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Abstract

Organic pollutants pose a significant threat to both the ecological environment and human
health. In this study, BiVO4@ZnO heterojunction composites were synthesized via a two-
step hydrothermal method. The incorporation of polyhedral BiVO, onto the flower-like
structure of ZnO effectively enhanced the photocatalytic performance of the compos-
ite. Compared with ZnO flower-like nanorods, the BiVO4@ZnO heterojunction compos-
ite photocatalysts achieved degradation efficiencies of 93.18% (k = 0.09063) and 89.64%
(k = 0.007661) for methylene blue (MB) within 30 min under ultraviolet and visible light
irradiation, respectively. The photocatalytic activity of the BiVO,@ZnO composites was
also evaluated against various organic dyes, including rhodamine B (RhB), Congo red
(CR), methyl orange (MO), and methylene blue (MB). Under ultraviolet light, the cata-
lysts showed particularly high activity toward MB and CR. The enhanced photocatalytic
performance can be attributed to two main factors: firstly, the heterojunction facilitates
the separation of photogenerated electron-hole pairs, thereby improving photocatalytic
efficiency; secondly, the composite exhibits a broadened and enhanced light absorption
range. Furthermore, the BiVO4@ZnO heterojunction composites demonstrate excellent
cyclic catalytic stability and structural integrity. This study offers a clean and efficient
strategy for the photocatalytic degradation of aqueous organic pollutants.

Keywords: hydrothermal method; BiVO4@ZnO; heterojunction composites; photocatalytic
degradation; methylene blue dyes

1. Introduction

In recent years, the release of pollutants such as organic dyes and antibiotics has exac-
erbated environmental degradation. These pollutants, with their complex structures and
high solubility in water, have seriously affected our health and survival [1,2]. In response,
photocatalytic technology has become a hot topic due to its potential in environmental
protection and energy conversion [3]. This technology harnesses solar energy to drive
chemical reactions that can break down organic pollutants and produce hydrogen gas,
which holds great practical significance [4,5].

However, traditional photocatalytic materials, especially ZnO-based photocatalysts,
still face significant challenges when it comes to efficiency and stability [6,7]. ZnO is a
widely studied semiconductor material renowned for its excellent photocatalytic perfor-
mance, low cost, and eco-friendliness. However, its wide bandgap (~3.37 eV) restricts its
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absorption primarily to the ultraviolet region, limiting its utilization of visible light. This
leads to a high recombination rate of photogenerated charge carriers and unstable pho-
tocatalytic activity, which severely hinders its effectiveness in practical applications [8,9].
Furthermore, prolonged light exposure can induce the photocorrosion of ZnO particles,
further degrading their catalytic performance [10]. Nevertheless, these very limitations
also make ZnO a highly adaptable platform for modification, offering opportunities for
significant property enhancements [11,12].

To enhance the photocatalytic performance of ZnO, researchers have explored various
modifications strategies, including morphology control [13,14], elemental doping [15,16],
deposition of noble metals [17,18], and the construction of heterojunctions [19-22]. Due to
their enhanced light harvesting capability, optimized charge separation effect upon light
induction, and a facile preparation process, the construction of heterostructures based
on ZnO has produced outstanding photocatalytic activity [23,24]. Recently, analysis of
charge transfer in these heterostructures has revealed the significant advantages of a well-
designed stepwise (S-Scheme) mechanism, leading to efficient redox reactions [25]. BiVOy,
which excels at absorbing visible light, has become a top choice for combining with ZnO
because of its moderate bandgap of about 2.4 eV. When ZnO is paired with BiVOy, it
can reduce the recombination of photo-generated carriers and improve photocatalytic
efficiency [26-28]. Moreover, ZnO unique flower-like structure provides an excellent base
for growing BiVO,, enhancing the combined effect of the two materials [29,30]. Therefore,
preparing BiVO,@ZnO heterojunction composites, especially using polyhedral BiVO,
nanoparticles to modify ZnO flower-like structures, can significantly improve catalytic
performance. The high specific surface area and numerous active sites of polyhedral BiVO,
nanoparticles provide more spots for photocatalytic reactions, while the ZnO nanorod-like
structure can enhance the material’s ability to capture light and conduct electricity. This
composite material helps separate and move photo-generated charge carriers, improves
light utilization, and significantly boosts photocatalytic activity and stability.

This study aims to address the limitation of efficiency in single-component photocata-
lysts. Innovatively, a polyhedral BiVO,4 nanoparticle-modified ZnO flower-like microrod
composites was constructed, moving beyond simple material mixing. By leveraging mor-
phology control and interface engineering, an efficient composite photocatalytic system
was developed. The innovation is demonstrated by utilizing the polyhedral BiVOy to
expand the light response range and provide abundant reaction sites, while employing the
hierarchical flower-like structure of zinc oxide to facilitate charge separation and transport.
The synergistic effect between the two components collectively significantly enhances the
photocatalytic performance.

2. Experiment

This experiment adopts a two-step hydrothermal method for preparing BiVO,@ZnO
Composite nanomaterials.

2.1. Preparation of ZnO Flower-like Nanorods

First, 20 mL of 0.05 mol/L zinc acetate solution was added dropwise into 20 mL of a
0.7 mol/L sodium hydroxide solution under magnetic stirring. The mixture was stirred for
30 min to form a homogeneous precursor solution, resulting in a molar ratio of zinc acetate
to sodium hydroxide of 1:14. The resulting clear and uniform precursor solution was then
transferred into a 50 mL stainless steel autoclave and heated in an oven at 100 °C for 10 h.
After the reaction was complete, the system was cooled to room temperature. The product
was collected and washed three times with deionized water and absolute ethanol. Finally, it
was dried in a vacuum oven at 60 °C for 12 h to obtain ZnO flower-like nanorod structures.
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2.2. Preparation of BiVO,4@ZnO Heterojunction Composites

In a typical process, 0.3 mmol/L of Bismuth nitrate pentahydrate (Bi(NO3)3-5H;0)
and 2 mmol/L of Sodium orthovanadate dodecahydrate (Na3VO,4-12H,0) were separately
placed in deionized water. After 10 min of ultrasonic treatment, stirring was continued
on a magnetic stirrer for another 30 min. Subsequently, the Bi(NO3)3-5H,O solution was
added dropwise to the NagVO,-12H,0O solution, and stirring was further maintained for
30 min to obtain a yellow suspension (70 mL), which served as the precursor solution. Then,
0.035 mol/L of the prepared ZnO flower-like nanorods were added to the aforementioned
precursor solution, followed by 30 min of stirring to form a homogeneous mixed solution.
The resulting mixture was transferred into a 100 mL Teflon-lined steel autoclave and
maintained at 160 °C for 6 h. After the reaction, the system was cooled to room temperature.
The product was collected, washed three times with deionized water and absolute ethanol
respectively, and then dried in a vacuum drying oven at 60 °C for 12 h to obtain the
BiVO4@Zn0O heterojunction composites.

2.3. Characterization

XRD (XRD, 6100, SHIMADZU, Kyoto, Japan) technology was utilized to determine
the crystal structure and purity of the material. The morphology of the material was
observed using scanning electron microscopy (ZEISS-GeminiSEM 360, Jena, Germany).
Surface EDS and element distribution of the prepared samples were characterized via
SEM-EDX and Mapping analysis. Chemical states and interactions of each element within
the material were analyzed using X-ray photoelectron spectroscopy (Thermo Fisher-Nexsa,
Waltham, MA, USA) test results. The functional groups and compound structures of com-
posite materials were studied using an FTIR spectrometer (Shimadzu-IRTracer 100, Kyoto,
Japan). The UV-VIS diffuse reflectance spectroscopy (UV-VIS DRS) test was conducted
on the ZnO flower-like nanorods and BiVO4@ZnO heterojunction composite materials
using an ultraviolet-visible-near-infrared spectrophotometer (Perkin Elmer-Lambda 750(s),
Hopkinton, MA, USA). Nitrogen adsorption/desorption isotherm measurements were
conducted on the samples at 77K using a Quantachrome instrument (Micromeritics-ASAP
2460, Norcross, GA, USA).

2.4. Evaluation of Photocatalytic Performance of MB, RhB, MO, and CR Dyes

The photocatalytic performance of ZnO flower-like nanorods and BiVO,@ZnO het-
erojunction composites was tested using a self-built photocatalytic reaction system, which
was equipped with an 18 W ultraviolet mercury lamp with a main wavelength of 365 nm
and a 20 W incandescent lamp as the visible light source, located 10 cm away from the
catalytic reagent. Four typical organic dyes, namely, methylene blue (MB), rhodamine B
(RhB), methyl orange (MO) and Congo red (CR), were selected as the target pollutants.
Then, 20 mg of the ZnO flower-like nanorods and BiVO,@ZnO heterojunction composite
catalysts was added to 50 mL of dye solutions with an initial concentration of 20 mg/L for
each. The mixture was magnetically stirred at a speed of 200 r/min for 10 min in a dark
room environment. After the system reached adsorption-desorption equilibrium, it was
placed under the ultraviolet and visible light sources respectively for the photocatalytic
degradation reaction. During the reaction, 4 mL of the reaction solution was taken from
the reactor every 10 min. The catalyst was separated by centrifugation at 8000 r/min for
5 min using a tabletop high-speed centrifuge. The supernatant was taken to determine the
absorbance of the dye at the maximum absorption wavelength by using a UV-Vis spec-
trophotometer (Hitachi Ltd.U-3310, Tokyo, Japan). The degradation concentration of the
dye was calculated according to the Lambert-Beer law. The photocatalytic experiments for
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the other three dyes all strictly followed the above operation procedures. All the sampled
samples were hermetically stored in the dark room environment.

3. Results and Discussion

The crystal structure of the ZnO and BiVO4@ZnO heterojunction composites was
characterized using XRD, and the resulting patterns are presented in Figure 1. As shown in
the figure, the diffraction peaks marked with circles correspond to those of the standard
hexagonal wurtzite structure of ZnO (JCPDS No. 36-1451), namely, the (100), (002), (101),
(102), (110), (103), (200), and (112) planes. This confirms that the synthesized ZnO possesses
a pure hexagonal wurtzite crystal structure. Furthermore, the peaks marked with diamonds
at 20 angles of 28.8°, 30.06°, 35°, 40°, and 54.2° match the standard diffraction pattern
for polyhedral BiVO, (JCPDS No. 14-0688), corresponding to the (121), (040), (200), (222),
and (161) planes, respectively. This confirms the successful formation of a composite
containing both ZnO and BiVO,. Additionally, the absence of any extraneous diffraction
peaks suggests the composite contains only ZnO and BiVOy, indicating high purity.
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Figure 1. XRD pattern of ZnO and BiVO4@ZnO heterojunction composites.

The microstructure and morphology of the ZnO and BiVO4@ZnO heterojunction
composites were characterized of the pure ZnO, revealing a densely packed bouquet-like
microstructure composed of clustered ZnO nanorods. This clustered arrangement increases
the specific surface area of the materials, which is beneficial for enhancing photocatalytic
efficiency by providing more active sites. Figure 2c presents a high-magnification detail
image of ZnO nanorods, confirming their distinct rod-like morphology with protruding
tips, a close-packed arrangement, and a relatively smooth surface. Figure 2d,e depict
the microstructure of the BiVO4@ZnO heterojunction composites, showing that BiVO,
nanoparticles are distributed on the flower-like ZnO structure, uniformly coating the surface
of the ZnO nanorods. Figure 2f provides a high-magnification image of the composite
materials, clearly revealing polyhedral BiVO, nanoparticles adhered to the smooth surface
of the ZnO nanorods. This nanoparticle-decorated nanorod structure is instrumental in
facilitating the separation of photogenerated electrons and holes, thereby enhancing the
photocatalytic efficacy.
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Figure 2. SEM image of (a—c) ZnO and (d—f) BiVO4@ZnO heterojunction composites.

The surface composition and elemental distribution of the synthesized ZnO nanoma-
terials were examined using energy-dispersive X-ray spectroscopy (EDS) coupled with
scanning electron microscopy (SEM-EDS) and elemental mapping analysis, as depicted in
Figure 3. Figure 3a presents the SEM image of the ZnO nanomaterials, revealing a densely
packed, flower-like structure. In Figure 3b,c, the elements Zn and O are visualized in flower-
like patterns with varying colors. The uniform color intensity suggests that these elements
are homogeneously distributed throughout the materials. The absence of other elements in
the elemental map indicates high sample purity. Furthermore, the energy-dispersive X-ray
spectroscopy analysis shown in Figure 3d reveals that the sample contains 51.9% oxygen
and 48.1% zinc by weight, with a ratio close to 1:1, which is consistent with the mapping
analysis results.

Figure 3. Mapping Diagram(a—c) and EDS (d) of pure ZnO flower-like nanorods.
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The surface composition and elemental distribution of the BiVO,@ZnO heterojunction
composites were analyzed using SEM-EDX and mapping analysis, as displayed in Figure 4.
Figure 4a shows an SEM image of the BiVO4@ZnO heterojunction composites, showcasing
its flower-shaped cluster structure. The elemental maps for O, Zn, Bi, and V are presented
in Figure 4b—e, respectively. The intensity of the color in these maps corresponds to the
elemental content. The O element exhibits the highest signal intensity, suggesting its highest
concentration, followed by Zn. In contrast, the signals for V and Bi are lighter, indicating
their lower concentrations. No other elements were detected, confirming the sample’s high
chemical purity. The EDS spectrum in Figure 4f provides quantitative results, showing the
sample contains 52.5% O, 37.4% Zn, 5.5% Bi, and 4.6% V by percentage. These quantitative
results agree well with the qualitative mapping analysis.

2.5um

VKal

2.5um !

Figure 4. Mapping Diagram(a—e) and EDS (f) of the BiVO,@ZnO heterojunction composites.

To investigate the elemental composition, chemical states, and surface interactions of
pure ZnO flower-like nanorods and BiVO,@ZnO heterojunction composites, X-ray photo-
electron spectroscopy (XPS) measurements were performed, with the results summarized
in Figure 5. Figure 5a presents the XPS survey spectra of both samples. The pure ZnO
nanorods show characteristic peaks of Zn and O, while the BiVO,@ZnO heterojunction
composites exhibit additional peaks corresponding to Bi and V, confirming the successful
incorporation of BiVO, onto ZnO. The high-resolution Zn 2p spectra are displayed in
Figure 5b. For pure ZnO, the peaks located at 1021.32 eV and 1044.35 eV are assigned to Zn
2p3/2 and Zn 2p1/2, respectively. In the BiVO4@ZnO heterojunction composites, these
peaks shift slightly to higher binding energies of 1021.57 eV and 1044.58 eV [31,32]. The
spin-orbit splitting value of 23.00 eV in both samples indicates that Zn predominantly exists
in the Zn?* state [33,34]. The positive shift in binding energy is attributed to the formation
of a Type-II heterojunction between ZnO and BiVOy, which promotes the transfer of pho-
togenerated electrons from the conduction band of ZnO to that of BiVO;. This reduces
the electron density around Zn atoms, increasing the binding energy, while the resulting
built-in electric field enhances charge separation.
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Figure 5. X-ray-photoelectron-spectroscopy spectra of obtained pure ZnO flower-like nanorods and
BiVO4@ZnO heterojunction composites: (a) Full spectra of the samples, (b—f) binding states of Zn 2p,
O 1s, Bi 4f, V 2p and C 1s, respectively.

As shown in Figure 5c, the O 1s spectrum of flower-like nanorods is fitted with
two components: a main peak at 530.11 eV (attributed to Zn-O bonds) and a shoulder
at 531.80 eV associated with oxygen vacancies [35]. In the BiVO4@ZnO heterojunction
composites, the main peak shifts to 530.23 eV, which can be ascribed to the synergistic
interaction between Zn-O and Bi-O bonds, indicating an altered chemical environment at
the heterointerface [36]. Concurrently, the oxygen-vacancy-related peak shifts to 531.63 eV,
suggesting that the incorporation of BiVO; modulates both the chemical bonding envi-
ronment and the distribution of oxygen defects. These changes reflect interfacial charge
redistribution, further corroborating the role of heterojunction-induced electronic mod-
ulation in promoting the separation and transport of photogenerated carriers, thereby
enhancing photocatalytic performance. Figure 5d shows the high-resolution Bi 4f spectrum
of the BiVO4@ZnO heterojunction composites, with peaks observed at 159.09 eV (Bi 4{7/2)
and 164.44 eV (Bi 4£5/2), confirming the presence of Bi** [37]. The V 2p spectrum (Figure 5e)
displays signals at 516.94 eV (V 2p3/2) and 524.05 eV (V 2p1/2), indicating that V is in
the +5 oxidation state, consistent with the typical electronic environment in BiVOy [38].
Figure 5f compares the C 1s spectra of pure ZnO and the BiVO4@ZnO heterojunction
composites. Three constituent peaks are identified at approximately 284.8 eV, 285.5 eV
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(285.3 eV in the composite), and 288.7 eV (288.9 eV in the composite), corresponding to sp2
hybridized carbon (C-C/C=C), C-OH, and C=0 functional groups, respectively. The slight
shifts in binding energy support the occurrence of surface electronic restructuring due to
charge transfer across the heterojunction interface, in agreement with the proposed band
alignment mechanism [39].

Figure 6 shows the UV-visible absorption spectra and the corresponding (ochv)?
versus (hv) plots for the pure ZnO flower-like nanorods, BiVO4@ZnO heterojunction
composites and pure BiVO, materials. As shown in Figure 6a, the absorption edge of
the pure ZnO nanorods is located at approximately 380 nm, with absorption occurring
primarily in the ultraviolet region, which is characteristic of its wide bandgap. In contrast,
pure BiVOy exhibits a red-shifted absorption edge around 520 nm, indicating a broader
visible-light absorption range due to its narrower band gap.The BiVO,@ZnO heterojunction
composites demonstrate significantly enhanced absorption, extending from the ultraviolet
to the visible region (up to ~450 nm). This broadened absorption is attributed to the
synergistic interaction between BiVO4 and ZnO, as well as interfacial effects within the
composite, which collectively contribute to its improved photocatalytic performance.

(a) (b) ——BiVO,-Zn0
——BiVO,-Zn0 —Zn0
- —Zn0 ——RiVO,
= ——BiVO, =
3 -
g i
| =
£ z
z E)
L
=
240 eV
T T T T
300 400 SOy GO0 700 SO0 1.5 4.0
Wavelength(nm)

Figure 6. (a) UV-Vis absorption spectrum and (b) the (athv)? versus (hv) plots of pure ZnO flower-like
nanorods, BiVO4@ZnO heterojunction composites and pure BiVO, materials.

The curve of the photon energy for semiconductor nanomaterials can be calculated
using the following equation [40]:

ahv = A(hv — Eg)"

In this context, the variables «, I, v, A, and Eg represent the absorption coefficient,
Planck’s constant, optical frequency, proportionality constant, and band gap energy, re-
spectively. The value of n is determined by the characteristics of the semiconductor ma-
terial, with n = 1/2 for direct band gap semiconductors and n = 2 for indirect band gap
semiconductors. As depicted in Figure 6b, the band gaps of the pure ZnO flower-like
nanorods, BiVO4@ZnO heterojunction composites, and pure BiVO, are measured to be
3.09 eV, 2.87 eV, and 2.40 eV, respectively [41]. The band gap of the BiVO,@ZnO heterojunc-
tion composites lies between those of pure ZnO nanorods and pure BiVOy, indicating that
the composite structure enables effective band gap modulation. This phenomenon is likely
due to interfacial charge transfer effects and the coupling of the energy band structures.

Figure 7 presents the FT-IR spectra of the pure ZnO flower-like nanorods and the
BiVO4@ZnO heterojunction composites, which were used to identify the functional groups
present in the samples. In the ZnO spectrum, characteristic peaks were observed at 463,
501, 1626, and 3415 cm~!. The peak at 1626 cm~! is attributed to the bending vibration
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of O-H groups and C—O band stretching, while the peak at 3415 cm~! corresponds to
the O-H stretching vibration of water molecules adsorbed on the sample surface [42,43].
The absorption peak at 463 cm ™! is assigned to the stretching vibration of Zn-O bonds
in the synthesized ZnO nanorods [44]. For the BiVO4@ZnO heterojunction composites,
the broad absorption bands at low frequency (such as 760 and 892 cm™!) are attributed
to the bending vibration of the VO43~ tetrahedron [45]. These observations confirm the
coexistence of both ZnO and BiVOy in the nanocomposite, a conclusion that is consistent
with the results from X-ray diffraction (XRD) analysis.

BiVO,4@ZnO
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Figure 7. FT-IR spectra of the as-synthesized pure ZnO flower-like nanorods, BiVO;@ZnO hetero-
junction composites.

The surface properties and pore structures of pure ZnO flower-like nanorods and
BiVO4@ZnO heterojunction composites were investigated using the N, adsorption—
desorption method, as shown in Figure 8. It can be seen from Figure 8 that the
N, adsorption—desorption isotherms of both the ZnO flower-like nanorods and the
BiVO4@ZnO heterojunction composites exhibit typical type IV isotherm characteristics,
indicating that both materials have mesoporous structures. According to the data in Table 1,
the BET specific surface area of BiVO,@ZnO heterojunction composites is 7.8308 m?/g,
which is significantly higher than that of the pure ZnO flower-like nanorods (4.8432 m?/ g).
Notably, the specific surface area of the BiVO4@ZnO heterojunction composites is markedly
increased. This can be attributed to the formation of hierarchical pore structures during
the construction of the heterostructures. The larger specific surface area can provide more
abundant active sites for photocatalytic reactions, thereby enhancing the efficiency of the
photocatalytic process.

To gain deeper insight into the separation and transfer behavior of photogenerated
charge carriers, transient photocurrent measurements were conducted on the as-prepared
pure ZnO flower-like nanorods and BiVO4@ZnO heterojunction composites (as shown
in Figure 9) under intermittent light irradiation with a 30 s on/off cycles. The results
reveal that both materials exhibit a rapid increase in photocurrent upon illumination, which
almost completely decays to zero once the light is switched off. Specifically, the steady-
state photocurrent density of the pure ZnO nanorods is approximately 15.7 pA-cm~2,
whereas that of the BiVO,@ZnO heterojunction composites is significantly enhanced to
about 43.3 pA-cm 2, nearly four times higher. This pronounced improvement indicates
that the construction of the p-n heterojunction effectively promotes the generation and



Nanomaterials 2025, 15, 1536

10 of 19

separation of photogenerated electron-hole pairs, thereby markedly enhancing carrier
transport efficiency and further confirming the excellent photocatalytic performance of the
BiVO4@ZnO heterojunction composites.

Table 1. BET surface area of the as-synthesized pure ZnO flower-like nanorods, BiVO4@ZnO hetero-
junction composites.

Sample BET Surface Area, (m?/g)
ZnO 4.8432
BiVO,@ZnO 7.8308
o
oo —v—7n0O *
&8 —— BiVO,@ZnO
£ |
T /
£ 7l
E i
> /]
_8 X f p24
Na) Vel */*,V y
— X XN
3 AT
"g . mﬂt;%'**'w_ vy

00 02 04 06 08 1.0
Relative pressure(P/P°)

Figure 8. Adsorption—-desorption isotherms of the as-synthesized pure ZnO flower-like nanorods,
BiVO4@Zn0O heterojunction composites.
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Figure 9. Transient photocurrent of adsorption-desorption isotherms of the as-synthesized pure ZnO
flower-like nanorodsa nd BiVO4@ZnO heterojunction composites.

The photocatalytic activity of pure ZnO flower-like nanorods and BiVO,@ZnO hetero-
junction composites was quantitatively evaluated by measuring the decomposition of an
aqueous MB solution under ultraviolet and visible light over irradiation durations ranging
from 0 min to 30 min. The decrease in MB concentration was monitored at a wavelength
of 675 nm using a UV-Vis spectrophotometer, as shown in Figure 10. Figure 10a,b show
the concentration changes over time during the photocatalytic degradation of MB under
UV light irradiation for pure ZnO flower-like nanorods and BiVO4,@ZnO heterojunction
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composites, respectively. Similarly, Figure 10c,d illustrates the corresponding concentration
changes under visible light (Vis) irradiation. After 30 min of continuous exposure to either
UV or visible light, both the pure ZnO flower-like nanorods and the BiVO4@ZnO com-
posites effectively reduced the main absorption peak of MB. However, the decrease was
more pronounced for the BiVO,@ZnO composites, which exhibited a significantly higher
degradation rate compared to the pure ZnO catalysts. The photodegradation percentages
for pure ZnO under ultraviolet and visible light were calculated to be 45.05% and 31.70%,
respectively, indicating better performance under UV light. Its degradation efficiency
is considerably limited in the visible region due to its wide band gap. In contrast, the
BiVO4@ZnO heterojunction composites achieved photodegradation percentages of 93.18%
and 89.64% under ultraviolet and visible light, respectively—significantly higher than
those of the pure ZnO photocatalysts. This notable enhancement can be attributed to the
introduction of BiVOy4, which not only extends the light absorption into the visible region
but also promotes efficient separation and migration of photogenerated charge carriers
through interfacial effects, thereby greatly improving the photocatalytic activity.

The photocatalytic activity of these dyes can be described using the Langmuir—
Hinshelwood (L-H) kinetic model [46], which is a mechanism where surface reactions
are the rate-controlling steps and involve two adsorbed molecules reacting on a solid
catalyst surface:

In(Cy/C) = kt

In the L-H kinetic model, k represents the rate constant, Cy is the initial dye con-
centration at absorption-desorption equilibrium (t = 0), and C is the dye concentration at
time f. The rate constants k for the photocatalytic degradation of MB dye using pure ZnO
flower-like nanorods under UV and visible light are 0.02039 and 0.01327, respectively, while
those for the BiVO,@ZnO heterojunction composites are 0.09063 and 0.07661, respectively.
A comparison of these k values shows that the BiVO4@ZnO composite exhibit higher rate
constants than the pure ZnO nanorods, which is consistent with the temporal concentration
changes. Therefore, it can be concluded that the BiVO,@ZnO heterojunction composites
significantly enhance the photocatalytic degradation capability.

The photocatalytic performance of BiVO4@ZnO heterojunction composites towards
the common organic dyes, including methylene blue (MB), rhodamine B (RhB), methyl
orange (MO), and congo red (CR), under ultraviolet light irradiation is shown in Figure 11.
The decrease in the concentrations of MB, RhB, MO, and CR was monitored over time
by measuring absorbance changes at their characteristic wavelengths of 675 nm, 552 nm,
465 nm, and 495 nm, respectively. The results indicate that the main absorption peaks of
these organic dyes decreased significantly within 30 min under UV light irradiation in
the presence of BiVO4@ZnO composites (see Figure 11a—d). This demonstrates that the
BiVO4@ZnO heterojunction composites exhibit highly selective degradation performance
toward MB dye in aqueous solution. As shown in Figure 11f, the rate constants k for
the degradation of MB, RhB, MO, and CR by BiVO4@ZnO heterojunction composites are
0.09063, 0.02431, 0.01668, and 0.07082, respectively. From the results in Figures 10f and 11e,
it becomes evident that the degradation selectivity of BiVO4@ZnO heterojunction compos-
ites for MB (methylene blue) stems not from a single factor, but from a complex interplay:
the synergistic effects of electrostatic interaction, molecular structure differences, and ad-
sorption behavior [47-50]. Compared to RhB (rhodamine B), MO (methyl orange), and CR
(Congo red), MB, as a cationic dye, readily forms electrostatic attraction with the typically
negatively charged catalyst surface, whereas MO and CR, being anionic dyes, face elec-
trostatic repulsion. Furthermore, MB’s compact molecular dimensions (1.2 x 0.8 nm) are
smaller than those of RhB (1.8 x 1.0 nm) and CR (2.2 x 1.1 nm), allowing it to penetrate
the catalyst’s pore channels and access active sites more effectively. Crucially, MB’s key
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functional group, -N(CH3), (amino group), forms robust coordination bonds with active
sites. This contrasts sharply with RhB’s weakly coordinating -COOH group and the -SO3~
groups of MO and CR, whose electron-withdrawing nature impedes degradation. At the
adsorption level, MB overshadows the others: its saturated adsorption capacity and chemi-
cal adsorption strength on the catalyst significantly exceed the loose physical adsorption
exhibited by RhB and the extremely low adsorption capacity shown by MO/CR. This
superior adsorption provides ample “raw materials” and ensures stable interfacial contact
for degradation, ultimately yielding a markedly higher degradation kinetic constant for
MB compared to the other three dyes.
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Figure 10. The ultraviolet and visible light photocatalytic performance of the pure ZnO flower-
like nanorods and BiVO,@ZnO heterojunction composites toward the MB of dye. The absorbance
spectra of the MB dye aqueous solution taken at interval time under the ultraviolet and visible
light in the presence of (a,c) pure ZnO flower-like nanorods, (b—d) BiVO4@ZnO heterojunction
composites. (e) Photodegradation and (f) the pseudo-first-order kinetics investigation of pure ZnO
flower-like nanorods structures materials and BiVO,@ZnO heterojunction composites under MB

dye aqueous solution.
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Figure 11. The ultraviolet light photocatalytic performance of BiVO,@ZnO heterojunction composites
toward the four types of dye. The absorbance spectra of the solutions taken at interval time toward
(a) MB, (b) RhB, (c) MO, and (d) CR. (e) Photodegradation and (f) the pseudo-first-order kinetics
investigation of BiVO4@ZnO heterojunction composites under four types of dye aqueous solution.

As illustrated in Figure 12, the band positions of BiVO, and ZnO suggest that the
conventional Type-II heterojunction model fails to align with the redox reaction sites
depicted in the figure, whereas the S-scheme mechanism offers a consistent explanation
for this band configuration. The conduction band (CB) and valence band (VB) of ZnO
are situated at —0.34 eV and +2.66 eV, respectively, yielding a band gap (Eg) of 3.09 eV.
Conversely, the conduction and valence bands of BiVOy lie at +0.46 eV and +2.86 eV,
respectively, corresponding to a band gap of 2.40 eV [51,52]. Additionally, the formation
potential of ©OH/OH™ or ¢OH/H;0 is approximately +2.4 eV.

Under light irradiation, both ZnO and BiVO, generate electron-hole pairs. In
BiVO4@ZnO heterojunction composites, the conduction band potential of ZnO (—0.43 eV)
lies below that of BiVO, (+0.46 eV); consequently, photogenerated electrons in the conduc-
tion band of BiVO, cannot be transferred to the conduction band of ZnO [53,54]. However,
the photogenerated electrons in the conduction band of BiVOy can recombine with the
photogenerated holes in the valence band of ZnO through a new charge transfer path-
way [55]. As a result, the photogenerated holes remain in the BiVO,; semiconductor, and
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their strong oxidizing ability directly participates in oxidation reactions, oxidizing water
molecules into eOH (h* + OH™ — eOH). As a strong oxidant, ¢OH can further oxidize
and decompose organic pollutants(¢OH + Dye — CO, + HyO) [56]. Meanwhile, the photo-
generated electrons in the conduction band of ZnO are retained, which avoids the direct
recombination of electrons and holes. These electrons further react with dissolved oxygen
to generate superoxide radicals (O; + e~ — 0O, 7), thereby achieving the degradation
of pollutants (¢O,~ + Dye — CO, + H,O) [57]. This S-scheme heterojunction structure
enables the efficient transfer of photogenerated electrons and holes, concentrating the
photogenerated charge carriers in different semiconductors respectively and reducing
the recombination of photogenerated electron-hole pairs. At the same time, the oxidiz-
ing ability of holes and the reducing ability of electrons are preserved, which is more
conducive to efficient photocatalytic reactions. This endows the BiVO,@ZnO heterojunc-
tion with better performance in reactions such as photocatalytic degradation of organic
pollutants. Therefore, Z-scheme heterojunctions are widely applied in fields like photocat-
alytic pollutant degradation and serve as one of the important strategies for constructing
high-efficiency photocatalysts.

Figure 12. Schematic diagram of degradation mechanism of BiVO,@ZnO heterojunction composites
in dye solution.

To investigate the effects of catalyst weight and initial concentration of methylene
blue (MB) dye on photocatalytic degradation performance, time-dependent degradation
curves and corresponding pseudo-first-order kinetic analyses were conducted, as shown
in Figure 13a—d. Figure 13a,b shows the effect of the weight of the BiVO4@ZnO hetero-
junction composites on the degradation efficiency of MB dye solution. When the weight of
BiVO4@ZnO heterojunction composites increases from 10 mg to 25 mg, the degradation
efficiency of MB dye solution rises from 85.02% to 95.58%, and the pseudo-first-order
rate constant k increases from 0.06176 min ! to 0.10418 min~!. This improvement can be
attributed to the increase in the number of active sites available for photocatalytic reactions
after the weight of BiVO,4@ZnO heterojunction composites catalyst increases. Figure 13¢c,d
illustrates the effect of the initial concentration of MB dye solution on the photocatalytic
performance of BiVO4@ZnO heterojunction composites. When the initial concentration of
MB dye increases from 10 mg/L to 40 mg/L, the degradation efficiency of MB dye solution
by BiVO4@ZnO heterojunction composites decreases from 96.44% to 87.14%, and the k
value drops from 0.10881 min~! to 0.06575 min~!. The phenomenon of the degradation
efficiency of BiVO,@ZnO heterojunction composites decreasing at higher MB dye con-
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centrations may be associated with the saturation of active sites on the catalyst surface,
where excessive MB molecules would limit light absorption and mass transfer during the
photocatalytic process.
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Figure 13. The ultraviolet photocatalytic performance of the BiVO,@ZnO heterojunction composites
toward the MB of dye. (a) Photodegradation and (b) the pseudo-first-order kinetics investigation
of BiVO4@ZnO heterojunction composites with different weights under MB dye aqueous solution.
(c) Photodegradation and (d) the pseudo-first-order kinetics investigation of BiVO,@ZnO heterojunc-
tion composites under different concentrations of MB dye aqueous solution.

The photocatalytic cycling stability of the BiVO4@ZnO heterojunction composites to-
ward an aqueous MB dye solution under ultraviolet and visible light is shown in Figure 14a.
After five degradation cycles, the photocatalytic degradation efficiency of the samples for
the MB solution remains above 80%, indicating that the BiVO4@ZnO heterojunction com-
posites exhibit excellent cyclic catalytic stability. Furthermore, XRD characterization of the
BiVO4@ZnO heterojunction composites before and after cyclic photocatalysis (Figure 14b)
reveals that the positions of the characteristic diffraction peaks of ZnO and BiVOy in the
composite show no obvious shift, with only a slight decrease in peak intensity. This phe-
nomenon can be attributed to the adsorption of trace reaction intermediates on the material
surface during photocatalysis, rather than substantial destruction of the crystal structure,
further confirming the structural stability of the composite in photocatalytic reactions. The
above results demonstrate that the BiVO,@ZnO heterojunction composites not only exhibit
high-efficiency MB degradation performance but also possesses excellent stability and
environmental compatibility during repeated use, providing important support for its
practical application in water treatment.
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heterojunction composite materials before and after the cyclic photocatalytic degradation test.

4. Conclusions

In summary, this study successfully synthesized a highly efficient BiVO,@ZnO het-
erojunction composite through a two-step hydrothermal method for the degradation of
organic dyes. By integrating polyhedral BiVO, with flower-like ZnO nanostructures, the
composite demonstrates an enlarged specific surface area, extended light-response range,
and improved separation of photogenerated charge carriers. Under UV irradiation, the cat-
alyst achieved degradation rates of 93.18% for MB and 87.03% for CR within 30 min, while
under visible light, it also attained a high degradation efficiency of 89.64% for MB within
the same period. Moreover, the material exhibited excellent cycling stability, maintaining
over 80% degradation efficiency after five consecutive cycles, as well as structural stability
with no significant shift in XRD diffraction peaks, indicating strong potential for practical
applications. The primary contribution of this work lies in the design and construction of a
novel Type-II heterojunction photocatalyst, which facilitates efficient charge separation and
catalytic degradation under broad-spectrum light irradiation. This study systematically
elucidates the structure-performance relationship of the composite, offering valuable in-
sights into the development of efficient and stable solar-driven materials for environmental
remediation. The material demonstrates promising application prospects in various fields,
particularly in the advanced treatment of organic pollutants in industrial wastewater, the
development of visible-light-driven photocatalytic water purification systems, and the
promotion of sustainable environmental remediation technologies. It provides both a
new material platform and technical support to advance the practical implementation of
photocatalytic technology.
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