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Abstract: Hydrogen is one of the most promising green energy alternatives due to its high gravimetric
energy density, zero-carbon emissions, and other advantages. In this work, a CoFeBP micro-flower
(MF) electrocatalyst is fabricated as an advanced water-splitting electrocatalyst by a hydrothermal
approach for hydrogen production with the highly efficient hydrogen evolution reaction (HER)
and oxygen evolution reaction (OER). The fabrication process of the CoFeBP MF electrocatalyst
is systematically optimized by thorough investigations on various hydrothermal synthesis and
post-annealing parameters. The best optimized CoFeBP MF electrode demonstrates HER/OER
overpotentials of 20 mV and 219 mV at 20 mA/cm2. The CoFeBP MFs also exhibit a low 2-electrode
(2-E) cell voltage of 1.60 V at 50 mA/cm2, which is comparable to the benchmark electrodes of Pt/C
and RuO2. The CoFeBP MFs demonstrate excellent 2-E stability of over 100 h operation under harsh
industrial operational conditions at 60 ◦C in 6 M KOH at a high current density of 1000 mA/cm2.
The flower-like morphology can offer a largely increased electrochemical active surface area (ECSA),
and systematic post-annealing can lead to improved crystallinity in CoFeBP MFs.

Keywords: water splitting; CoFeBP; micro flower; electrocatalyst; post-annealing

1. Introduction

Due to massive carbon emissions along with our heavy fossil fuel energy reliance, the
globe is experiencing serious environmental issues and climate changes, such as unusual
temperatures, super El Niño/La Niña, torrential rain, flooding, etc. It is urgently necessary
to develop renewable green energy resources to address these global climate and environ-
mental problems and also to meet future energy demands [1,2]. Hydrogen is one of the
most promising green energy alternatives owing to its high gravimetric energy density,
convenient usages, and zero-carbon emissions [1,3,4]. It can offer further advantages. For
example, when the green hydrogen energy system is combined solar or wind power sys-
tems, the electricity supply can become more stable and optimized in terms of on-demand
usage of electricity, easy storage, and convenient delivery. The demand of hydrogen has
experienced substantial growth in the last 20 years with its utilization in power, transport,
fuel cells, energy storage, and so forth, indicating large economic benefits [5]. Green hydro-
gen with zero-carbon emissions can be produced by water electrolysis, consisting of two
half electrochemical reactions of hydrogen evolution reaction (HER) and oxygen evolution
reaction (OER). Currently, the Pt-, Ir-, and Ru-based electrodes are the standard benchmark
catalysts, but their high costs and low earth abundance restrict the large-scale adaptation of
green hydrogen [3,4]. The development of highly efficient and cost-effective alternative
electrocatalysts is essential at this point.
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Transition metal (TM)-based electrodes in combination with non-metallic elements
can offer promising electrocatalytic alternatives due to their excellent electrochemical prop-
erties with the abundance on earth [6–8]. The TMs, i.e., Co, Fe, Ni, Mn, etc., with un-filled
d-orbitals can promote excellent water electrolysis capability and alkaline media stability
and, thus, can be suitable for water electrolysis systems [9–11]. Among them, cobalt (Co)
is one of most widely studied TMs due to the high adsorption and desorption rates for
the reaction intermediates of the water-splitting (WS) process [12]. For instance, Co-Ni-P
hollow nano-bricks exhibited low HER/OER overpotentials due to the abundant mass
diffusion pathways and excellent catalytic functionalities [13]. Iron (Fe) is also an abun-
dant TM, and Fe-contained compounds demonstrate high catalytic performances toward
the HER/OER [14]. For example, Fe-Ni-Co nanostructures demonstrated low HER/OER
overpotentials as well as low 2-electrode (2-E) cell voltage of 1.6 V at 10 mA/cm2 due to
the synergy between elements and high electrochemical active surface area (ECSA) [15].
Fe can demonstrates high selectivity for various hydrocarbons and oxygenates, which
makes it promising for the application of electrochemical water splitting [15]. In terms
of non-metallic elements, phosphorus (P) has been one of the most widely studied com-
ponents in the last few decades [6,16]. The TM-P electrocatalysts can effectively alter
the surface electrochemical properties and boost the WS catalytic reactions [6,16]. They
also demonstrate the ability to modify the electronic structure by adjusting the oxidation
states and electron density, which can further improve the efficiency in promoting both
HER/OER reactions [17]. For instance, the Co3O4P nanowires/NF demonstrated superior
HER efficiency and bifunctional ability in 1.0 M KOH [18]. The induced positive charged
sites on the surface can enhance the adsorption of OER intermediates such as OOH* and O*,
which potentially boost oxygen generation [18]. More recently, boron (B) has been gaining
increased attention as another non-metallic element for TM-based electrocatalysts. TM-B-
based electrocatalysts can effectively lower the kinetic energy barrier for the HER/OER
and also offer superior electrochemical stability with the efficient orbital hybridization with
the TMs [19–22].

To this end, the combination of Co, Fe, B, and P together in a high ECSA morphology
can be a viable approach to develop an advanced electrocatalyst for highly efficient water
electrolysis, along with their synergy and lower cost. In this work, a quaternary CoFeBP
micro-flower (MF) electrocatalyst is demonstrated by a hydrothermal synthesis approach
on a porous nickel form, as illustrated in Figure S6. The best optimized CoFeBP MF
demonstrates comparable 3-electrode (3-E) and 2-E water electrolysis performances, as
compared to the benchmark electrodes of Pt/C and RuO2. For example, the CoFeBP
MFs demonstrate low 3-E HER/OER overpotentials of 20 and 219 mV at 20 mA/cm2 and
low 2-E cell voltage of 1.60 V at 50 mA/cm2. The improved performance can be linked
to the high ECSA offered by the micro-flower (MF) morphology and synergy between
the elements utilized. Also, systematic synthesis optimizations and vacuum annealing
treatment can effectively reduce the point defects and improve the crystallinity of MFs,
further facilitating the electrocatalytic effectiveness of electrocatalysts.

2. Electrode Fabrication and Structural Analysis
2.1. Precursor and Reaction Parameter Optimizations for CoFeBP MF

To begin with, porous Ni foam was adapted as the substrate due to excellent conduc-
tivity and porosity for CoFeBP micro-flower (MF) synthesis, and more details about the sub-
strate and other preparation can be found in the Supplementary Text S1.1 and Figures S1–S5.
Then, a CoFeBP micro flower (MF) was fabricated by a hydrothermal reaction on Ni form,
followed by annealing optimization, as illustrated in Figure S6. Various hydrothermal reac-
tion parameters were systematically optimized, and the best-optimized sample was taken
for further annealing optimization. Various hydrothermal reaction parameters and pre-
cursor concentration optimization-related data are presented in Supplementary Section S2.
Hydrothermal reaction duration and temperature were optimized as seen in Figures S7–S10,
and the best-optimized sample at 140 ◦C for 8 h was taken for further optimization. The
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elemental ratio of B-P was optimized, as seen in Figures S11–S13. The Co and Fe concen-
tration was optimized in a total molarity of 2 mM, as seen in Figures S14–S16, where the
Co90-Fe10-B50-P50 (1.8 mM Co and 0.2 mM Fe and 6 mM of B and P) demonstrated the
best HER/OER performances with overpotentials of 204 and 462 mV at 200 mA/cm2, as
summarized in Figure S16. The precursor ratio affects the atom aggregation, nucleation,
and particle growth and, thus, is critical for the surface morphology, grain size, defect
formation, and crystallinity [23]. An optimal elemental ratio is important as the O* and
OH* absorption energy can be tuned along with different ratios [24]. The more detailed
fabrication process of CoFeBP micro flowers (MFs) can be found in the Supplementary Text
S1.5. In addition, the surface modifiers such as urea (CH4N2O) and ammonium fluoride
(NH4F) are adapted, as seen in Figures S17–S20. The addition of surface modifiers can be
an effective approach to modify the nucleation process for high ECSA surface morphol-
ogy [25–28]. For instance, the NH4F can effectively tailor surface morphology and can help
form 3D structures. The presence of F− ions (NH4F → NH4

+ + F−) can readily chemisorb
elements with dangling bonds and promote the nucleation process [29]. As a result, much
more pronounced MF morphologies with thicker branches were commonly observed with
the NH4F inclusion, as seen in Figure S19. The urea90-NH4F10 showed the best HER/OER
overpotentials of 191 and 456 mV at 200 mA/cm2 in the set, as summarized in Figure S20.

2.2. B-P Concentration Optimization for CoFeBP MF

Figure 1 shows the CoFeBP MF electrode fabrication with the B-P concentration
variation. The ratio of boric acid (H3BO3) and sodium hypophosphite (H2NaO2P) was
systematically controlled at a fixed total molarity of 12 mmol (mM). Other precursors
were fixed at 1 mM Co(NO3)2•6H2O for Co and 1 mM Fe(NO3)3•9H2O for Fe based on
the previous parameter optimizations. Along with the B-P concentration control, various
surface morphologies of CoFeBP structures were observed, as seen in Figure 1a–e. Generally,
the ternary CoFeB or CoFeP showed cluster morphologies, as seen in Figure 1a,e. Then, the
quaternary CoFeBP electrodes showed 3D micro-flower (MF)-like morphologies, as seen in
Figure 1b–d. The B50-P50 sample demonstrated the most well-defined MF morphology with
the high-density branch structures along with the well-balanced elemental ratio of B and P,
as seen in Figure 1c [30]. Due to the existence of five valence electrons in the outer shell
of phosphorus (3s23p3) [31] and high affinity of boron [32], strong ionic bonding with the
metallic Co and Fe can be achieved through orbital hybridization with the well-balanced
B and P. Additional SEM images can be found in Figure S11. The EDS phase maps of
CoFeB50P50 MFs confirmed the uniform distributions of Co Lα1, Fe Lα1, B Kα, P Kα1, and
Ni Lα1, as seen in Figure 1f–f-5. Also, the EDS spectrum of B50-P50 confirmed the presence
of Co Lα1, Fe Lα1, B Kα, P Kα1, and Ni Lα1 peaks in Figure 1g. EDS spectra of other
samples can be found in Figure S12. Atomic (At.) % summary in Figure 1h confirms the
gradual increase in P incorporation along with the increased P (0–12 mM), while the Co, Fe,
and B showed gradually decreasing trends. For the CoFeB50P50 MF, 25.79 and 30.82% of B
and P atoms were incorporated and 29.29 and 10.57% of Co-Fe atoms were observed.
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can be found in the Supplementary Text. (a–e) SEM images of CoFeBP electrodes as labeled. (a-1–e-
1) Corresponding enlarged SEM images. (f–f-5) SEM image of B50-P50 and corresponding EDS phase 
maps of Co Lα1, Fe Lα1, B Kα, P Kα1, and Ni Lα1. (g) EDS spectrum of CoFeB50P50. (h) Atomic 
percentage summary plots of Co, Fe, B, and P. (i) XRD spectra of CoFeBP, CoBP, CoFeP, and CoFeB 
electrodes. 

Figure 1. CoFeBP electrode fabrication with B-P concentration variation. Total molarity of B and P
was fixed at 12 mM: B50-P50 indicates 6 mM B and P, namely CoFeB50P50. Other parameter variations
can be found in the Supplementary Text. (a–e) SEM images of CoFeBP electrodes as labeled. (a-1–e-1)
Corresponding enlarged SEM images. (f–f-5) SEM image of B50-P50 and corresponding EDS phase
maps of Co Lα1, Fe Lα1, B Kα, P Kα1, and Ni Lα1. (g) EDS spectrum of CoFeB50P50. (h) Atomic
percentage summary plots of Co, Fe, B, and P. (i) XRD spectra of CoFeBP, CoBP, CoFeP, and CoFeB
electrodes.
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The X-ray diffraction (XRD) of CoFeB, CoFeP, CoBP, and CoFeBP electrodes is shown
in Figure 1i, and the individual XRD patterns of CoFeB, CoFeP, CoBP, and CoFeBP are
shown in Figure S33. The XRD PDF cards of related compounds are shown in Figure
S34. Two strong diffraction peaks were commonly observed at ~43 and 52◦ in all XRD
patterns, which can be indexed to the (111) and (200) planes of the Ni foam substrate [33].
The polycrystalline phase was indicated with multiple diffraction peaks that did not
show a match with the relevant combinations, such as Co-B, Co-P, Fe-B, Fe-P, and B-P.
In detail, CoFeP exhibited strong peaks at 27.7 and 28.2◦, and CoFeB possessed several
intense peaks at 33.2, 35.5, and 38.7◦ and other secondary peaks. CoBP demonstrated
stronger diffraction peaks at 27.9, 32.2, and 37.2◦ and other smaller peaks, which might
indicate that CoBP is in a short-range polycrystalline phase [34]. The CoFeBP electrode
showed slightly lower intensity and peaks at 27.0, 27.9, 34.0, and 35.2◦, which also indicate
a polycrystalline phase [35]. Among the 2θ range from 20 to 65◦, the appearance of
multiple peaks in all samples might indicate the fabrication of polycrystalline structures [36].
Notably, recent studies suggested enhanced intrinsic water-splitting (WS) activity with the
polycrystalline phase, as compared to the single-crystal structures due to the increased
exposure of active sites and structural stability [22,35,37]. The long-range disordered
polycrystalline surface can demonstrate higher structural flexibility and stability for the
water-splitting reactions [22,35,37]. A more detailed discussion of the XRD analysis can be
found in Supplementary Text S1.7.

2.3. Structural Analysis of CoFeBP MF along with Post-Annealing Optimization

Figure 2 shows the CoFeBP MFs along with the post-annealing temperature opti-
mization on the best CoFeBP MFs after the synthesis parameter optimizations. The best
CoFeBP MFs, i.e., Co90-Fe10-B50-P50 electrode, were taken for annealing in a rapid thermal
processing (RTP) system, and a series of annealing experiments was conducted to estab-
lish the optimal conditions, as seen in Supplementary Text S2.3. The optimal annealing
duration was 30 min based on the optimization study between 10 and 60 min, as seen in
Figures S21 and S22. Along with the post-annealing temperature variation, there was no
obvious change in the surface morphology below 200 ◦C, as clearly seen in Figure 2a,b,
and the MF morphology was well maintained. At 300 ◦C, the branch structure began to
fall off from the MF matrix, as shown in Figure 2c. At 500 ◦C, severe structural damage
were observed, i.e., branches were cracked due to the excessive thermal energy, as seen in
Figure 2d [38]. Often, the electrocatalysts synthesized by the hydrothermal reaction can be
in the polycrystalline phase [30], and the degree of crystallinity can be improved to a certain
extent by moderate post-annealing treatment through adatom diffusion [30]. The charge
transfer process can be promoted along with improved local crystallinity [38]. Annealing
can improve the local crystallinity due to the removal of defects [39]; however, a longer
duration or excessive temperature can exhibit structural damage [39]. The EDS phase maps
of 100 ◦C MF show the uniform distribution of Co Lα1, Fe Lα1, B Kα, and P Kα1 phases
in Figure 2e–e-4, and the EDS line profiles also confirmed the uniform distributions of Co,
Fe, B, and P after the thermal treatment in Figure 2f-1–f-4. Additional SEM images can
be found in Figure S23, and the EDS spectra for the annealing temperature variation set
and summary plot of atomic percentage are provided in Figure S24. There was no obvious
elemental variation in the atomic percentage, indicating no dissociation and sublimation
of elements.
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images of CoFeB50P50 MFs after annealing at different temperatures as labeled. (e–e-4) SEM image
and corresponding EDS phase maps of 100 ◦C annealed sample. (f-1–f-4) EDS elemental line profiles
from the location as indicated in (e).
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Raman analysis was conducted to probe the crystal quality along with annealing, as
seen in Figure 3a. The 100 ◦C annealing demonstrated the strongest Raman bands with
Raman peaks at 261, 360, 478, 596, and 962 cm−1, indicating the best crystal quality of
CoFeBP MFs in this set [40]. The stretching vibration peaks at 950–1100 cm−1 may be
associated with the oxygen bonds of metallic atoms (M-O-O) as indicated with the red
dashed lines in Figure 3a [41,42]. At 100 ◦C, the peak split into two shoulder peaks, which
could be related to the symmetric stretching O-O vibration [41,42]. More detailed Raman
analysis can be found in the Supplementary Text S1.6. Figure 3b shows the XRD spectrum
of the CoFeBP MF (100 ◦C) electrode. After annealing, the peak intensity was clearly
intensified, suggesting improved local crystallinity [40]. Also, new XRD peaks appeared,
i.e., at 22.8◦, 60.8◦, and 66.5◦, again suggesting improved crystal quality with local lattice
reconstruction due to the thermal-triggered adatom diffusion [38]. The multiple peaks
clearly indicate a short-range polycrystal phase of CoFeBP MF, even after annealing [38].
The X-ray photoelectron spectroscopy (XPS) was conducted to probe the chemical states
of Co, Fe, B, P, and O 1s and C 1s. The full-scan spectrum is shown in Figure 3c, and
the zoom-in spectra are presented in Figure 3c-1–c-4. First, the O 1s and C 1s are due to
surface oxidation and reference calibration. The O 1s spectrum in Figure S46a shows three
distinct peaks located at 532.1, 539.9, and 534.5 eV, corresponding to M-O, M-OH, and
absorbed H2O, respectively (M=Co and Fe) [43]. The surface oxidation is inevitable due
to air exposure, and C can always be observed along with reference calibration. In the Co
2p spectrum in Figure 3c-1, the binding energy (BE) of Co 2p1/2 and Co 2p3/2 was found
at 793.6 and 778.5 eV, as compared with the pristine peak obtained in the XPS handbook
(793.3 and 778.3 eV) [44], exhibiting positive shifts of 0.3 and 0.2 eV. The positive shift
indicates the electron donation from Co atoms [45]. In the compound molecule formation,
a positive shift of elemental electronic states indicates the donation of electrons in the
ionic bonding. The peaks at 789.6 and 804.7 can be indexed to the satellite peaks [45]. The
obtained dominant peaks along with their satellite peaks indicate the formation of Co3O4
on the surface [45,46]. The peaks centered at 795.9 and 780.8 eV indicate the existence of
CoO on the surface [45,46]. In the Fe 2p spectrum in Figure 3c-2, the peaks located at 707.3
and 720.9 eV can be assigned to Fe0 (Fe 2p3/2 and Fe 2p1/2). Similarly, positive shifts
of 0.8 eV and 0.3 eV were observed, as compared with their pristine 720.1 and 707.0 eV,
indicating electronic interaction with the non-metallic atoms [47]. The existence of 708.6
and 723.6 eV peaks represents the FeOOH, and the BEs at 712.3 and 727.2 eV can indicate
the formation of Fe3O4 [48]. The peaks centered at 715.1 and 731.8 eV can be assigned to
the shakeup satellite peak [49,50]. On the other hand, the B 1s level was negatively shifted
by 2.4 eV (from 189.4 to 187.0 eV), indicating ionic bonding by electron acceptance. The
192.5 eV peak can be assigned to the B2O3 oxidation states [51]. In the P 2p spectrum, two
dominant peaks appeared at 128.7 and 129.5 eV, which are assigned to P 2P3/2 and P 2P1/2,
respectively. The BEs of P 2P3/2 and P 2P1/2 were also negatively shifted to lower BE from
the standard 129.9 to 128.7 eV and from 130.74 to 129.5 eV, implying electron acceptance
to the p-orbital [52]. The strong electronegativity and electron affinity of P atoms can be
beneficial for the strong bond formation [52]. The 133.4 eV peak belongs to the oxidized P
species (P-O) [52]. Overall, the positive and negative shifts of elemental electronic states
can imply strong ionic bonding, and oxidized states were found alongside them. More
detailed XPS analysis can be seen in the Supplementary Text S1.10. In summary, from
the structural analysis, the obtained structure should be a cobalt–iron–boron–phosphide
(CoFeBP) alloy in the polycrystalline phase based on the XRD, XPS, and Raman analyses.
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3. Electrochemical Analysis
3.1. The 3-E Electrochemical Properties of CoFeBP MFs

Figure 4 shows the 3-electrode (3-E) electrochemical characterizations of the post-
annealing temperature variation set in 1 M KOH. The HER/OER LSV results are shown
in Figure 4a–b, where the 100 ◦C CoFeBP MF exhibited the best catalytic performances
with the lowest overpotential values of 145 and 424 mV at 200 mA/cm2, as summarized
in Figure 4c. Figure 4d,e show the HER/OER Tafel slope values, derived based on the
relation [53] η = a + b log|−j|, where η presents the overpotential, a is the Tafel constant,
and b represents the Tafel slope. The 100 ◦C CoFeBP MFs showed the lowest HER/OER
Tafel values of 62.0 and 199 mV/dec, as seen in Figure 4f, indicating the best charge transfer
kinetics and reaction speed in this set [54]. While the HER Tafel value was quite good,
the OER Tafel value was relatively high, which can negatively affect the catalytic perfor-
mance in bifunctional 2-E performance. HER/OER Nyquist plots by the electrochemical
impedance spectroscopy (EIS) are shown in Figure 4g,h, which can provide insights into
the impedance of electrochemical systems, such as the solution resistance (Rs) and charge
transfer resistance (Rct) [55]. Further, 100 ◦C CoFeBP MFs exhibited the lowest HER/OER
charge transfer resistance (Rct) values of 7.1 and 13.3 Ω, suggesting the highest HER/OER
charge transport characteristics in this set [56,57]. The HER/OER double-layer capacitance
(Cdl) is summarized in Figure 4i, which was derived from the CV plots via the following
relation, J = (Ja − Jc)/2, where Ja is the anodic current and Jc is the cathode current [57].
The corresponding CV plots are provided in Figures S26–S28. The 100 ◦C MFs demon-
strated the highest HER/OER Cdl values of 4.6 and 14.5 mF/cm2, suggesting the largest
electrochemical surface area (ECSA) of 100 ◦C CoFeBP MFs. The Cdl values are specifically
related to the capacitance at the electrode–electrolyte interface and, generally, the OER Cdl
values are higher. The HER is a 2-electron transfer process, and OER is a 4-electron transfer
process. Thus, the OER requires higher voltages. This can indicate that more metallic
sites participate in the OER process. With a higher voltage application, we can observe
larger current changes, which are reflected as higher Cdl values. The 3-E electrochemical
properties of the best CoFeBP MF in 1 M KOH are summarized in Table 1.

The HER operation can be summarized: Volmer step: H2O + e− + M → OH− + MHad;
Heyrovsky step: H2O + e− + MHad → M + OH− + H2; or Tafel reaction: 2MHad → 2M + H2 [58].
The M is the metallic site (Co and Fe), and Had is the absorbed hydrogen proton. The OER
process can be summarized: OH− + M = M-OH + e−, M-OH + OH− = M-O +H2O + e−,
2M-O → 2M + O2. Alternativley, M-O + OH− = M-OOH + e−; M-OOH + OH− → O2 +
H2O + e− + M [40,58]. It is important to have a lower energy barrier to break the covalent
H-O-H bonds. The efficient Had and hydroxyl adsorption/release steps are imperative for
the efficient HER/OER processes in alkaline solutions. The multi-metallic active centers
in the CoFeBP MFs can effectively break the tetrahedral covalent H2O bond and form the
metal hydride and hydroxyl intermediates (MHad and M-OOH), allowing for continuous
hydrogen and oxygen generation via the HER and OER steps [59,60]. The micro-flower
morphology can provides a largely increased number of absorption sites, in which the
MHad and M-OOH intermediates can easily be increased [60]. The incorporation of B
atoms can result in the modulation of electronic states for active sites, leading to efficient
catalytic reactions and higher electronic conductivity for higher HER/OER rates [61,62]. At
the same time, P is a well-known element for superior HER/OER activities with its strong
electronegativity, and the inclusion of P can significantly improve the HER/OER kinetics
and performances in the MF matrix [62].
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(a,b) HER and OER LSV curves in the post-annealing temperature variation set. (c) HER and OER LSV
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values. (g,h) EIS plots. (i) Double-layer capacitance (Cdl) obtained from the corresponding CV curves.
(j,k) HER and OER turnover frequency (TOF) plots. (l) HER and OER Faradaic efficiency (FE).
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Table 1. Summary of 3-E HER/OER electrochemical properties of the best CoFeBP electrode in 1 M
KOH solution.

Electrochemical Properties HER OER

EIS values 7.1 Ω 13.3 Ω
Tafel slopes 62 mV/dec 199 mV/dec
Cdl values 4.6 mF/cm2 14.6 mF/cm2

ECSA 28.75 cm2 91.25 cm2

TOF values
(at 500 and 800 mA/cm2) 0.193 site−1s−1 0.101 site−1s−1

Faradic efficiency (FE) 90.51% 90.16%

The turnover frequency (TOF) of CoFeBP MFs is calculated ass seen in Figure 4j,k. The
TOF can be utilized to reflect the intrinsic activity of electrodes along with the number of
H2 and O2 molecules generated per site and time at the turnover [63]. The 100 ◦C electrode
yields the highest HER/OER TOF values of 0.193 and 0.101 site−1s−1, as summarized
in Figure 4j,k. The comparison of HER/OER TOF values with other electrocatalysts is
summarized in Table S1. The HER and OER Faradaic efficiency was calculated to assess
the energy efficiency in Figure 4l [64]. The generated H2 or O2 was collected by the
water displacement approach, as seen in Figure S36. The HER/OER Faradaic efficiency of
optimized CoFeBP MFs was found to have relatively high efficiencies of 90.16% and 90.20%
for 30 min, as summarized in Figure 4l [14]. The efficiency loss could be due to the heat
generation and bubble formation [65]. More details on the TOF and Faradaic efficiency
calculations can be found in the Supplementary Text S1.8 and S1.9.

In addition, the formation of oxidation peaks was observed in the OER LSV curves, as
seen in Figure 4b. The oxidation peak gradually increased along with the increased perfor-
mance of samples, and a higher oxidation current was observed with a better-performing
sample. To observe the oxidation and reduction peak formation in the same range of OER,
cyclic voltammetry (CV) was performed, as seen in Figure S35. The oxidation state was
observed at ~1.48 V, which can be due to the formation of M-OOH (Co and Fe), i.e., cobalt
hydroxide (CoOOH), cobalt oxide (Co3O4), iron hydroxide (Fe-OOH), and other Fe-oxide
species [66]. During the positive scan, the formation of a 1.48 V peak can be due to the
formation of M-OOH, i.e., (M(OH)2 + OH− → MOOH + H2O + e−; 3M(OH)2 + 2OH− →
M3O4 + 4H2O + 2e−) [67,68]. In the process of a negative scan, reversible reactions can take
place with the reduction peak at ~1.39 V, and the Fe− and Co-oxide species can be reduced
to M(OH)2. The Fe/Co oxide peak formation can improve the OER performance as the
M-OOH (Co, Fe) can directly take part in the OER process as an OER intermediate and can
function as active OER centers, further boosting the splitting process [67,68].

Overall, the 100 ◦C CoFeBP MFs demonstrated the best electrochemical activities
in this set, which are mainly due to the improved crystallinity and effectively boosted
carrier transport in moderate annealing conditions [69]. Specifically, during the vacuum
annealing process, hydroxyl groups can be eliminated, and the oxygen vacancies (Ovac)
can be removed [54,70]. The defect density can be altered by atomic diffusion, and thermal
treatment is crucial in the modulation of surface active sites [40]. Nevertheless, excessive
thermal energy can damage MF structures, indicating limited performance [40]. XRD,
Raman, EIS, and LSV analyses before/after annealing on CoFeBP MFs can be found in the
Supplementary Text S1.6., S1.7. and S1.11 in Figures S29–S32.

3.2. The 3-E LSV Activity of CoFeBP MFs in Different pH Media

Figure 5 shows the 3-E HER/OER performances of the best CoFeBP MF in different
pH electrolytes, as compared with the Pt/C and RuO2 benchmark electrodes. The alkaline,
acidic and neutral media were prepared as 1.0 M KOH, 0.5 M H2SO4, and 1.0 M PBS
solutions. The reference electrode fabrication of Pt/C and RuO2 can be found in the
Supplementary Text S1.4 along with Figures S4 and S5. As seen in Figure 5a–f, the 3-E
HER/OER performances were the best in alkaline conditions and worst in the neutral
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medium in the order of 1 M KOH > 0.5 M H2SO4 > 1 M PBS. The reference electrodes
of Pt/C and RuO2 demonstrated better HER/OER performances in all electrolytes due
to the excellent inherent electrocatalytic properties of reference electrodes. Meanwhile,
the CoFeBP MFs demonstrated quite comparable HER/OER performances in the alkaline
media in Figure 5a,d: 196 and 130 mV for HER and 397 and 491 mV at 300 mA/cm2.
The lower performance in the acidic media could be due to the high concentrations of
H+ ions, and, generally, performance degradation and corrosion of transition metal-based
electrodes can be observed in acidic solutions [71]. The neutral media showed the worst
performance due to the lack of conductive ions [40]. The 3-E steady-state measurements
in alkaline media (1.0 M KOH) were carried out further to understand the stability of
CoFeBP MFs at various overpotentials (Figure 5g). The CA measurement checks the initial
fluctuation and compares the result to LSV. The 3-E CA response demonstrated a negligible
difference with LSV, as summarized in Figure S38, confirming the excellent early-stage
stabile operation of CoFeBP MFs. The HER/OER performance of CoFeBP MFs is compared
with the state-of-the-art transition metal-based electrodes at 20 mA/cm2 in Figure 5h,i and
Tables 2 and 3. The CoFeBP MF demonstrated an excellent HER performance of 20 mV at
20 mA/cm2, which ranked it as the second-best HER electrode as compared with the state
of the art in Figure 5h and Table 2. At the same time, CoFeBP MF demonstrated a decent
OER performance of 219 mV at 20 mA/cm2, which ranked it as the sixth-best transition
metal-based OER electrode (Figure 5i and Table 3). However, the OER performance was
not as high as HER.

Table 2. The 3-E hydrogen evolution reaction (HER) electrocatalytic performance comparison with
various transition metal-based catalysts in 1.0 M KOH.

Electrocatalyst
Overpotentials [mV]

Year References
@20 mA/cm2 @50 mA/cm2 @200 mA/cm2

RuVNi 15 26 48 2019 [72]
CoFeBP 20.1 46 145 - This work
NiMoB 54 97 210 2022 [40]

Ru/CoFeP 61 82 - 2020 [19]
NiFeMn 80 121 - 2020 [73]

CoB@CoO/Ti 81 110 181 2017 [74]
NiCoP 134 165 204 2018 [13]

Ni/Ni3N 151 232 420 2015 [59]
Fe-NiSe 182 265 - 2022 [75]

Fe-S 193 235 324 2019 [76]

Table 3. The 3-E oxygen evolution reaction (OER) electrocatalytic performance comparison with
various transition metal-based catalysts in 1.0 M KOH.

Electrocatalyst
Overpotentials [mV]

Year References
@20 mA/cm2 @50 mA/cm2 @200 mA/cm2

Ni2P-CuP 140 190 - 2021 [3]
MoNiPx/NiSy 143 156 221 2021 [77]

NiMo3S4 162 252 617 2022 [78]
P-Co3O4 208 295 330 2018 [18]
RuVNi 217 227 312 2019 [72]
CoFeBP 219 303 426 - This work
NiMoB 248 267 500 2022 [40]
NiFeMn 260 291 352 2020 [73]
NiCoP 296 328 370 2018 [13]

Mo2NiB2 311 342 - 2021 [2]
NiSe2 320 521 - 2022 [75]
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Figure 5. The 3-E electrochemical performance of best CoFeB50P50 MF electrodes of 100 ◦C annealed in
different media. (a–c) HER activities in 1 M KOH, 0.5 M H2SO4 and 1 M PBS electrolyte. (d–f) 3-E OER
activities. (g) HER/OER CA responses in 1 M KOH. (h,i) 3-E HER/OER performance comparisons
with the state-of-the-art electrodes at 20 mA/cm2.

3.3. The 2-E Activity of CoFeBP MFs

Figure 6a–c show the 2-E LSV performances of CoFeBP MFs in different pH electrolytes, as
compared with the benchmark electrodes. Both systems, i.e., CoFeBP∥CoFeBP and Pt/C∥RuO2,
demonstrated a 2-E performance in the order of 1 M KOH > 0.5 M H2SO4 > 1 M PBS. At the
same time, CoFeBP∥CoFeBP demonstrated comparable performances to the benchmarks
in all pH media. The 2-E CA response in 1 M KOH is provided in Figure S39, and stable
output can be maintained at various cell voltages, again confirming the excellent stability of
CoFeBP MFs. The 2-E LSV measurement was extended up to 1000 mA/cm2 and 6 M KOH
LSV at 60 ◦C, as shown in Figure 6d. A high-current performance (>1000 mA/cm2) is
imperative for industrial applications with a high gas generation rate [1]. Here, the
CoFeBP∥CoFeBP MFs demonstrated quite a comparative performance with the Pt/C∥RuO2
with the 2-E cell voltage of 2.66 V at 1000 mA/cm2 in 1.0 M KOH. The CoFeBP∥CoFeBP
MFs exhibited a lower 2-E cell voltage of 2.54 V at 1000 mA/cm2 in 6 M KOH at 60 ◦C,
which compares to the 2.43 V of benchmarks. The better LSV performance can be due
to the improved reaction kinetics by the high solution conductivity with high OH− con-
centrations and high temperature [40]. The water electrolysis industry utilizes strong
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alkaline media and higher operational temperature due to the better water-splitting (WS)
performance [64,79]. Further, 100 h stability operation was carried out in the industrial
operational conditions in 6 M KOH at 60 ◦C in Figure 6e. The 100 h stability operation of
2-E CoFeBP∥CoFeBP MFs clearly confirmed the superior stability of CoFeBP MFs with
the very stable current, with only a minor current fluctuation at 1000 mA/cm2 in the
industrial operational conditions. There was no significant dissolution of CoFeBP MFBs
under the industrial operational condition. After the continuous 100 h operation, small
particles were observed at the bottom of the cell. The CoFeBP MFs demonstrated excellent
repeatability, with minor differences after 1000 cycles in Figure 6f, further confirming the
excellent stability of CoFeBP MFs. In addition, the 12 h stability tests in 1 and 6 M KOH at
1000 mA/cm2 at room temperature also confirmed excellent stability, as seen in Figure S40.
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Figure 6. (a–c) 2-E activity in different media. (d) LSV up to 1000 mA/cm2. (e) Stability test
in 6.0 M KOH at 60 ◦C for 100 h. (f) 2-E repeatability in 1.0 M KOH after 1000 cycles. (g) 2-E
catalytic performance in natural seawater (SW) and river water (RW). (h) 2-E performance in SW
with the addition of 1 M KOH. (i) 2-E performance comparison with the state-of-the-art electrodes at
50 mA/cm2.



Nanomaterials 2024, 14, 698 15 of 24

The water splitting (WS) of CoFeBP MFs in natural seawater (SW) and river water
(RW) with the addition of 1.0 M KOH was performed, as seen in Figure 6g,h. Bare SW
and RW performances can be seen in Figure S41. Generally, CoFeBP MFs demonstrated
higher WS performances in SW over RW. The 1.0 M KOH addition largely improved the
WS performance due to the boosted solution conductivity by the increased OH− ions. The
2-E cell voltages of 3.87 and 2.34 V in RW and SW were obtained at 200 mA/cm2 by the
CoFeBP MFs, as seen in Figure 6g,h. The higher WS performance in SW can be due to
the presence of conductive ions, such as Na+ and Cl− [40]. In natural waters, a lot of ions
and biological compounds and elements, such as Mg+, F−, Ca+, Br−, bacteria, and dust
particles exist, and, thus, the WS performance in natural waters is generally much worse
than DI water-based solutions [40]. The CA response in SW + 1.0 M KOH was measured,
as seen in Figure S42. Stable current output was obtained in 30 min continuous operations
at various voltages, which confirmed the stable operation of CoFeBP MFs in natural waters.
Overall, the CoFeBP MF showed WS performance and stability in real waters. The 2-E cell
voltages in various electrolytes and natural waters are summarized in Table 4. Finally, the
CoFeBP MF demonstrated an outstanding 2-E cell voltage of 1.60 V at 50 mA/cm2, and
CoFeBP MF may be one of the best transition metal-based electrocatalysts, as compared
with the state of the art, as summarized in Figure 6i and Table 5.

Table 4. The 2-E (CoFeBP∥CoFeBP) cell voltage summary of LSV performance of the best CoFeBP
electrode in different electrolytes.

Electrolytes @200 mA/cm2 @1000 mA/cm2

1 M KOH 1.84 V 2.66 V
6 M KOH 1.76 V 2.54 V

0.5 M H2SO4 2.13 V -
1 M PBS 2.25 V -

River water - -
River water + 1 M KOH 3.87 V -

Seawater - -
Seawater + 1 M KOH 2.34 V -

Table 5. The 2-E electrocatalytic performance comparison of overall water splitting with various
transition metal-based catalysts in 1.0 M KOH.

Electrocatalyst Electrolyte Cell Voltage (V)
Year References@50 mA/cm2 @200 mA/cm2

Fe-NiSe 1 M KOH 1.34 V 1.61 V 2022 [75]
Ru/CoFeP 1 M KOH 1.46 V - 2020 [19]

MoNiPx/NiSy 1 M KOH 1.55 V 1.88 V 2021 [77]
FeS/Ni3S2 1 M KOH 1.56 V - 2022 [80]

NiFeMn 1 M KOH 1.57 V 1.66 V 2020 [73]
CoFeBP 1 M KOH 1.60 V 1.84 V - This work
NiMoB 1 M KOH 1.61 V 1.96 V 2022 [40]
Ni3S2 1 M KOH 1.63 V - 2018 [81]

Fe,Rh-Ni2P 1 M KOH 1.64 V 1.85 V 2022 [82]
Mo2NiB2 1 M KOH 1.67 V - 2021 [2]

NiFeS 1 M KOH 1.73 V - 2022 [83]
P-Co3O4 1 M KOH 1.79 V - 2018 [18]
NiCoP 1 M KOH 1.82 V - 2018 [13]

3.4. Characterization after Stability Test

The CoFeBP MFs (anode) are characterized before/after 12 h stability operation in
1 M KOH at 1000 mA/cm2 in Figure 7. Anode data are shown here as more obvious
changes can be generally observed on the anode side. Additional data can be seen in
Figures S43–S45. Firstly, the SEM images showed no visible difference before/after the long
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stability operation in Figure 7a,a-1. Upon closer viewing, the edges of branches became
slightly rougher after the 12 h stability operation; however, the micro-flower structures
were well maintained. This indicates the good structural stability of CoFeBP MFs. The SEM
images of the cathode and anode after the 12 h stability operation are shown in Figure S43.
There was also no obvious difference observed in either electrode. The Raman spectrum
of the CoFeBP MF anode after stability testing is shown in Figure 7b. Raman bands of the
anode and cathode after the 12 h stability test are compared in Figure S44. The Raman
of CoFeBP MF before the stability test can be seen in Figure 3a. In general, the Raman
intensity was largely reduced after the 12 h stability test. The Raman intensity reduction
could be due to the formation of oxide species after the long-term stability operations at
high current [41,42]. The 360 and 962 cm−1 peaks disappeared, and this may be due to the
originally weak Raman band signals being blocked by the various oxide formations. The
anode showed a greater reduction, as clearly seen in Figure S44.
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Figure 7. Characterizations of CoFeBP MF after the stability for 12 h at 1000 mA/cm2. (a,a-1) SEM
images of CoFeBP (anode) before and after stability test. (b) Raman spectrum of anode after stability
test. (c–c-4) XPS spectra of Co 2p, Fe 2p, B 1s and P 2p. (d) XRD pattern of anode after stability test.



Nanomaterials 2024, 14, 698 17 of 24

The XPS spectra of the anode after the stability test are shown in Figure 7c–c-3. In
the Co 2p spectrum in Figure 7c-1, the Co 2p3/2 and 2p1/2 peaks are found at 780.2
and 795.9 eV, and the corresponding satellite peaks are centered at 784.8 and 801.2 eV,
indicating the existence of Co(OH)2 on the electrode surface after stability tests. The oxide-
related peaks were largely increased, as clearly seen in Figure 7c-1. This may be due to the
continuous redox reactions in OH−-containing solution [84]. In the Fe spectrum, similarly,
the proportion of oxidized Fe species was also largely increased and taller than the Fe 2P
peaks, as seen in Figure 7c-2. In the B 1s and P 2p spectra, increased B and P oxidation peaks
were similarly observed, as seen in Figure 7c-3,c-4, resulting from the intense oxidation
during the water-splitting process. For the O 1s spectrum, as seen in Figure S46b, the
increased portion of M-O bonds further confirmed the formation of oxidation states [85].
The XRD pattern after the stability test is provided in Figure 7d, which can be compared
with that in Figure 3b before the stability test. Generally, the intensity of XRD diffraction
peaks was reduced, and many diffraction peaks disappeared. For example, the diffraction
peaks at 22.8, 33.7, 38.4, 41.0, and 42.5◦ were not visible after the stability test due to the
reconstruction of the surface by the formation of an amorphous oxide layer during the
water-splitting operation [37]. The peak intensity at 26.7, 27.6, 29.5, and 35.1◦ decreased,
again indicating the formation of an amorphous oxide layer. The oxidation of CoFeBP MF
surfaces can generally occur in the initial stages of WS operations, as discussed previously,
with the oxidation peak formation, and it stabilizes after multiple operations. Indeed,
surface oxidation improves the OER performance as the oxidated species can act as OER
active sites in the catalytic process [37,86]. The LSV performance of the CoFeBP electrode
after stability testing was examined in 1.0 M KOH, as seen in Figure S45, and only minor
differences were observed.

4. Conclusions

In summary, a CoFeBP micro flower (MF) was successfully fabricated via hydrothermal
synthesis, and the reaction parameters were systematically optimized. The best optimized
CoFeBP MF electrode demonstrated comparable 3-E and 2-E performances with the bench-
marks of Pt/C and RuO2. Specifically, the CoFeBP MF demonstrated an HER overpotential
of 20.1 mV at 20 mA/cm2 in 1.0 M KOH. The OER overpotential value of the CoFeBP
MF electrode was 219 mV at 20 mA/cm2 in 1.0 M KOH. While the HER performance
was relatively strong, the OER performance indicated room for further improvement.
The bifunctional CoFeBP MFs exhibited a cell voltage of 1.60 V at 50 mA/cm2 in 1.0 M
KOH. The 2-E performance was quite good; it still showed some room for further im-
provement, as compared with the state-of-the-art electrocatalysts. In addition, the CoFeBP
MFs demonstrated excellent durability, stability, and repeatability at high current and
high temperatures in high-alkaline solutions. The CoFeBP MFs demonstrated excellent
performances in natural seawater and seawater + KOH solutions. The surface oxidation
was systematically characterized after the 12 h stability operation at 1000 mA/cm2. The
improved performance of CoFeBP MFs can also be attributed to the high ECSA by the
distinctive micro-flower morphology and improved short-range local crystallinity by the
systematic annealing optimization. Synergy between the elements was effectively utilized,
i.e., highly active intrinsic properties by electron-enriched Co and Fe active sites with the
incorporation of B and P.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/nano14080698/s1, Figure S1: (a–a-1) Scanning electron microscope (SEM)
images of porous nickel foam (NF). (b–b-2) SEM image and corresponding EDS phase maps of
porous NF. (c) EDS spectrum with the atomic percentage. (d,e) hydrogen evolution reaction (HER)
and oxygen evolution reaction (OER) activities of porous NF in 1 M KOH. More details on the
preparation of substrate and precursors can be found in the Supplementary Text S1.1. Figure S2:
(a,b) hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) activities of the best
CoFeBP MF at different scan rates between approximately 2 and 10 mV/s. (a-1,b-1) Corresponding
Tafel slopes; 5 mV/s demonstrated the optimized scan rate and, thus, it was adapted for further

https://www.mdpi.com/article/10.3390/nano14080698/s1
https://www.mdpi.com/article/10.3390/nano14080698/s1
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LSV measurements. More details can be found in the Supplementary Text S1.2. Figure S3: Elec-
trochemical impedance spectroscopy (EIS) measurements for the optimized CoFeBP MF electrode
at different voltages. (a) HER EIS. (b) OER EIS. Voltage variation at fixed current was adapted for
further EIS measurements. More details can be found in the Supplementary Text S1.2. Figure S4:
(a,a-1) SEM images of Pt/C reference electrode. (b) EDS spectrum. (c,c-1) HER activity of Pt/C
electrode and corresponding overpotential values at different current densities. More details can
be found in the Supplementary Text S1.4. Figure S5: (a,a-1) SEM images of RuO2 reference elec-
trode. (b) EDS spectrum. (c,c-1) OER activity of RuO2 electrode and corresponding overpotential
values at different current densities. More details can be found in the Supplementary Text S1.4.
Figure S6: Fabrication steps of CoFeBP micro flower (MF) electrode on the porous nickel foam
(NF) via the hydrothermal reaction. The best sample from the hydrothermal reaction was treated
with post-annealing. More details on the fabrication of CoFeBP MF can be found in the Supple-
mentary Text S1.5. Figure S7: (a–d) SEM images of CoFeBP electrodes at different reaction dura-
tion. (a-1–a-3,b-1–b-3,c-1–c-3,d-1–d-3) Corresponding zoom-in images. Figure S8: HER/OER perfor-
mances of CoFeBP electrodes with hydrothermal deposition time variation. (a,b) HER/OER LSV
results. (a-1,b-1) Corresponding overpotential values at 200 mA/cm2. (a-2,b-2) HER/OER overpoten-
tial values of the best electrode at 200 mA/cm2. Figure S9: (a–d) SEM images of CoFeBP electrodes
with hydrothermal reaction temperature variation. (a-1–a-3,b-1–b-3,c-1–c-3,d-1–d-3) Corresponding
zoom-in images. Figure S10: HER/OER performances of CoFeBP electrodes with hydrothermal reac-
tion temperature variation. The duration of hydrothermal process was fixed for 8 h. (a,b) HER/OER
LSV results. (a-1,b-1) Corresponding overpotential values at 200 mA/cm2. (a-2,b-2) HER/OER
overpotential values of the best electrode at 200 mA/cm2. Figure S11: (a–g) SEM images of CoFeBP
MF electrodes with the B-P concentration variation. (a-1–g-1) Corresponding zoom-in images.
Figure S12: (a–g) EDS spectra of CoFeBP electrodes in the B-P concentration variation. (h) Sum-
mary plot of atomic percentage. Figure S13: (a,b) HER/OER LSV summary of B-P concentration
variation set. (a-1,b-1) Corresponding overpotential values at 200 mA/cm2. (a-2,b-2) HER/OER
overpotential values of the best electrode at 200 mA/cm2. Figure S14: (a–f) SEM images of CoFeBP
MF electrodes with the Co-Fe concentration variation. (a-1–f-1) Corresponding zoom-in images.
Figure S15: (a–f) EDS spectra of CoFeBP electrodes in the Co-Fe concentration variation. (g) Atomic
percentage summary plot. Figure S16: (a,b) HER/OER LSV results. (a-1,b-1) Corresponding over-
potential values at 200 mA/cm2. (a-2,b-2) HER/OER overpotential values of the best electrode at
200 mA/cm2. Figure S17: (a–d) SEM images of CoFeBP electrodes at different urea concentra-
tion. (a-1–a-3,b-1–b-3,c-1–c-3,d-1–d-3) Corresponding zoom-in images. Different urea concentration
resulted in altered morphologies of CoFeBP. Figure S18: HER/OER performances of CoFeBP elec-
trodes with urea concentration variation. Hydrothermal reaction parameter was fixed at 4 h at
140 ◦C. (a,b) HER/OER LSV results. (a-1,b-1) Corresponding overpotential values at 200 mA/cm2.
(a-2,b-2) HER/OER overpotential values of the best electrode at 200 mA/cm2. Figure S19: (a–f) SEM
images of Urea-Ammonium fluoride concentration variation. (a-1–f-1) Corresponding zoom-in im-
ages. Figure S20: Electrochemical performance of CoFeBP electrodes with Urea-Ammonium fluoride
concentration variation set. (a,b) HER/OER LSV results. (a-1,b-1) Corresponding overpotential
values at 200 mA/cm2. (a-2,b-2) HER/OER overpotential values of the best electrode at 200 mA/cm2.
Figure S21: (a–d) SEM images of CoFeBP electrodes with post-annealing duration variation. The
Annealing temperature was fixed at 100 ◦C. (a-1–d-1) Corresponding zoom-in images. Figure S22:
HER/OER performance of CoFeBP electrodes with post-annealing time variation. (a,b) HER/OER
LSV results. (a-1,b-1) Corresponding overpotential values at 200 mA/cm2. (a-2,b-2) HER/OER
overpotential values of the best electrode at 200 mA/cm2. Figure S23: (a–d) SEM images of hybrid
CoFeBP electrodes with post-annealing temperature variation. Annealing duration was fixed at
30 min. (a-1–d-1) Corresponding zoom-in images. Figure S24: (a–d) EDS spectra of post-annealing
temperature variation set. (e) Summary plot of atomic percentage changes. Generally, they showed
similar atomic percentage with minor changes with post-annealing temperature variation. Figure S25:
HER/OER performance of CoFeBP electrodes with post-annealing time variation. (a,b) HER/OER
LSV results. (a-1,b-1) Corresponding overpotential values at 200 mA/cm2. (a-2,b-2) HER/OER
overpotential values of the best electrode at 200 mA/cm2. Figure S26: (a–d) HER CV curves of
CoFeBP electrodes in the post-annealing temperature variation set. The scan rate changes from
40 mV/s to 180 mW/s. More details can be found in S-1.2. Figure S27: (a–d) OER CV curves of
CoFeBP electrodes in the post-annealing temperature variation set. The scan rate changes from
40 mV/s to 180 mW/s. More details can be found in S-1.2. Figure S28: (a,b) HER/OER anodic and
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cathodic current density as a function of scan rate. (a-1,b-1) HER/OER Cdl plots. More details can
be found in S-1.2. Figure S29: (a) Raman analysis of the best CoFeBP electrodes before and after
post-annealing. More details can be found in S-1.6. Figure S30: (a,b) XRD analysis of the best CoFeBP
electrodes before and after post-annealing. (a-1,a-2,b-1,b-2) Corresponding zoom-in spectra. More
details can be found in S-1.7. Figure S31: (a,b) HER/OER EIS of the best CoFeBP electrodes before
and after post-annealing. Figure S32: (a,b) HER and OER LSV activities of the best CoFeBP electrodes
before and after post-annealing. Figure S33: (a–d) XRD spectra of CoFeBP, CoFeP, CoBP and CoFeB
electrodes. Figure S34: (a–d) Related PDF cards. (http://icsd.kisti.re.kr/icsd/icsd_chemistry.jsp)
accessed on 1 June 2020, Figure S35: (a) Cyclic voltammetry (CV) measurement of Co90-Fe10-B50-P50
MF electrode in the same scanning range as OER. (a-1) Zoom-in plot of oxidation and reduction
peaks. Figure S36: (a) Water-gas displacement to collect the generated H2 and O2 by 3-E HER/OER
operations. More details can be found in S-1.9. Figure S37: (a,b) Comparison of theoretical values
and measured H2 and O2 in different reaction time. More details can be found in S-1.9. Figure S38:
(a,b) HER/OER 3-E current density comparisons of CA and LSV. (a-1,b-1) Difference in percentage.
Figure S39: (a) CA response of the best CoFeBP MFs in 1 M KOH. (b) Comparison of 2-E current
density of CA and LSV. Figure S40: (a) 2-E stability test of CoFeBP||CoFeBP MFs. The 1.0 M KOH
stability was performed at room temperature at 1000 mA/cm2 for 12 h. The 6.0 M KOH stability
was performed at 60 ◦C at 1000 mA/cm2 for 12 h. Figure S41: (a) LSV results of CoFeBP||CoFeBP
MFs in sea and river waters. While naggable water splitting (WS) was observed in river water (RW),
higher WS was observed in the seawater (SW) by the CoFeBP MFs. General conductivity of RW is
~1 milli-siemens per centimeter (mS/cm) and it reaches ~50 mS/cm in SW. Notably, in SW, due to
the existence of Cl− ions, the chlorine evolution reaction (CER) is inevitable since the required energy
for the formation of hypochlorite is comparable to OER, (Cl− + 2OH− = ClO− + H2O + 2e−), which
will compete with oxygen generation reaction and corrode the electrode [47]. The obtained results
were comparable to the reference system, meaning that the MBF CoFeBP catalyst presented superior
OER and chloride corrosion resistance, which can effectively suppress the CER. Figure S42: (a) CA
response in seawater + 1 M KOH of the best CoFeBP electrode. (b) Comparison of the current density
of LSV and CA. Figure S43: (a,b) SEM images of CoFeBP MFs after 2-E stability test at 1000 mA/cm2

in 1.0 M KOH for 12 h. Figure S44: (a) Raman spectra of anode and cathode CoFeBP MFs after 12 h
stability test. More details can be found in S1.6. Figure S45: (a,b) HER and OER activities of CoFeBP
MFs after 12 h stability test. Figure S46: (a) XPS spectrum of O 1s. Table S1: TOF comparison of
electrocatalysts for HER and OER. References [87–121] are cited in Supplementary Materials.
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