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Abstract: The polymer nanocomposite used in this work comprises elastomer 

poly(dimethylsiloxane) (PDMS) as a polymer matrix and multi-walled carbon nanotubes 

(MWCNTs) as a conductive nanofiller. To achieve uniform distribution of carbon 

nanotubes within the polymer, an optimized dispersion process was developed, featuring a 

strong organic solvent—chloroform, which dissolved PDMS base polymer easily and 

allowed high quality dispersion of MWCNTs. At concentrations as high as 9 wt.%, 

MWCNTs were dispersed uniformly through the polymer matrix, which presented a major 

improvement over prior techniques. The dispersion procedure was optimized via extended 

experimentation, which is discussed in detail. 
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1. Introduction 

Polymers possess a great variety of material characteristics (e.g., mechanical flexibility, optical 

transparency, biocompatibility, chemical stability, etc.) enabling them to be used in diverse 

applications such as microfluidic systems and bio-implantable systems. A polymer can be produced in 

huge volumes thanks to the development in its manufacturing industry. For example, 
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microelectromechanical systems (MEMS) can be readily made from polymer by processes such as cast 

molding, injection molding, hot embossing and photolithography. 

However, due to lack of electrical conductivity in most polymers, the role of this material has been 

limited to a structural component in most applications. Often, polymer-based MEMS devices require 

conductive elements to electrically control or collect signals from systems. While metal suffers 

coherent incompatibility issues with polymers, a mixture of polymer and nanoscaled fillers—termed 

nanocomposite provides an alternative of incorporating conductivity into polymer systems. This class 

of material is unique in the sense that it retains many desirable features of polymers (flexibility, 

biocompatibility, processability) yet adds electrical conductivity and/or piezoresistivity from the 

nanofiller which is not an intrinsic property of most polymers. By utilizing polymer nanocomposite, 

components such as conductive electrodes and sensor elements could be incorporated into conformal 

all-polymer systems. 

Polymer nanocomposite is composed of a thorough mixture of polymer matrix and nanoscale filling 

materials. To use as the matrix of nanocomposite, there are numerous polymers of diverse properties to 

choose from, including both plastics and elastomers which are the main two types of polymers. For the 

purpose of sensing specifically, a good deal of research effort has been committed to select an 

appropriate hosting matrix for the nanocomposite. Various polymers such as  

poly(methyl methacrylate) (PMMA) [1,2], polycarbonate (PC) [3], poly(ethylene) (PE) [4],  

poly(L-lactide) (PLLA) [5], etc. have been incorporated with nanofillers to construct strain sensors, 

which are capable of holding larger tensile strain than conventional metallic strain gauges [6]. 

Compared with above polymers, silicone-based elastomer poly(dimethylsiloxane) PDMS owns 

superior mechanical elasticity as it easily holds over 100% of tensile strain without any structural 

failure [7], making it an ideal choice for large-range strain sensing applications. Its flexibility allows it 

to be readily attached to curved surfaces, which is often necessary in biomedical sensors. Moreover, 

PDMS being a chemically inert and biocompatible material is widely used in microfluidics and 

biomedical areas [8]. 

Since MEMS-based sensors require feature sizes on the microscale, conductive fillers of polymer 

nanocomposite typically have feature size on the nanometer scale, so that the conformity of 

microstructures could be ensured. Common nanofillers include carbon nanotubes, carbon black 

(nanoscaled carbon particles), metal particles and flakes [9]. Amongst these, carbon nanotubes are 

particularly interesting candidate for sensing applications. 

Ever since the discovery of carbon nanotubes by Iijima in 1991 [10], numerous research has been 

conducted to explore the potentials of this “magic” material [11]. With a high aspect ratio because of 

its long tubular structure, carbon nanotubes demonstrate relatively high electrical conductivity. For 

example, compared with other conductive nanofillers (e.g., metal flakes or particles with lower aspect 

ratios), carbon nanotubes composites of various polymers reach percolation threshold at a lower 

weight percentage [9,12]. Probably, tubular structures allow the formation of a more efficient  

electron-conducting network in CNT-based composite. Also, the piezoresistivity of CNTs make them a 

suitable candidate for sensors: when a CNT-based composite is exposed to mechanical deformation, 

the geometry and interconnections of nanotubes within the polymer matrix vary accordingly, which 

leads to a change in its electrical resistance. Further, CNTs are one of strongest materials known to 
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man, with tensile strength up to 63 GPa using multi-walled carbon nanotubes (MWCNTs) [13], giving 

them another edge over other materials for fabricating robust sensors. 

In this work, multi-walled carbon nanotubes were chosen over single-walled carbon nanotubes 

(SWCNTs) because MWCNTs generally offer better conductivity [32]. Plus, economic wise 

MWCNTs generally cost less to purchase. Thus, MWCNTs were picked as the preferred material over 

SWCNTs [14]. 

2. Results and Discussion 

In itself, dispersion is a spatial property whereby the individual carbon nanotubes are spread with 

the roughly uniform number density throughout the continuous polymer matrix. The first challenge is 

to separate the tubes from their initial aggregated assemblies, which is usually achieved by local shear 

forces. Direct manual mixing of CNTs with polymer resin, though the simplest approach, does not 

create sufficient local shear force and therefore leads to poor dispersion of CNTs inside  

polymer matrix. 

More effective separation of CNT bundles requires the overcoming of the inter-tube van der Waals 

attraction [15]. Depending on the tube shape/size and the orientation of nanotubes with respect to each 

other, such an attraction can act within a spacing of a few nanometers [16]. For closely packed tubes 

within a medium, the surface adsorption of a dispersant, or the wetting of the polymer/solvents, both 

require a temporary exfoliation state. Physical approaches such as shear mixing [17], mechanical 

stirring, sonication [18], ball milling [19] and micro-bead milling [20] processes have been employed 

for this purpose. Although these techniques may appear very different, they are all governed by the 

transfer of physical shear stress onto nanotubes which breaks down bundles. 

In shear mixing, for example, the separation of individual CNTs from bundles is achieved in shear 

flow induced by the rotation of an extrusion in a polymer solution or melt. Usually, dispersion via 

shear mixing is only achievable for specific types of MWCNTs, with a high shear rate in a rather 

viscous medium. Terentjev et al. demonstrated that nanocomposite containing high loading 

concentrations of CNTs (up to 7 wt.%) could be dispersed via this technique [21]. However, the 

processing time significantly goes up as loading concentration rises. More importantly, shear mixing 

tends to section carbon nanotubes into shorter length scale, thereby reducing their conductivity 

significantly—an undesired attribute for nanocomposite intended for use as a sensor material. 

The dispersion of carbon nanotubes could be assisted by the introduction of a common solvent—an 

organic solution which dissolves polymer resin easily and at the same time allows monodispersion of 

carbon nanotubes. In this case, two dispensed solutions sharing common solvent but containing carbon 

nanotubes and polymer resin respectively, undergoes mechanical stirring or the increasingly popular 

sonication process. Following that, two solutions are mixed together to further go through stirring or 

sonication. Finally with the complete evaporation of solvent, CNTs would leave dispersed in polymer. 

Here the choice of organic solvent is critical for determining the final dispersion quality and depends 

on the polymer matrix. For PDMS alone, various organic solvents have been reported to assist 

dispersion of CNTs, such as toluene [22], tetrahydrofuran (THF) [23], chloroform [24,25], 

dimethylformamide (DMF) [26], etc. While each report claims high dispersion quality of CNTs, there 

is lack of standard characterization protocol for dispersion of CNTs within polymers [15], leaving 
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room for subjective judgment. Comparative experimental tests are still needed to verify optimal 

solvent choice for the dispersion of carbon nanotubes. 

It should be noted that even with optimal common solvent to help dispersion, the optimization of 

process conditions is still critical to ensure final dispersion quality. In the stage of solvent evaporation, 

for instance, as CNTs concentration continuously increases so does the re-aggregation effect of CNT 

bundles. Thus, this step needs to be best shortened to minimize the compromise of dispersion. 

2.1. Materials and Reagents 

Pristine multi-walled carbon nanotubes (MWCNTs) used in this work were purchased from 

Cheaptubes, Inc., (Brattleboro, VT, USA) with a relative purity >95 wt.%. The dimension of the 

MWCNTs was 20–30 nm in outer diameter, 5–10 nm in inner diameter and 10–30 µm in length. To 

comparatively study the effect of surface functionalization on its dispersion state, MWCNTs treated 

with carboxylic acid groups (MWCNTs-COOH) were also obtained from the same company 

(MWCNTs-COOH contains 1.23 wt.%-COOH groups. The other properties remained the same, with 

relative purity >95 wt.%, 20–30 nm in outer diameter, 5–10 nm in inner diameter and 10–30 µm in 

length, to affirm the validity of the comparative study. 

The polymer matrix used in this work—poly(dimethylsiloxane) (PDMS)—is a silicone elastomer. 

Specifically, Sylgard 184 silicone elastomer kit was purchased from Dow Corning Inc. (Midland, MI, 

USA), which had two parts: polymer base resin and curing agent. The two parts are recommended to 

be mixed at the ratio of 10:1 and exposed to thermal curing in order to realize solidified PDMS. In fact, 

the mixing ratio could be varied in order to tune mechanical properties of PDMS (Young’s modulus), 

making it a versatile material to utilize. 

2.2. Selection of Optimal Solvent for the Dispersion of CNTs within PDMS 

The dispersion assisting solvent depends on the type of polymer and CNTs, as it needs to dissolve 

both well to be effective. Also, even when a solvent disperses both polymer and filler well separately, 

the combination of the two could have an adverse effect on the dispersion state. Therefore,  

the conclusion of an optimal common solvent could only be drawn after careful comparative 

experimental studies. 

2.2.1. CNTs Dispersion in Different Organic Solvents 

As noted earlier, a variety of organic solvents have been used to assist dispersion of CNTs in 

polymers. Solvents including toluene [22], tetrahydrofuran (THF) [23], chloroform [24,25], 

dimethylformamide (DMF) [26], etc., in particular, have been reported to reach great dispersion. 

Nevertheless, due to the lack of sufficient dispersion characterization data from these reports, 

experimental studies are still required to compare their actual performances and verify optimal choice 

for the dispersion of carbon nanotubes. An advantage of comparative study is that only relative 

dispersion quality is required to be evaluated, based on which a best solvent could be chosen from the 

solutions tested. 
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To compare the dispersion of MWCNTs in different solvents, four organic solutions including 

toluene, chloroform, DMF, and THF, as shown in Table 1, were used for experimental test in the 

following manner. 

Table 1. Important properties of experimentally tested organic solvents. 

Organic solvent Chemical formula 
Density  

(g/mL @ 20 °C) 
Boling point 

(°C) 
Vapor pressure 
(kPa @ 20 °C) 

Toluene C6H5CH3 0.86 110.6 2.93 
Chloroform CHCl3 1.48 61.2 21.1 

Tetrahydrofuran C4H8O 0.89 66 19.3 
Dimethylformamide C3H7NO 0.94 153 0.3 
PDMS base resin (C2H6OSi) 1.11 N/A N/A 

First, quantities of pristine MWCNTs weighing about 3 mg were added into four vials containing 10 mL 

of respective solutions, yielding a concentration of 0.3 mg/mL, as shown in Figure 1 (chloroform). 

Figure 1. Images showing 3 mg of multi-walled carbon nanotubes (MWCNTs) being 

added into 10 mL of chloroform. In the magnified view black bundles settled on vial 

bottom were from as-is MWCNTs. 

 

Here, a low concentration was desired to offer partial optical transparency in dispersed solutions. 

Through trial and error, it was found that solution with concentrations higher than about 1 mg/mL, 

after dispersion, would become completely nontransparent, which was not desirable for direct visual 

observation. On the other hand, it was found in experiments that a concentration of 0.3 mg/mL or 

lower was possible for direct visual observation of dispersion qualities. Although the 0.3 mg/mL 

threshold was somewhat empirical, MWCNTs dispersed around this concentration were able to be 

observed clearly and consistently. With this small amount of MWCNTs the inaccuracy of the weight 

equipment was relatively significant (±1 mg) which might cause variations in the concentration of 

MWCNTs in different solvents. However, later optical observation would prove, though, this variation 

was not significant in affecting the dispersion quality of solutions. 

After introducing MWCNTs into four solutions, each mixture was then sonicated using a mild 

sonication bath (FS20D Fisher Scientific, frequency 42 kHz, output power 70 W) for 30 min at 

nominal power. This process yielded semi-transparent dispersed MWCNT suspensions, as shown in 
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Figure 2a, composed of individual nanotubes and micro-sized bundles which were invisible to the  

bare eye. 

The stability of CNT dispersion state is a valuable indication of its dispersion quality, as CNTs tend 

to reaggregate into bundles with time in an unstable environment. The longer dispersion lasts and the 

fewer/smaller CNT bundles occur, the higher its dispersion quality. Here a simple approach of optical 

observation of CNT bundles was applied to evaluate dispersion quality. Although this approach could 

not determine the absolute quality of dispersion, it was well suited for comparative studies, where only 

relative information was extracted and compared from samples tested under identical conditions. 

All four vials were held still after their sonication. Seventy hours later, unstable dispersions showed 

signs of reaggregation to different extents, as indicated in Figure 2b. Visible MWCNT bundles were 

observed to settle at the bottom of vials, as shown in Figure 2c (chloroform) as an example. In the 

worst case of toluene, suspension showed apparent phase separation, with MWCNTs almost 

completely settled at the bottom and upper solution void of dispersed MWCNTs. Based on visual 

observation of the amount of reaggregated MWCNTs in various comparative experiment settings, it 

was likely that the reaggregation effect had an order of: toluene > chloroform > THF > DMF. 

One week after sonication, as shown in Figure 2d, solutions largely remained their dispersion state, 

other than the now transparent toluene solution. Figure 2e shows that, even after an extended holding 

period of 8 months, MWCNTs dispersion in the other three solutions maintained its stability, 

regardless of the fact that part of solutions evaporated causing CNT concentration to rise. In the case of 

chloroform, especially, the amount of its CNT bundles, as shown in Figure 2f, did not increase notably 

from the 70 h mark, which proved it to be also a stable dispersion. Overall, despite minor variations in 

dispersibility of MWCNTs, all three solvents including chloroform, THF and DMF could be 

considered candidates to help the dispersion of CNTs inside polymer nanocomposite. 

2.2.2. Solubility of PDMS Base Polymer in Different Organic Solvents 

As a common solvent to assist dispersion of polymer nanocomposite, another important 

requirement is its ability to dissolve the polymer matrix. Therefore, the choice of solvent varies 

significantly depending on the type of polymer matrix. For PDMS specifically, the four organic 

solvents (toluene, chloroform, DMF, THF) which have been used in previous reports were used here 

for testing. 

It should be noted that since PDMS is a two-part thermal curable polymer, only one part should be 

used in the dispersion process of CNTs. As dispersion usually takes more than a few hours, the 

presence of two parts mixed together could render PDMS partially polymerized, which then would not 

be usable anymore for microfabrication. With a manufacturer-recommended mixing ratio of 10:1, 

PDMS base polymer resin occupies more than 90% weight of the polymer matrix, thus the base 

polymer is generally the part used for dispersion with CNTs. Curing agent, on the other hand, would 

be added after the evaporation of the common solvent, which will be further discussed later. 
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Figure 2. MWCNTs dispersed in different organic solvents via 30 min of sonication. 

Solutions from left to right: toluene (0.3 mg/mL MWCNTs), chloroform (0.3 mg/mL), 

dimethylformamide (DMF) (0.3 mg/mL), tetrahydrofuran (THF) (0.4 mg/mL).  

(a) Dispersion state directly after sonication, showing no visible MWCNT bundles;  

(b) Solutions at 70 h after sonication showing reaggregation effect of MWCNTs in order of 

toluene >> chloroform > THF > DMF; (c) Magnified view of visible MWCNTs bundles in 

chloroform solution; (d) one week after sonication. Volume of THF solution was slightly 

adjusted to match the others after 4 days with no further sonication; (e) eight months after 

sonication. Solutions have evaporated to different extents but three out of four dispersions 

remained stable; (f) Magnified view of visible MWCNTs bundles in chloroform dispersion, 

indicating that amount of bundles remained about the same with (c). 

 

(a)

(b)

(c)

Toluene Chloroform DMF THF 
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Figure 2. Cont. 

 

Out of the four organic solutions tested, toluene was found to have great solubility for PDMS base 

polymer. Nonetheless, it could not be an ideal candidate as common solvent because of its relatively 

poor dispersion of MWCNTs. 

DMF, although had the best dispersibility for MWCNTs, was found to react with PDMS base resin. 

Upon mixing of these two solutions, a white colored gel-like substance was formed due to chemical 

reaction. Thus, while it may be useful to be used for dispersion of other polymer matrices, in the case 

of PDMS, due to chemical incompatibility, it would not be useful for the fabrication of nanocomposite.  

Interestingly, chloroform and THF were both found to own high solubility of PDMS base resin, 

able to dissolve PDMS at concentration higher than 0.3 g/mL. Because of their relatively high 

(d) 

(e) 

(f) 
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dispersion of MWCNTs, both of these could potentially work as common solvents for the preparation 

of polymer nanocomposite. Further tests were conducted (as follows) as visual observation alone may 

not be sufficient to distinguish which of the two solutions would work better for PDMS. 

2.2.3. The Effect of PDMS on Dispersed Carbon Nanotubes in Different Organic Solvents 

Supposedly, as long as the common solvent can dissolve MWCNTs and PDMS well separately, it 

should work for the combination of the two. The two suspended solutions could simply be poured 

together to go through further sonication in order to achieve high quality dispersion. Surprisingly, that 

was found to be not the case with certain organic solvents. 

From the above section, both THF and chloroform were promising candidates to work as common 

solvent due to their exceptional ability to disperse MWCNTs and PDMS separately. However, when 

MWCNTs and PDMS were both present in the solvent, THF and chloroform had dramatically  

different performances. 

In the case of THF, firstly MWCNTs were dispersed at 0.4 mg/mL (±0.2 mg/mL) via sonication for 

10 min. Then, PDMS base resin at 0.15 g/mL concentration was added into the already-dispersed 

CNTs, as shown in Figure 3a. From Table 1, as the density of PDMS base resin (1.1 g/mL) was higher 

than THF (0.89 g/mL), PDMS settled at the vial bottom and could be clearly told from the dispersed 

CNTs. Afterwards, the mixture was sonicated for an additional 30 min, resulting in a fully dispensed 

solution, as in Figure 3b. However, this dispersion state was not stable with time. MWCNTs almost 

started reaggregating immediately, forming visible bundles just 30 min after sonication was finished, 

as seen in Figure 3c. Moreover, after a period of 21 h, originally dispersed MWCNTs had now 

completely settled at the vial bottom, as shown in Figure 3d, leaving the upper portion of solution  

fully transparent. 

Figure 3. Vial images showing effect of poly(dimethylsiloxane) (PDMS) on dispersion 

state of MWCNTs in THF solution: (a) PDMS added into dispersed MWCNTs-THF 

solution; (b) THF solution containing PDMS and MWCNTs directly after 30 min of 

sonication; (c) solution at 30 min after completion of sonication, showing visible CNTs 

bundles, and (d) solution at 21 h after sonication, showing complete phase separation 

which indicated the instability of dispersion. 

 
(a) (b) (c) (d) 



Nanomaterials 2012, 2            

 

 

338

In fabrication of polymer nanocomposite, PDMS base was normally first dissolved in an organic 

solvent before being added into a CNT dispersion solution, instead of directly being added like in the 

above process. With the pre-dissolution of PDMS, similar effects also occurred when MWCNT 

dispersion significantly deteriorated after the introduction of PDMS content. The reason for the 

adverse effect of PDMS on THF-CNT dispersion has yet to be understood, however, although THF did 

not alter properties of PDMS base resin when mixed with it, some functional groups on PDMS base 

molecules could have affected the affinity between THF and MWCNTs. 

In the case of chloroform, similar experimental procedures were carried out to test the effect of 

PDMS on the dispersion state of MWCNTs. Briefly, MWCNTs were first dispersed at 0.4 mg/mL 

(±0.2 mg/mL) via sonication for 10 min. Then, PDMS base at around 0.12 g/mL concentration was 

added into solution, as shown in Figure 4a. Since the density of PDMS base (1.1 g/mL) was lower than 

chloroform (1.48 g/mL), PDMS stayed at the solution top separated from CNT. Then, solution was 

mechanically stirred for 14 min (to help expedite dissolution of PDMS) and consequently sonicated for 

1 min, leading to a fully dispensed solution. Unlike THF-CNT dispersion, the chloroform suspension 

remained much more stable, as shown in Figure 4b, showing no visible deterioration of dispersion state 

even at 42 h after sonication. 

Figure 4. Vial images showing effect of PDMS on dispersion state of MWCNTs in 

chloroform solution: (a) PDMS added into dispersed MWCNTs-chloroform solution, 

staying on top portion and (b) Chloroform solution containing PDMS and MWCNTs 42 h 

after sonication. 

 
(a) (b) 

Based on the above visual comparison in Figure 4 of THF and chloroform in which PDMS and 

MWCNTs were dispersed, it can be concluded that, with similar circumstances, chloroform yielded a 

much more stable—thus higher quality dispersion of PDMS base and MWCNTs. Therefore, the best 

choice of common solvent among tested solutions should be chloroform. 

2.3. Effect of CNT Functionalization on Dispersion 

It has been reported that carbon nanotubes with functionalized surfaces by carboxyl (–COOH) 

groups, compared to their pristine counterpart, could have better dispersion in polymer matrices [22,27]. 
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To verify the effect of surface functionalization, comparative experiment was carried out, in which 

pristine and –COOH carbon nanotubes were dispersed with PDMS base in chloroform solutions in a 

parallel fashion under similar conditions. Briefly, both pristine MWCNTs (0.14 mg/mL) and  

COOH-MWCNTs (0.16 mg/mL) were first sonicated inside two vials for 5 min. Then, PDMS base at 

around 0.13 g/mL concentration was added into both solutions, which went through additional 

sonication for 1 h and mechanical stirring (magnetic stirrer at 1150 rpm) for 10 min. This process 

resulted in well dispersed solutions, as indicated in Figure 5a. However, due to the adverse effect of 

mechanical stirring on an established dispersion state which will be discussed in next section, 

dispersed solutions became unstable 4 h after stirring, as revealed in Figure 5b, leadings to visible 

phase separation in the pristine MWCNTs solutions. Relatively speaking, it was clear that the  

COOH-MWCNT dispersion, after going through the same processing steps, was much more stable 

than the pristine MWCNT dispersion. Therefore, it could be verified that carboxyl functionalized 

carbon nanotubes had better dispersion in polymers than pristine carbon nanotubes. 

Figure 5. Comparative studies of functionalized and pristine MWCNTs in their dispersion 

with polymer matrix in common solvent: (a) initial dispersion of MWCNTs directly after 

sonication and stirring showing nontransparent solutions and (b) dispersion at 4 h after the 

stoppage of stirring, with pristine MWCNT case showing clear phase separation. 

 

Functionalized 
CNTs 

Pristine 
CNTs 

(a)

(b) 
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A potential reason for that was the covalent bond between CNTs and the polymer matrix due to 

surface functionalization could help prevent nanotubes from agglomerating and forming bundles. 

Moreover, it was thought that, aside from dispersion, the production of robust nanocomposite materials 

may prefer strong covalent chemical bonding between the nanofillers and the polymer matrix rather 

than the much weaker van der Waals physical bonds which occur if the fillers were not  

functionalized [27]. 

2.4. Comparison of Dispersion Approaches 

Amongst the main forms of physical dispersion methods three are particularly interesting: shear 

mixing, mechanical stirring, and sonication. In effort to optimize the dispersion process in the 

preparation of polymer nanocomposite, in this work these three approaches were experimentally tested 

and compared in terms of their performance, and a combinatory approach was proposed for the  

fabrication process. 

2.4.1. Shear Mixing 

Shear mixing separates individual CNTs from bundles via the shear flow induced by the rotation of 

an extrusion in a polymer solution or melt. Usually, dispersion via shear mixing is only achievable for 

specific types of MWCNTs, with high shear rate in a rather viscous medium. Therefore, it does not 

necessarily require any common solvent to assist dispersion, which simplifies the process. 

Nanocomposite containing high loadings of CNTs (up to 7 wt.%) have been realized via this  

technique [21]. However, a major downside is that the processing time significantly goes up as loading 

concentration rises. More importantly, shear mixing tends to section carbon nanotubes into shorter 

length scale, thereby reducing their conductivity significantly—an undesired attribute for 

nanocomposite intended for use as a sensor material. 

In our experiments, various loading percentages of MWCNTs (~2–8 wt.%) were shear mixed with 

PDMS base polymer using a drilling machine (GMC 10-inch drill press stage, rpm 1000–1500 rpm). It 

was found that, although CNTs could be well dispersed within PDMS directly, the conductivity of the 

final nanocomposite was simply compromised too much for it to work effectively as a sensing 

material. The shortening of nanotubes due to shearing caused conductivity to decrease by more than  

10 times compared to other approaches, which was undesirable for conductive nanocomposite. 

Therefore, this method was eventually not incorporated into the process of nanocomposite fabrication. 

2.4.2. Sonication 

Being the most popular dispersion technique today, ultrasonic agitation exposes CNTs to ultrasonic 

waves and transfers shear forces to individual nanotubes which break them from agglomerates. There 

are two frequencies of ultrasonic waves that are used: (1) low frequency (~20–24 kHz); and (2) high 

frequency (~42–50 kHz). The sonication bath used in this work has high frequency but relatively low 

power (FS20D Fisher Scientific, frequency 42 kHz, output power 70 W). Although higher power of 

the sonication bath (>500 W) is desired as it provides higher shearing force to break down CNT 

bundles, nevertheless, prolonged exposure could also cause damaging of CNTs (especially shortening) 
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which could significantly decrease the conductivity of CNTs [28]. Considering all factors, a mild 

sonication bath would be an ideal option as it allowed high quality of dispersion yet avoided severe 

damaging of CNTs during sonication. 

Sonication was an essential process to control because it covered most of the nanocomposite 

preparation steps. Temperature was an important factor to control and normally needed to be low in the 

initial dispersion stage. Due to lack of cooling sinks on sonication bath, temperature was maintained 

relatively constant by changing bath water about every 30 min. 

2.4.3 Mechanical Stirring 

Mechanical stirring facilitates dispersion as it creates shearing force through the high speed rotary 

motion of the stirrer. In this work, a magnetic stirrer was used which could rotate at maximal of  

1150 rpm. Experiments found that, for the dissolution of PDMS in organic solvents, magnetic stirring 

worked more efficiently time wise than sonication. To dissolve 2 g of PDMS base in 15 mL of 

chloroform, for example, magnetic stirring (1150 rpm) could shorten dissolution time (could be 

estimated  by disappearance of phase separation) from 1 h (sonication time) to around 8 min which 

was a significant improvement. 

In our experiments, however, mechanical stirring was found to be not beneficial for the 

improvement of CNT dispersion quality. As a matter of fact, it was shown to have an adverse effect on 

the dispersion state of PDMS-MWCNTs in common solvents. For the pristine MWCNT solution 

shown in Figure 5 above, the PDMS-MWCNTs dispersion in chloroform was, with 1 h of sonication, 

stable when observed 3 days afterwards. But when solution went through 10 additional minutes of 

mechanical stirring (1150 rpm), the dispersion almost immediately became less stable, showing visible 

CNT agglomerates in the vial. 

After comparing the three common dispersion approaches, it seemed that a combinatory approach 

would provide the optimal process. Mechanical stirring could be used for the initial dissolution of 

PDMS base in common solvent, as it was more time efficient. Sonication, on the other hand, could be 

used in the other aspects/steps of material preparation. 

2.5. Experimental Procedure for Preparation of Polymer Nanocomposite 

After numerous experimental trials and improvements, the so-far optimized procedure to obtain 

homogenous polymer nanocomposite is as follows. 

In the stage of initial dispersion, first COOH-MWCNTs (e.g., 0.2 g) are added into a solution of 

chloroform (e.g., 50 mL) inside a metric cylinder (e.g., 100 mL). Note that the CNT concentration here 

(4 mg/mL) is much higher than that used in the testing section, perhaps even higher than the solubility 

of CNTs in chloroform, but it was necessary to have a relatively high concentration because the weight 

of final nanocomposite needs to be at least a few grams to be useable. Plus, the small diameter of 

cylinder is usually preferred over a wide mouse beaker, because as little as the final polymer 

nanocomposite is (e.g., for 5 wt.% PDMS-CNTs, 0.2 g MWCNTs could produce only 4 g final 

nanocomposite), a wide beaker would cause majority of nanocomposite to stick onto the wall and 

bottom areas, leaving little for later usage. 
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After initial mixing of COOH-MWCNTs and chloroform, the mixture is sonicated for around 1 h. 

Meanwhile, PDMS base resin (e.g., 3.5 g) is added into a separate solution of chloroform (e.g., 10 mL), 

and stirred with a magnetic stirrer (1150 rpm) for 15 min. Then, the two solutions are mixed together 

to go through 1–2 h of additional sonication to ensure sufficiently uniform dispersion of MWCNTs 

and PDMS. Experiments suggest that, on top of this time, further extended time of sonication does not 

significantly improve dispersion quality anymore. 

Next in the state of solvent evaporation, it is highly desirable to minimize the required time to fully 

dry up the organic solution. As the concentration of CNTs continuously rise (for more than 2 orders) 

during the solvent drying process, some reaggregation of nanotubes is bound to happen. To minimize 

the size and amount of CNT agglomerates, solution should be dried as soon as possible. In this work, 

two techniques have been introduced to help expedite the solution evaporation process. 

Firstly, the temperature of the nanocomposite-containing chloroform solution could be raised close 

to its boiling point (61.2 °C). At this temperature, the properties of the nanocomposite stay virtually 

intact while the drying process dramatically speeds up. Simply, the fastest way to elevate solution 

temperature is to pour in pre-boiled water into the sonication bath, and carefully mix it to adjust the 

temperature to be at or slightly over the boiling point. 

Secondly, the introduction of a vacuum pump into the cylinder could speed up the evaporation 

process as well. One problem with the narrow-mouthed cylinder is that it usually takes days for 

solution (e.g., 50 mL) to fully evaporate even at elevated temperature, since vapor molecules get 

saturated inside cylinder and could not quickly escape. A Teflon tube connected to a vacuum pump 

could quickly remove the chloroform vapors from the upper portion of the cylinder, thus reducing 

evaporation time significantly from several days to a couple of hours (actual time depends on solution 

volume, CNTs percentage, temperature and vacuum level). 

Finally, after the complete evaporation of the common solvent and before the microfabrication of 

polymer nanocomposite, curing agent—another part of PDMS polymer should be introduced into the 

mixture. Since the mixing of curing agent and base polymer would cause PDMS to gradually solidify, 

usually in 24 h at room temperature, it is desired to minimize the mixing time for curing agent. Simple 

manual mixing for 10–20 min is normally carried at here. At the mixing ratio of 10:1 (base to curing 

agent ratio), experiments suggest that the relatively short manual mixing time does not alter the 

dispersion quality obviously. 

2.6. Dispersion Characterization of Final Nanocomposite 

While the dispersion and clustering of spherical particles has been studied well, for both spherical 

and highly asymmetrical (platelets, rods and fibers) [29–32], it has remained a technical challenge to 

directly and reliably observe carbon nanotubes in the bulk of a nanocomposite suspension. All optical 

methods (e.g., optical microscopy) cut off below a length scale of 0.2–0.5 μm; all electron microscopy 

methods, though prominent in observations of individual nanotubes, could only provide information 

about the sample surface, i.e., only representative for the selected fields of view. This leaves reciprocal 

space techniques and, more importantly, global indirect techniques of characterizing the dispersed 

nanocomposites; each of these techniques suffers from the unavoidable difficulty in interpretation  

of results. 
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Although attempts have been made to quantitatively assess the dispersion characteristics of CNTs 

inside polymer matrices (e.g., using Minkowski connectivity, radial power spectral density) [33], most 

reports still have to rely on optical and electron micrographs, despite their shortcomings, to evaluate 

relative quality of CNT dispersion [22,24,25,34]. 

In an effort to compare relative quality of various CNT dispersions within polymer matrices, this 

work has also adopted optical microscopy and electron microscopy for observation of CNT dispersion 

within polymer matrix. For instance, during the dispersion process, a drop of chloroform solution 

containing dispersed functionalized MWCNTs and PDMS base (CNT~4 mg/mL) was observed under 

a stereomicroscope. The optical micrographs shown in Figure 6 suggest that CNT cluster sizes 

generally did not exceed 10 μm. Compared to cluster sizes reported in existing literatures [22,34], this 

was indicative of relatively high dispersion quality. 

Figure 6. Optical micrographs of CNT dispersion inside a solution which contains 

chloroform, PDMS and functionalized MWCNTs. 

 

In the final polymer nanocomposite, it is difficult to use optical microscopy to directly observe the 

bulk dispersion of CNTs within polymer matrix, especially for those nanocomposite having a high 

loading percentage (>1%) of CNTs, since the samples normally become optically non-transparent. 

Scanning electron microscopy (SEM), on the other hand, provides a tool for observing the inside of a 

bulk sample. For example, a PDMS-MWCNTs nanocomposite sample containing functionalized 

MWCNTs was fractured in liquid nitrogen to obtain a cross section, and viewed under SEM, as in 

Figure 7. 

After optimization of our dispersion procedure, SEM images demonstrated relatively uniform 

distribution of nanotubes throughout the fractured surface. Cluster size throughout the nanocomposite 

remained consistently under about 3 µm. Compared with previously reported SEM images, this 

indicates an excellent dispersion quality, especially for nanocomposite containing high percentage of 

carbon nanotubes (>5 wt.%). 
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Figure 7. SEM images showing dispersed MWCNTs on a cross section of polymer 

nanocomposite that was fractured in liquid nitrogen. Nanocomposite contains around  

7 wt.% of functionalized carbon nanotubes throughout its matrix. Observation was made 

on same area of surface with following increasing magnification: (a) 160×; (b) 1000×;  

(c) 3000×; and (d) 10,000×. 

 

3. Conclusions 

In this work, to assist the dispersion of MWCNTs inside PDMS matrix and realize a uniform 

distribution, a common solvent was selected amongst various tested organic solutions. Based on its 

high solubility for PDMS and MWCNTs respectively, and its ability to retain dispersed state of 

MWCNTs in presence of PDMS, chloroform was found to be an optimal choice as a common solvent. 

Also, the surface functionalization of CNTs by carboxyl groups was found to be beneficial for further 

improvement of dispersion quality. 

Through extensive testing of a variety of widely used physical dispersion techniques such as shear 

mixing, mechanical stirring and sonication, a combinatory approach was developed in which 

mechanical stirring was used to facilitate the initial dissolution of PDMS inside common solvent, and 

mild sonication used to as a main tool to disperse MWCNTs within PDMS. Following the dispersion 

stage of MWCNTs and PDMS within the common solvent, the evaporation process was facilitated and 

expedited by use of vacuum pump and accurate control of elevated temperatures. Solution drying time 

was significantly shortened, and thereby initial dispersion quality was largely retained throughout 

solvent evaporation. 

(a) (b) 

(c) (d) 
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Even at high loading concentrations of CNTs within polymer, high quality dispersion of 

nanocomposite was achieved, which showed significant improvement over prior approaches. 

Dispersion quality was studied using various characterization tools such as optical microscopy and 

electron microscopy. With high quality dispersion of CNTs achieved in this work, the polymer 

nanocomposite may prove to be a desirable structural candidate for a variety of applications. 
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