ag nanoparticles electrospun
from ethanol aqueous solutions with an ethanol/water ratio of 8/2 (v/v) at Ag concentrations of (a) 0,
(b) 2 and (c) 4 wt % (polymer concentration = 10 wt %, TCD = 15 cm, and applied voltage = 15 kV).
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Figure 3 presents the TEM images of single isolated zein/Ag composite nanoparticles containing
0, 2 and 4 wt % Ag nanoparticles. These TEM images indicate the coexistence of Ag nanoparticles and
a zein matrix in the electrospun zein/Ag composite nanoparticles. Moreover, these images indicate
that the nanoparticles contracted and were reshaped with increasing Ag content. Due to the strong
interactions between the polymer and metal, the Ag nanoparticles are embedded well within the zein
matrix. The TEM images indicate that the Ag nanoparticles are well dispersed in the polymer matrix
and that the number of Ag nanoparticles gradually increases in the zein/Ag composite nanoparticles
with increasing Ag content. These results support the FE-SEM results described above. It is evident
from the FE-SEM and TEM results that a small amount of Ag nanoparticles can effectively alter the
morphology of zein nanoparticles.

3.2. XRD Data

XRD patterns of the electrospun nanoparticles obtained from pristine zein and the zein/Ag blend
systems with various Ag concentrations are presented in Figure 4. The pure zein powder exhibits
a sharp peak at 2θ = 8.96◦ (9.86 Å) and a broad peak at approximately 2θ = 19.58◦ (4.53 Å) [43].
The shorter d-spacing of approximately 4.5 Å is believed to be related to the average backbone distance
within the α-helix structure of zein, whereas the larger d-spacing of approximately 10 Å is thought
to be the spacing of the inter-helix packing or the mean distance of approach of neighboring helices,
as described in the literature [44]. The electrospun zein nanoparticles in this work exhibited diffraction
peaks that were similar to those of the pure zein powder (Figure 4a). This result indicates that the
zein retains its structural conformation in the electrospun nanoparticles. The XRD patterns of the
zein/Ag composite nanoparticles show diffraction peaks near 8.96◦, 19.58◦, 38.2◦ and 44.6◦. However,
only the zein nanoparticles do not exhibit any diffraction peaks at 2θ values higher than 19.58◦

(Figure 4a). Hence, except for the diffraction peaks of zein (2θ = 8.96◦ and 19.58◦), all of the other
peaks originated from the Ag phase (Figure 4b,c). These peaks correspond to the (111) and (200)
planes of Ag nanocrystals with cubic symmetry [45]. The diffraction peaks of the zein/Ag composite
nanoparticles near 2θ values of 8.96◦ and 19.58◦ (Figure 4b,c) indicate that the structural conformation
of zein remains unaltered in the composite nanoparticles with Ag. This structural stability of zein
indicates the coexistence of Ag nanoparticles with the zein matrix, which was also supported by the
TEM results. Moreover, the XRD patterns clearly demonstrate that the diffraction peak intensities
corresponding to Ag nanoparticles increased and those related to zein decreased and broadened
with increasing Ag content in the zein/Ag composite nanoparticles. These changes in peak intensity
also suggest the significant congregation of Ag nanoparticles with increasing Ag content within the
zein/Ag composite nanoparticles. This was also supported by the TEM results.
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Figure 4. X-ray diffraction patterns of zein/Ag nanoparticles electrospun from ethanol aqueous
solutions with an ethanol/water ratio of 8/2 (v/v) at Ag concentrations of (a) 0, (b) 2 and (c) 4 wt %
(polymer concentration = 10 wt %, TCD = 15 cm, and applied voltage = 15 kV).

3.3. Thermal Stability

Electrospun zein nanomaterials are more thermally stable than solution cast films [10]. Moreover,
the introduction of inorganic materials into the electrospun zein nanocomposites also improves
their thermal stability [11]. The thermal stability of the electrospun zein/Ag nanoparticles was
examined using TGA in a nitrogen atmosphere to investigate the effect of the Ag nanoparticles on the
thermal stability of the composites. Figure 5 presents the TGA thermograms obtained from zein/Ag
nanoparticles containing 0, 2 and 4 wt % Ag nanoparticles at various decomposition temperatures.
Three typical weight losses were observed in the TGA thermograms of both pure zein and the
zein/Ag nanocomposites [10,11]. The top plot (Figure 5a) represents the pristine zein nanoparticles
and the bottom plot (Figure 5c) represents the zein/Ag composite nanoparticles containing 4 wt %
Ag nanoparticles, i.e., the highest mass ratio of Ag used in this work. Figure 5b displays the TGA
curve for the 2 wt % Ag content, which shows the same trend in thermal stability as that shown in
Figure 5a,c. The TGA thermograms indicate that the addition of Ag nanoparticles to the electrospun
zein nanoparticles significantly increased the thermal stability of the zein nanoparticles, and that this
thermal stability increased considerably depending on the Ag content. Notably, the thermal stability
increase corresponds to the amount of Ag nanoparticles throughout the thermal decomposition process.
The additional thermal stability of the electrospun zein/Ag composite nanoparticles at comparatively
high Ag content might be attributed to their higher chain compactness due to the interaction between
the zein and the Ag nanoparticles. This result clearly indicates that Ag nanoparticles have a positive
effect on the thermal stability of the electrospun zein nanoparticles.

1 
 

 
Figure 5. Thermogravimetric analysis data of zein/Ag nanoparticles electrospun from ethanol aqueous
solutions with an ethanol/water ratio of 8/2 (v/v) at Ag concentrations of (a) 0, (b) 2 and (c) 4 wt %
(polymer concentration = 10 wt %, TCD = 15 cm, and applied voltage = 15 kV).
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3.4. Antibacterial Efficacy

Ag nanoparticles are known to exhibit strong inhibitory and antibacterial effects, as well as a broad
spectrum of antimicrobial activities [5,46]. To provide useful information on the biological function of
electrospun zein/Ag composite nanoparticles, the antibacterial performance of the electrospun zein
and zein/Ag composite nanoparticles was evaluated in viscous aqueous test samples. The results
obtained against Staphylococcus aureus are presented in Figure 6. The antibacterial efficacy of the
pure zein and zein/Ag composite nanoparticles was assessed by counting the number of bacteria
remaining in the sample after a certain time of storage at 32 ◦C. As observed in Figure 6b, the pure
zein nanoparticles exhibited antibacterial properties; however, they could not fully prevent bacterial
growth. This is because the antibacterial effect of the zein polymer, which is resistant to microbial
attack [9]. In contrast, the incorporation of the Ag composite nanoparticles into the test samples
resulted in a remarkable decrease in the number of bacteria, as observed in Figure 6c,d. Based on the
Ag ion release, it is expected that all the zein/Ag nanoparticles investigated exhibit good antimicrobial
efficacy. Sterilized specimens of the zein, as well as of the Ag-filled samples, were inoculated with
a suspension of Staphylococcus aureus in Luria broth to check their antimicrobial efficacy. The Ag
content in the zein/Ag composite nanoparticles shows no significant trend in reducing the number of
bacteria. With only a small amount of Ag, almost all the initially inoculated bacteria could be sterilized
within a week. This result indicates that the electrospun zein/Ag nanoparticles are highly effective
antibacterial materials and suggests that only a small amount of Ag nanoparticles can make zein
more efficient against bacteria. In order to provide useful information on the biological function of
zein and zein/Ag nanoparticles, the antibacterial performance of zein and zein/Ag was evaluated in
viscous aqueous test samples, and the results are shown in Figure 7. As shown in Figure 7, the zein
without Ag show little antibacterial performance (bacteriostatic ratio of zein = 80%). The increase in
the concentration of the Ag nanoparticles accelerate diminishing in bacterial (bacteriostatic ratio of
zein/Ag = 99.99%). The number of bacteria in the test samples remained constant for a long time.
In contrast, the incorporation of Ag nanoparticles showed a remarkable decrease in the number of
bacteria. Increasing the Ag concentration in the zein/Ag composite nanoparticles enhanced the decline
in the level of bacteria. With only a small amount of Ag present, almost all of the initially inoculated
bacteria could be sterilized within a week. This indicates that the zein/Ag nanoparticles have an
antibacterial activity. The release of Ag from zein/Ag nanoaprticles during different periods of time is
shown in Figure 8. A similar behavior is observed for both the nanoparticles, although the Ag+ ion
is higher for zein/Ag 4 wt %. After 10 h of incubation, the ratio of Ag+ ion release nearly stabilized.
The result of antibacterial activity and Ag+ ion release indicates that Ag+ ion attacks the bacterial
activity at the early time.
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4. Conclusions
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and morphologies of zein nanoparticles. The addition of only a small amount of Ag nanoparticles was
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bacterial growth. These results suggest the potential practical use of zein/Ag composite nanoparticles.
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