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Abstract: Photonic neural networks (PNNs), utilizing light-based technologies, show immense poten-
tial in artificial intelligence (AI) and computing. Compared to traditional electronic neural networks,
they offer faster processing speeds, lower energy usage, and improved parallelism. Leveraging
light’s properties for information processing could revolutionize diverse applications, including
complex calculations and advanced machine learning (ML). Furthermore, these networks could
address scalability and efficiency challenges in large-scale AI systems, potentially reshaping the
future of computing and AI research. In this comprehensive review, we provide current, cutting-edge
insights into diverse types of PNNs crafted for both imaging and computing purposes. Additionally,
we delve into the intricate challenges they encounter during implementation, while also illuminating
the promising perspectives they introduce to the field.

Keywords: photonic neural networks; artificial intelligence; spiking neural network; feedforward
neural network; recurrent neural network

1. Introduction

Photonic neural networks (PNNs) mark a pioneering approach to neural comput-
ing, exploiting the velocity and concurrency of light to enhance information processing
efficiency [1–3]. By capitalizing on optical components and principles, PNNs present com-
pelling remedies to long-standing impediments in traditional electronic neural networks,
such as speed constraints and energy consumption [2,4]. PNNs embrace a spectrum of ar-
chitectures, spanning feedforward, recurrent, convolutional, and spiking neural networks,
each meticulously crafted for distinct tasks and domains [5,6]. Noteworthy advantages of
PNNs encompass their capacity for lightning-fast computation, vast parallelism, and innate
adaptability to certain data processing challenges like image recognition and optimization
tasks [7,8]. Furthermore, PNNs demonstrate potential in surmounting emerging hurdles
in artificial intelligence (AI), photonics, and information processing, heralding a new era
of computing paradigms poised to revolutionize an array of fields, from healthcare to
telecommunications [9,10].

Quantum neural networks (QNNs) and PNNs represent two distinct paradigms in
advanced computing, each employing unique principles for data processing and anal-
ysis [11]. QNNs leverage quantum mechanics principles like superposition and entan-
glement, whereas PNNs utilize photonics for neural network operations. The primary
distinction lies in their hardware platforms; QNNs rely on quantum processors manipulat-
ing qubits, while PNNs use photonic devices. Regarding scalability, QNNs face challenges
related to qubit coherence times and error rates, whereas PNNs encounter obstacles in fab-
ricating precise photonic components and integrating them with electronic infrastructure.
Additionally, QNNs show potential for exponential speedup in tasks such as optimization
and cryptography due to quantum parallelism and annealing, while PNNs may excel
in applications requiring low latency and high bandwidth, like telecommunications and
data processing [12]. Despite their differences, both QNNs and PNNs hold promise for
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advancing machine learning and computing, contingent upon specific task requirements
and underlying hardware capabilities. In our view, photonics stands out for its exceptional
capabilities in interconnects and communications, particularly due to its high bandwidth
potential, effectively addressing the trade-offs associated with bandwidth and interconnec-
tivity [13–15]. Decades ago, the benefits of photonics for neural networks were predictable,
with pioneering work led by Psaltis and others, who introduced spatial multiplexing
methods, permitting comprehensive all-to-all interconnection [16]. However, practical
applications of PNNs faced obstacles due to limitations in low-level photonic integration
and packaging technologies at that time. Nonetheless, the landscape of PNNs has seen
significant changes with the advent of large-scale photonic assembly and integration meth-
ods [17,18]. For example, silicon photonics has become a leading platform for producing
extensive and cost-effective optical systems [19–21]. Concurrently, various evolving appli-
cations, such as resolving nonlinear optimization problems and processing multichannel
GHz analog signals in real time, are seeking innovative computing platforms to fulfill
their computational needs [22]. These advancements illuminated fresh opportunities and
pathways for advancing PNNs [23].

Particularly compelling is their application in deep learning and pattern recognition,
where PNNs harness the parallel processing capabilities of light to execute intricate neural
network operations at remarkable speeds, facilitating swift inference and training tasks
that strain conventional electronic systems [24–26]. Moreover, PNNs boast exceptional
energy efficiency owing to the minimal losses inherent in photonics, rendering them well-
suited for deployment in energy-constrained settings and portable devices. In addition,
PNNs show promise in optical computing, where they excel in tasks like image process-
ing, cryptography, and optimization with unmatched efficiency [27–30]. In the realm of
telecommunications and data processing, PNNs stand to revolutionize optical signal pro-
cessing, enabling rapid data transmission and processing for cutting-edge communication
networks. Furthermore, PNNs hold significant potential in advancing biomedical imaging
and sensing technologies, enabling the real-time analysis of biological data with precision
and sensitivity. Overall, the versatility and significance of PNNs highlight their capacity
to propel innovation across diverse fields, offering unprecedented speed, efficiency, and
scalability for the next generation of computing and information processing systems. PNNs
leverage optical technologies to perform certain aspects of neural network computation,
offering potential benefits in terms of speed, energy efficacy, and parallelism. Several types
of PNNs were proposed and studied [2], which are discussed in Section 2. The prospects
and challenges of the PNNs are briefly discussed in Section 3, and the paper ends with a
brief discussion and concluding remarks.

The promising potential of PNNs is hindered in real-world usage cases for several
reasons. Firstly, the complexity and cost associated with fabricating photonic components
capable of performing neural network operations limited their widespread adoption. Pho-
tonic devices require precise manufacturing processes and sophisticated materials, resulting
in high production costs and scalability limitations. Additionally, challenges arose in inte-
grating photonic components with existing electronic infrastructure due to compatibility
and interoperability issues. Furthermore, the efficient implementation of PNNs has been
impeded by the lack of standardized design methodologies and optimization algorithms
tailored specifically for them. Concerted efforts across multiple domains are necessary
to make PNNs a realistic prospect for real-world adoption. Technological advancements
in materials science and fabrication techniques could reduce manufacturing costs and
enhance the performance of photonic devices. Moreover, crucial research efforts are needed
to develop standardized design frameworks, optimization algorithms, and integration
strategies tailored for PNNs. Collaborations among academia, industry, and government
bodies to invest in research and development initiatives can accelerate progress in these
areas. Additionally, educational programs aimed at fostering interdisciplinary expertise
bridging photonics and machine learning domains would cultivate a skilled workforce
capable of driving innovation in PNN technology.
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2. Types of PNNs

PNNs represent a paradigm shift in computing by harnessing light’s inherent ad-
vantages over traditional electronic systems. This emerging technology promises break-
throughs in speed, energy efficiency, and scalability, crucial for addressing the escalating
demands of data-intensive tasks like ML and AI. When assessing the outcomes of process-
ing speed, energy consumption, and accuracy between PNNs and traditional electronic
neural networks, notable advantages emerge in specific domains [2]. PNNs exhibit remark-
able processing speed, owing to the inherent parallelism ingrained in optical computing,
facilitating simultaneous data processing across numerous channels. Empirical evidence
from various studies underscores processing speeds several orders of magnitude faster
than those achieved by electronic counterparts. Additionally, PNNs boast lower energy
consumption per computation, owing to the fundamental properties of light propagation,
leading to diminished heat dissipation and power consumption in contrast to electronic
devices [31,32]. Nonetheless, despite excelling in processing speed and energy efficiency,
potential trade-offs regarding accuracy may arise. While PNNs demonstrate promising
outcomes in tasks such as pattern recognition and image processing, their accuracy may
fluctuate based on the neural network architecture’s complexity and the precision of optical
components employed [30]. Comparative analyses between PNNs and electronic neural
networks elucidate these trade-offs, delineating areas where PNNs excel, as well as other
areas necessitating further optimization to attain comparable accuracy levels [33]. Fig-
ure 1 presents a comprehensive overview contrasting the functionalities of photonic and
electronic implementations of neurons.
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Figure 1. Electronic versus photonic implementation of neuron functions. (a) Electronic implementa-
tion, (b) Photonic implementation.

In this section, we delved into several pivotal types of PNNs that stand as focal points
in imaging and computing research, illuminating their significance and widespread explo-
ration in the field, as presented in Figure 2. Feedforward neural networks (FNNs) provide a
foundational framework for pattern recognition and classification tasks by mapping input
data to output predictions through layers of interconnected neurons [34]. Recurrent neural
networks (RNNs) host the crucial concept of feedback loops, enabling them to process
sequential data with temporal dependencies, making them essential for tasks, for instance,
natural language processing and time series analysis [35]. Convolutional neural networks
(CNNs) excel in image and video processing tasks, leveraging shared weights and local
connectivity to derive hierarchical features, making them indispensable in computer vision
applications [36,37]. Reservoir computing (RC), a subset of recurrent networks, offers
advantages in processing temporal data efficiently, particularly in tasks where memory and
context play vital roles [19]. Spiking neural networks (SNNs), stimulated by biological neu-
rons’ spiking behavior, offer low-power neuromorphic computing capabilities appropriate
for brain-inspired computing tasks and efficient event-based processing [19]. Photonic
Ising machines (PIMs) exploit principles from statistical physics to solve optimization
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problems efficiently, while optoelectronic neural networks (ONNs) leverage light-based
communication for high-speed, parallel processing, offering promising solutions for large-
scale computational tasks [19]. In our opinion, each of these architectures brings its own
set of strengths to the table in the realm of computing and imaging. Together, they push
the boundaries of AI forward, opening new possibilities and paving the way for tackling a
wide range of real-world problems.
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Photonics offers a multitude of advantages across various types of neural networks. In
FNNs, photonics enables high-speed processing due to the intrinsic speed of light, enhanc-
ing computational efficiency. The parallel nature of photonics allows for the simultaneous
processing of multiple inputs, enhancing the network’s throughput. In RNNs, photonics
facilitates the efficient handling of time-varying signals, which is crucial for temporal
processing tasks. Additionally, the inherent parallelism of photonics can accelerate com-
putations in CNNs, which excel in tasks involving spatial relationships. Photonics is also
well-suited for RC, where its high bandwidth and low latency enable rapid information
processing. SNNs benefit from photonics’ ability to efficiently transmit and process sparse,
asynchronous signals akin to biological neurons. PIMs exploit photonics’ parallelism for
solving optimization problems efficiently. Lastly, in ONNs, photonics seamlessly integrates
with electronics, offering low-latency communication and high-bandwidth connections,
thus improving network performance. Overall, photonics presents a promising avenue for
enhancing the speed, efficiency, and performance of diverse neural network architectures.

Considering the distinct characteristics of different types of PNN described earlier,
we classified them into two primary groups. On the right side of Figure 2, we assem-
bled a category corresponding to traditional artificial neural networks (ANNs) that could
potentially be realized using optical or photonic technologies. Conversely, architectures
tailored specifically to exploit the unique properties of PNN are positioned on the left side
of Figure 2. Subsequent subsections will delve into each of these categories in greater depth.

2.1. Feedforward Neural Networks (FNNs)

FNNs represent a fundamental architecture in ANNs, categorized by the unidirectional
flow of information from input nodes through one or more hidden layers to output nodes,
as reported in Figure 3a [38]. In essence, FNNs process input data by passing them
through a series of interconnected layers of neurons, each layer transforming the data
representation to derive increasingly abstract features [39]. These networks are trained
using approaches such as backpropagation, where the inconsistency between the projected
output and the actual target is minimized through iterative adjustments to the network’s
parameters. FNNs find widespread applications in countless spheres, containing image
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and speech recognition, natural language processing, and financial forecasting, owing to
their capacity to learn multifaceted patterns and associations in data [40]. Despite their
simplicity compared to more complex architectures, FNNs serve as foundational models
upon which more advanced network designs are built, making them a cornerstone of
modern ML and AI [41].

Differential equations manifest across numerous domains of science and engineering,
offering a valuable means of describing various physical phenomena. They typically mani-
fest as initial or boundary value problems, wherein conditions at the inception of a process
or boundary points are stipulated to yield an explicit solution. Employing numerical meth-
ods [42], such as finite difference methods, serves as a useful strategy for approximating
these equations. Furthermore, neural networks appeared as a viable instrument for this
purpose [43,44]. The realm of neural network architectures boasts a vast array of possibili-
ties. Notably, FNNs demonstrated utility in solving differential equations, as evidenced by
seminal works in the field [45]. Within the framework of FNNs, two specific approaches
(trial solution method and modified trial solution method) [46,47] have gathered substantial
attention in the literature over recent decades, displaying substantial promise.

FNNs present a potential method for resolving differential equations. Nevertheless, the
consistency and precision of the approximation still pose unresolved challenges within the
existing literature. Computational methodologies are generally heavily reliant on various
computational parameters and the selection of optimization techniques, which must be
considered in conjunction with the structure of the cost function. In [48], the resolution of
a straightforward yet pivotal stiff ordinary differential equation representing a damped
system is proposed. Two computational strategies are proposed for resolving differential
equations using neural forms: the conventional but still relevant approach of trial solutions
defining the cost function and a recent direct formulation of the cost function associated
with the trial solution process. It is worth noting that these configurations can be readily
extended to encompass the solution of partial differential equations. Through an exhaustive
computational analysis, the potential to discern preferable choices for parameters and
methodologies is demonstrated. Additionally, light was shed on intriguing phenomena
observable in the simulations of neural networks.

2.2. Recurrent Neural Networks (RNNs)

RNNs characterize a specialized class of ANNs engineered to manage sequential
data [49,50]. They achieve this by incorporating connections that create directed cycles
within the network graph, facilitating dynamic temporal behavior and the processing of
sequences of variable lengths. Diverging from the linear flow of information characteristic
of FNNs, RNNs feature connections that loop back, empowering them to retain and exploit
information from past states. The assembly of RNN is depicted in Figure 3b.

This unique trait renders RNNs particularly adept at tasks revolving around sequential
data, including but not limited to time series prediction, natural language processing,
speech recognition, and music generation. Notably, RNNs serve crucial roles in language
modeling and text generation, exemplified in machine translation systems where they
encode a source sentence into a fixed-length vector depiction before decoding it into a
target sentence, enabling seamless translation across languages. Similarly, in sentiment
analysis within natural language processing, RNNs excel at discerning sentiment in a text by
analyzing the context of individual words within the broader sentence context. Moreover,
RNNs contribute significantly to speech recognition systems by effectively modeling the
temporal dependencies present in audio data, thereby accurately transcribing spoken
words. In summary, recurrent neural networks hold pivotal importance in managing
sequential data across diverse domains, owing to their proficiency in capturing temporal
dependencies and processing sequential information with precision.

RNNs offer powerful capabilities for sequential data processing, but they come with
several challenges and limitations. One significant challenge is the vanishing gradient
problem, where the gradients diminish exponentially as they propagate backward in time
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during training, hindering long-range dependencies learning. Additionally, RNNs struggle
with capturing long-term dependencies due to their inherent sequential nature, making
it difficult to retain information over extended sequences. Moreover, training RNNs
can be computationally expensive and time-consuming, especially with large datasets.
Another limitation is their exertion in managing variable-length sequences efficiently, as
they necessitate fixed-length input and output vectors. Lastly, RNNs are prone to overfitting,
particularly when addressing noisy or sparse data, necessitating careful regularization
techniques to mitigate this issue. Despite these challenges, advancements like Long Short-
Term Memory [51] and Gated Recurrent Unit architectures [52] were established to alleviate
some of these constraints and improve the effectiveness of RNNs in various tasks.

2.3. Reservoir Computing (RC)

RC is a cutting-edge archetype in the field of ML, particularly within the domain of
RNNs. Unlike traditional RNNs, where the recurrent connections are subject to training,
RC employs a fixed, randomly generated recurrent network called the “reservoir.” This
reservoir acts as a dynamic memory system that preserves temporal information and
captures complex temporal dependencies within sequential data, as shown in Figure 3c. The
input signals are injected into the reservoir, where they undergo nonlinear transformations,
leading to rich representations of the input data. The key revolution of RC lies in the
separation of the training phase from the reservoir dynamics, allowing for simpler and
more efficient learning algorithms. During the training phase, only the output weights are
adjusted utilizing simple linear regression or other optimization techniques, enabling rapid
training and efficient adaptation to various tasks. RC has shown remarkable performance
across a range of applications, including time series prediction, speech recognition, natural
language processing, and robotics, making it a promising approach for addressing complex
temporal problems in both research and practical applications. Its flexibility, simplicity, and
superior performance propelled it to the forefront of modern ML methodologies, fostering
ongoing research and development in the field.

In the work presented by Sakemi et al. [53], a novel technique aimed at diminishing
the reservoir’s size by incorporating either past states or evolving dynamics directly into
the output layer at the current time step was proposed. To shed light on the underlying
principle of model size reduction, a thorough analysis is conducted leveraging the data
processing capability framework proposed by Dambre et al. [54]. Furthermore, the efficacy
of these techniques was assessed through rigorous evaluations of time-series forecast tasks,
including the general Hénon-map and NARMA. Remarkably, these findings demonstrate
that the anticipated approaches can achieve a reduction in reservoir size of up to one-tenth
without significantly amplifying the regression error.

RC presents a promising approach to sequential data processing, yet it also confronts
several challenges and limitations [55]. One significant challenge is the model and optimiza-
tion of the reservoir itself, as finding the right architecture and parameters can be highly
task-dependent and nontrivial. Additionally, training the readout layer to effectively derive
information from the reservoir states requires careful tuning and regularization to prevent
overfitting, especially in the presence of noisy or high-dimensional data. Furthermore, RC
systems may struggle with capturing long-term dependencies in sequential data, partic-
ularly in cases where the underlying dynamics are highly complex or chaotic. Moreover,
scalability can be an issue with large-scale reservoirs, as the computational and memory
requirements grow proportionally with the size of the reservoir, potentially limiting its
applicability to real-world problems [56]. Despite these challenges, ongoing research aims
to address these limitations and further enhance the capabilities of RC for a wide range of
tasks and applications [57].

2.4. Convolutional Neural Networks (CNNs)

CNNs are a cornerstone in the realm of AI, predominantly in computer vision tasks.
These networks are inspired by the biological visual cortex’s structure and operation,
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leveraging layers of interconnected neurons to process visual information [58]. At the
core of CNNs lies the convolution operation, where filters or kernels are utilized to input
data to extract meaningful features [59]. Through a process of convolution, nonlinear
activation, pooling, and often repeated layers, CNNs can effectively learn hierarchical
representations of features from raw input data. This hierarchical learning enables CNNs to
automatically learn and identify patterns, textures, and shapes within images, making them
exceptionally powerful for tasks such as image classification, object detection, and image
segmentation. CNNs demonstrated extraordinary performance across various domains,
including healthcare, autonomous vehicles, and satellite imagery scrutiny, continually
pushing the boundaries of what is possible in computer vision and pattern recognition [60].

One of the pivotal aspects of a CNN model lies in its ability to generalize effectively to
unseen data. Overfitting stands out as a prevalent issue within CNN networks, manifesting
when the model fits the training dataset well but struggles to generalize to new examples
outside its training scope [61]. This phenomenon occurs due to the model memorizing train-
ing examples without truly learning from them. Mitigating overfitting entails strategies
such as expanding the training dataset, employing data augmentation methods, simplifying
architecture, applying regularization methods, and implementing early stopping mecha-
nisms. Furthermore, other challenges in training a CNN model include the occurrence of
exploding gradients and class imbalances. Exploding gradients become apparent when
the training model fails to learn from the data after a certain number of epochs, resulting
in overflow and NaN loss values for the error gradient. This instability in learning can be
addressed through measures like redesigning the network architecture, gradient clipping,
and selecting suitable activation functions. Class imbalance represents another hurdle,
characterized by a significant nonuniform distribution of specimen classes [62]. Addressing
this issue during model training has long been a substantial challenge in ML.

Recently, CNNs have gathered noteworthy consideration for their inspiring advance-
ments in computer vision. Many research endeavors employed comparative parallel
analysis to juxtapose the divergence patterns of CNN and functional magnetic resonance
imaging (fMRI) representations [63,64]. These explorations revealed similarities, suggesting
that the human visual cortex shares hierarchical depictions akin to CNNs. Consequently,
CNN-built encoding models gained widespread acceptance and verified exceptional per-
formance [65,66]. However, it is vital to recognize that despite the triumph of CNNs in
encoding tasks, the differences in how CNNs and the brain process visual data should
not go unnoticed. Precisely predicting brain responses to numerous stimuli remains a
noteworthy challenge in neuroscience. Despite recent progress in neural encoding through
CNNs in fMRI studies, significant disparities persist between the computational principles
of traditional artificial neurons and actual biological neurons. To tackle this challenge, a
framework based on spiking CNNs (SCNNs) for neural encoding was proposed, aiming for
greater alignment with biological plausibility [67]. This framework exploits unsupervised
SCNNs to extract visual features from image stimuli and utilized a receptive field-based
regression algorithm to forecast fMRI responses from these SCNN features. Encoding
models were constructed based on SCNNs using four image-fMRI datasets (Figure 3d).
Subsequently, image reconstruction and identification tasks were performed using the pre-
trained encoding models (Figure 3e,f). Experimental outcomes on handwritten characters,
digits, and natural images validate that the projected method achieves notably high encod-
ing performance and can be applied to “brain reading” tasks such as image rebuilding and
identification. This study recommended that SNNs hold promise as a valuable approach
for neural encoding.

Moreover, a groundbreaking photonic matrix architecture leveraging the real part of a
nonuniversal N × N unitary MZI mesh to represent the real-value matrix was proposed
by Tian et al. [68]. This innovative approach promises significant advancements, particu-
larly in applications such as PNNs, where it potentially decreases the required MZIs to
O(Nlog2 N) level while incurring minimal cost to learning capability. In the experimental
validation, a 4 × 4 photonic neural chip was successfully realized, and its performance
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was meticulously assessed in a CNN tasked with handwriting recognition. Remarkably,
this 4 × 4 chip demonstrates remarkably low learning capability loss compared to its
conventional counterpart, which relies on O(N2) MZIs. Furthermore, this architecture
showcases superior characteristics across various metrics, including optical loss, chip size,
power consumption, and encoding error [68].
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Figure 3. Structure of (a) FNN, (b) RNN, (c) typical RC [53]. (d) The depiction of the encoding
prototype. The model employs a 2-layer SCNN to derive graphic topographies from input pictures
and utilizes linear regression models to forecast the fMRI responses for each voxel. (e) The schematic
for the image-rebuilding endeavor, targeting the reconstruction of perceived images from brain
activity. (f) An illustration for the image identification chore, focused on discerning the perceived
image based on fMRI responses [67,69,70].

2.5. Spiking Neural Networks (SNNs)

SNNs signify a novel class of ANNs inspired by the biological neurons’ spiking behav-
ior found in the brain. Unlike traditional ANNs that rely on continuous-valued activations,
SNNs communicate through discrete, asynchronous spikes or pulses of activity [17,71].
This spike-based communication enables SNNs to better emulate the dynamics of biolog-
ical neural systems and potentially achieve higher efficiency in terms of computational
resources and energy consumption. In SNNs, neurons integrate incoming spike signals
over time, and once a certain threshold is reached, they emit a spike, propagating infor-
mation to downstream neurons. This temporal aspect of communication allows SNNs to
encode data in the specific timing of spikes, enabling them to capture complex temporal
patterns and process information more efficiently. SNNs garnered significant interest due to
their potential for low-power neuromorphic hardware implementations and their ability to
model dynamic spatiotemporal computations, such as sensory processing and event-based
vision [72,73]. Despite facing challenges in training and computational complexity, ongoing
research into SNNs continues to advance our understanding of neural computation and
holds promise for achieving brain-like intelligence in artificial systems [74].

Developing software for a neuromorphic computer often involves designing an SNN
tailored for deployment on such hardware. SNNs draw substantial inspiration from
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biological neural systems, incorporating temporal dynamics into their computation. Within
most neuromorphic computers, neurons and synapses in SNNs exhibit time-dependent
behaviors. For instance, spiking neurons may gradually lose charge over time according to
specific time constants, while SNN elements like neurons and synapses may introduce time
delays. The process of crafting algorithms for neuromorphic systems often revolves around
defining an SNN suitable for a given application. Various algorithmic strategies exist within
neuromorphic computing, broadly categorized into two types: (1) algorithms focused on
training or learning an SNN for deployment on a neuromorphic platform (see Figure 4),
and (2) non-ML algorithms where SNNs are manually built to address specific tasks. It
is important to clarify that in this context, training and learning algorithms pertain to
the techniques for enhancing SNN constraints, typically synaptic weights, to tackle a
particular problem.

Backpropagation and stochastic gradient descent demonstrated remarkable efficacy
in the realm of deep learning. Nonetheless, these methodologies do not directly translate
to SNNs due to the nondifferentiable nature of many spiking neuron activation functions,
often employing threshold functions. Moreover, the temporal processing aspect of SNNs
poses additional challenges in training and learning within these frameworks. Algorithms
that excel in deep learning applications require adaptation to operate effectively with SNNs
(refer to Figure 4a), with such adjustments potentially compromising the precision of the
SNN related to a similar ANN [75].

A groundbreaking integrated end-to-end photonic deep neural network (PDNN)
designed for sub-nanosecond image classification was presented in [30]. This innovative
system operates by directly processing optical waves on an on-chip pixel array as they
traverse through layers of neurons. Within each neuron, linear computation occurs optically,
while the nonlinear activation function is implemented opto-electronically, resulting in
an impressive classification time of under 570 ps, equivalent to a single clock cycle of
contemporary digital platforms. The utilization of a homogeneously distributed supply
light ensures a consistent per-neuron optical output range, permitting seamless scalability
to large-scale PDNNs. Demonstrating remarkable accuracy, the PDNN achieves two-class
and four-class classification of handwritten letters with accuracies exceeding 93.8% and
89.8%, respectively [30]. By directly processing optical data without the need for analog-
to-digital conversion or large memory modules, this approach promises faster and more
energy-efficient neural networks, shaping the next generation of deep learning systems.

Given the established training mechanisms of deep neural networks (DNNs), many
efforts towards deploying a neuromorphic solution begin by training a DNN and subse-
quently converting it to an SNN for inference purposes (see Figure 4b). These approaches
have generally yielded performance close to the state-of-the-art, offering significant energy
savings by utilizing accumulated computations instead of multiplying and accumulating
computations commonly found in DNNs, particularly on datasets like MNIST, CIFAR-10,
and ImageNet. Initial conversion techniques often involve weight or activation normal-
ization alongside the use of average pooling instead of max pooling. Some approaches
also involve training DNNs under constraints to iteratively shape the neuron’s activation
function to resemble that of a spiking neuron. Stockl and colleagues introduced a novel
mapping strategy utilizing the Few Spikes neuron model (FS-neuron), capable of tempo-
rally representing complex activation functions with at most two spikes. Their method
demonstrated near-DNN precisions on standard image classification datasets, meaning-
fully requiring fewer time steps per inference related to formerly established conversion
strategies [76]. Numerous applications showcased on neuromorphic hardware leveraged
various mapping techniques discussed above. Tasks such as keyword spotting, medical
image analysis, and object detection were proficiently executed on existing platforms such
as Intel’s Loihi and IBM’s TrueNorth [77,78].

RC, also known as liquid state machines (refer to Figure 4c), is another prominent
algorithm utilized in SNNs. In this approach, a sparse recurrent SNN serves as the “reser-
voir” or “liquid.” The reservoir, typically randomly configured, must exhibit two critical
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properties: input separability, ensuring distinct inputs yield distinct outputs, and fading
memory, ensuring signals eventually dissipate rather than endlessly propagate through
the reservoir. In addition to the untrained reservoir, RC involves a readout mechanism,
often implemented as linear regression, which is trained to interpret the reservoir’s output.
The main benefit of RC is its elimination of the need to directly train the SNN module. RC
in SNNs utilizes sparse and recurrent connections, along with synaptic delays within net-
works of spiking neurons, to map input into a higher dimensional space, both spatially and
temporally. Numerous demonstrations of spike-based RC underscored its effectiveness in
processing temporally varying signals. This computing framework comes in various forms,
ranging from basic reservoir networks employed in bio-signal processing and prosthetic
control applications to more complex architectures, such as hierarchical layers of liquid-
state machines. These interconnected layers, often combined with supervised-mode-trained
layers, are utilized for tasks involving video and audio signal processing.

Evolutionary strategies for training or crafting SNNs (refer to Figure 4d) were also em-
ployed. Within an evolutionary algorithm, an initial population is established by generating
a random array of potential solutions. Each member of this group is assessed and assigned
a score, influencing the selection process (favoring superior performers) and reproduction
to yield a fresh population. In the domain of SNNs for neuromorphic computing, evolu-
tionary methods can govern various parameters, including neuron thresholds or synaptic
delays, as well as the network’s architecture, such as neuron quantity and synaptic con-
nections. These strategies are attractive due to their lack of reliance on activation function
differentiability and network structure constraints (e.g., feed-forward vs. recurrent). They
also provide the flexibility to evolve both network structure and parameters. However,
this adaptability comes with a drawback; evolutionary approaches typically converge
more slowly compared to other training techniques. Evolutionary methodologies primarily
excelled in control scenarios like video games and autonomous robot navigation.

Numerous neurobiological investigations elucidated the dynamic regulation of synap-
tic strength driven by the activity of interconnected neurons. This phenomenon was
proposed as a fundamental mechanism underlying learning across a spectrum of tasks.
Central to this concept is Spike-timing-dependent plasticity (STDP), a pivotal mechanism
in the realm of neuromorphic research. STDP operates by fine-tuning synaptic weights
according to the precise temporal relationship between spikes from pre- and post-synaptic
neurons (See Figure 4e). It stands as one of the most widely utilized synaptic plasticity
mechanisms in the burgeoning field of neuromorphic computing, showcasing its signifi-
cance in mimicking biological learning processes [79].

Several neuroscientific studies delineated the control of synaptic efficacy based on
interconnected neuronal activity, proposed as an instrument for learning various tasks.
Spike-timing-dependent plasticity (STDP) emerges as the predominant synaptic adapt-
ability mechanism in neuromorphic research, operating by modifying synaptic weights
following the timing of spikes between pre- and post-synaptic neurons. Numerous mathe-
matical models of this phenomenon were assessed using datasets such as MNIST, CIFAR-10,
and ImageNet. Shrestha et al. proposed a hardware-friendly variant of the exponential
STDP rule, although it demonstrated inferior performance in classifying MNIST data
compared to the optimal outcomes achieved with SNNs [80]. STDP-inspired principles dis-
played promise in mimicking diverse ML methodologies such as clustering and Bayesian
inference. In applications involving brain–machine interfaces, STDP functions as a cluster-
ing mechanism, acting as a sorter for spikes. Moreover, combinations of spiking reservoirs
and STDP were incorporated into a framework termed NeuCube, which has been utilized
in tasks such as detecting sleep states and controlling prosthetics, processing signals from
electroencephalograms, and functional magnetic resonance imaging [81].
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Figure 4. Various training approaches exist for SNNs: (a) One approach involves directly training the
SNN using spike-based quasi-backpropagation, as illustrated by the network structure depicted [79].
(b) Alternatively, traditional ANNs can be trained first and then mapped into SNNs [79]. (c) Reservoir
computing offers another solution, comprising an input layer, a reservoir, and a readout layer in
its typical structure [79]. (d) An evolutionary approach involves the gradual evolution of SNN
structures and parameters over time [79]. (e) Spike-timing-dependent plasticity is characterized by
adjusting synaptic weights (∆w) based on the relative spike timings between pre- and post-synaptic
neurons [79].

2.6. Photonic Ising Machines (PIMs)

PIMs represent a revolutionary approach to solving complex optimization problems by
leveraging principles from statistical physics and optical computing. Inspired by the Ising
model from physics, which describes interactions between spins in a lattice, PIMs utilize
networks of interconnected optical components to simulate the behavior of these spins [4].
In PIMs, optical signals represent the spins, and the interactions between them are encoded
in the physical properties of light, such as phase or intensity. By exploiting the inherent
parallelism and massive computational capacity of light, PIMs can efficiently explore large
solution spaces and find optimal configurations for a wide range of optimization tasks [82].
Moreover, PIMs offer benefits in terms of energy efficiency and scalability compared to
conventional electronic computing systems. They hold promise for solving combinatorial
optimization problems, such as the traveling salesman problem, protein folding, and
data clustering, with unprecedented speed and accuracy [82]. While PIMs are still in the
early phases of growth, ongoing research and advancements in photonic technologies are
driving the realization of practical PIM-based systems, paving the way for transformative
applications in various domains, including AI, logistics, finance, and materials science [83].

Ising machines leverage diverse physical systems to efficiently tackle combinatorial
optimization problems. Central to their effectiveness is the adaptability of the spin–spin
interaction parameter within the Ising model. Choosing an appropriate physical system
is crucial for practical machine development. Quantum mechanical phenomena, such
as those found in superconducting circuits [84] and trapped ions [85], exploit quantum
annealing [86] based on quantum fluctuation. Semiconductor integrated circuits, including
CMOS annealing machines [87] and digital annealers [88], emulate simulated annealing
(SA). Photonics-based approaches stand out as highly promising for handling large-scale
problems due to light’s inherent capabilities for parallel and high-speed processing, along
with system robustness. A notable example is the coherent Ising machine [89], employing
optical pulses generated by degenerate optical parametric oscillators to implement pseudo-
spins [90]. Another innovation is the integrated nanophotonic recurrent Ising sampler,
utilizing coherent optical amplitudes for pseudo-spin representation.

A highly promising method for large-scale light control is spatial light modulation,
commonly employed in computing, harnessing light’s parallel propagation traits. An excit-
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ing application of this optical technique is the spatial–photonic Ising machine (SPIM) [91],
where spins are represented by modulating light waves utilizing a spatial light modulator
(SLM). Spin–spin interactions are realized by overlapping light waves through free-space
propagation. In comparison to alternative physical implementations, SPIMs offer a simpler
configuration and exceptional scalability in spin handling, leveraging light’s parallel propa-
gation based on Fourier optics. These attributes garnered significant attention for SPIMs,
leading to the exploration of numerous enhancement avenues. Various approaches, includ-
ing annealing methods [92], spin encoding techniques [93], interaction models utilizing
the transmission matrix of scattering mediums [94], and those exploiting nonlinear optical
effects [95], were proposed to advance SPIM capabilities.

Sakabe et al. introduce a novel approach, the space-division multiplexed SPIM (SDM-
SPIM), offering a versatile system configuration for optically computing the sum of multi-
component Hamiltonians while retaining high flexibility in the interaction matrix [96]. The
concept of SDM-SPIM is described in Figure 5a. In the SDM scheme, each component’s
beams are autonomously controlled to regulate specific optical intensities, enabling the
simultaneous physical multiplication of weight coefficients. Consequently, the sum of
Ising Hamiltonians for each component is derived by superimposing these beams. More-
over, SDM-SPIM facilitates the physical tuning of optical parameters, including weight
coefficients associated with problem constraint conditions, allowing for dynamic opti-
mization processes. This research aimed to authenticate the technique and its capabilities
through physical parameter tuning, realized by executing an SPIM with spatial-division
multiplexing. A prototype is demonstrated and applied to knapsack problems—a type of
combinatorial optimization problem featuring constraint terms. Additionally, the influence
of physical parameters is analyzed on this method’s search characteristics and explored
techniques to enhance search performance within the SDM-SPIM framework.
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Figure 5. (a) Diagram of a SPIM employing physically adjustable SDM-SPIM [96]. Findings from
solving the 13-item knapsack problem: (b) Distribution of total weight among obtained solutions,
illustrated in a histogram [96]. (c) Distribution of total value among obtained solutions, depicted in
a histogram [96]. (d) Demonstration of the distribution of explored specimens [96]. (e) Illustration
showcasing the time evolution of Ising Hamiltonian values [96].

Figure 5b,c show histograms displaying the aggregate weight and value of the obtained
solutions. These findings unmistakably demonstrate the achievement of the best possible
solution, with a total value of 95. Throughout the experimental demonstration, the ultimate
solution was identified by selecting the specimen with the uppermost value under the
weight constraint from all explored specimens. Figure 5d demonstrates the distributions of
specimens attained throughout iterations. The horizontal axis represents the total weight
of each specimen, while the vertical axis represents their total value. Notably, with the
progression of iterations, the search area gradually converges towards a region surrounding
the optimal solution. In Figure 5e, the evolution of the Ising Hamiltonian over iterations is
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exemplified. After the iteration process, as evident in Figure 5d,e, the near-ground state
of the Ising Hamiltonian attained in the experiment unmistakably agrees with specimens
resembling the near-optimal solution [96].

2.7. Optoelectronic Neural Networks (ONNs)

ONNs represent a convergence of optical and electronic technologies to create pow-
erful and efficient computing systems inspired by the brain’s neural networks [97]. By
integrating optical components, such as lasers, photodetectors, and waveguides, with
electronic components like transistors and resistors, ONNs harness the strengths of both
domains. Optical signals, which travel at the speed of light, enable parallel processing and
high-bandwidth communication between neurons, while electronic components provide
precise control and computation capabilities. This hybrid architecture allows ONNs to
achieve ultra-fast processing speeds and energy-efficient operation, making them well-
suited for tasks requiring large-scale parallelism and complex computations, such as pattern
recognition, deep learning, and neuromorphic computing. Moreover, ONNs hold promise
for addressing challenges in conventional electronic computing systems, including power
consumption constraints and interconnect bottlenecks [98]. Ongoing research in opto-
electronic materials and device integration is driving the development of increasingly
sophisticated and scalable ONN architectures, with potential applications spanning diverse
fields such as AI, biomedical engineering, and communication networks. As these tech-
nologies continue to advance, ONNs are ready to take on a transformative role in molding
the trajectory of computing and information processing [99,100].

ONN represents a capable frontier in AI computing, harnessing parallelization, power
efficiency, and speed for advanced applications. Among these, diffractive neural networks
stand out, leveraging encoded light transmitted through trained optical modules. Despite
their appeal, the expansion of diffractive networks encounters obstacles attributable to
the computational and memory demands linked to optical diffraction modeling. To tackle
these obstacles, a revolutionary dual-neuron optical artificial learning framework called
DANTE is proposed [101]. In DANTE, optical neurons manage the complexities of optical
diffraction, while artificial neurons efficiently estimate the demanding optical diffraction
computations using lightweight functions. What distinguishes DANTE is its novel con-
vergence strategy, which merges iterative global artificial-learning steps with local optical
learning steps. Through rigorous simulation experiments, DANTE achieves unprecedented
results, magnificently training large-scale ONNs with 150 million neurons on ImageNet—a
milestone earlier thought unfeasible. Furthermore, DANTE notably hastens training paces
on the CIFAR-10 benchmark when related to traditional single-neuron learning approaches.
In real-world validation, a two-layer ONN system established on DANTE demonstrates
its ability to successfully withdraw features and advance the sorting accuracy of natural
images. This empirical validation underscores the practical value of DANTE and highlights
its potential to propel advancements in ONN technology.

A tailor-made ONN system was devised, harnessing off-the-shelf optical modulation
devices to affirm the practical viability of DANTE (illustrated in Figure 6a,b) [101]. This
system streamlines the incorporation of optical computing functionalities via a dedicated
optical modulation layer. Input signals were modulated through SLM-1, while network
parameters underwent modulation via SLM-2, with computing results captured by a CMOS
sensor. Additionally, the performance of ONNs was scrutinized using benchmark datasets,
including MNIST, CIFAR-10, and ImageNet. The executed two-layer ONN architecture
(depicted in Figure 6c) comprised a foundational layer with a solitary optical modulation
layer and a subsequent layer with multiple parallel optical modulation layers. The outputs
of the second layer were directed to the readout layer to forecast ultimate results [101]. In
Figure 6d, MNIST specimen 7 outputs are showcased. The optical intensity maps taken by
the sensor closely resemble the simulated outcomes. However, there were discrepancies
primarily attributable to imperfect coherent wavefronts and assembly errors in optical
modulation devices. To mitigate these errors, the FC layer in the readout layer was re-
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tuned. In Figure 6e, outputs from the ImageNet-32 dataset, specifically a leopard image, are
presented. The variances between simulation and optical results were more pronounced
because of the image’s complexity. Nevertheless, similar optical intensity distributions
were observed. The optical results appear blurrier, again attributed to assembly errors and
system noise.
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Figure 6f presents quantitative analysis results for DANTE. When applied to simple
binary-like MNIST datasets, DANTE achieves around 96% accuracy, slightly lower than
full simulation results by 2%. The training process involves a global artificial-learning stage
that converges in 60 epochs, taking ~2 min 15 s, and a local optical-learning stage requiring
around 4 min 40 s to optimize two-phase masks. Retuning the FC layer adds about ½ min,
resulting in a total training time of approximately 7 min 25 s. This represents a significant
acceleration related to prevailing single-neuron learning approaches such as DPU9, which
takes over 5 h for MNIST benchmark training. Looking ahead, integrating the physical
ONN system with high-accuracy nanofabrication methods holds promise for meaningfully
enhancing its computational capabilities [101].

3. Navigating the Landscape of PNNs: Challenges and Prospects

PNNs represent a promising frontier in computing, leveraging the unique proper-
ties of light to potentially revolutionize traditional computing architectures [102–104].
However, they also face significant challenges that need to be addressed for widespread
adoption [105]. One major obstacle is the difficulty of integrating optical components
with existing electronic systems, requiring complex and costly hybrid setups. Moreover,
the scalability of PNNs remains a challenge, with issues arising from the need for the
precise alignment of optical components and limitations in the number of neurons that can
be interconnected efficiently [106]. Additionally, noise and signal degradation in optical
systems pose significant hurdles to achieving high accuracy and reliability in computation.
Despite these challenges, the prospects of PNNs are bright. In our opinion, the advance-
ments in materials science, particularly the creation of innovative photonic materials and
nanophotonic devices, offer a hopeful solution to existing constraints, paving the way
for more effective and expandable PNNs [107]. Additionally, the natural parallelism and
rapidity of optical processing present the opportunity for significant leaps in computational
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efficiency, especially in areas like pattern recognition and extensive optimization tasks. As
ongoing research drives the evolution of optical computing, PNNs stand poised to emerge
as a fundamental technology in future computing systems, introducing fresh possibilities
and applications across diverse fields [2,108].

The distinctive challenges associated with training PNNs, encompassing the nondif-
ferentiability of numerous spiking neuron activation functions and the temporal processing
aspects of SNNs, are indeed notable. These challenges hinder the straightforward ap-
plication of conventional optimization techniques used in traditional neural networks.
However, researchers are actively devising strategies to address these training hurdles.
One approach involves developing specialized optimization algorithms tailored for PNN
architectures, considering the unique characteristics of photonic devices and spiking neu-
rons [109]. Additionally, advancements in hardware technologies are being explored to
enhance the training efficiency of PNNs, such as the integration of neuromorphic com-
puting elements and photonic components optimized for neural network operations [79].
Furthermore, novel approaches that hold promise for streamlining the training process
and augmenting the learning capabilities of PNNs are on the horizon. These include the
exploration of unsupervised learning methods, reinforcement learning techniques, and
leveraging quantum-inspired optimization algorithms to overcome the challenges asso-
ciated with training PNNs [110]. Overall, ongoing research efforts aim to overcome the
inherent training complexities of PNNs and unlock their full potential for a wide range
of applications.

Within optical systems, a multitude of factors contribute to performance degradation,
particularly notable within PNNs. Thermal noise, generated by random thermal motion
within optical components, introduces fluctuations in signal intensity, while shot noise, a
consequence of the discrete nature of light, adds inherent randomness to photon arrival
times. Additionally, signal attenuation arises from scattering, absorption, and modal
dispersion, collectively reducing signal strength and impairing transmission quality over
distances. To address these challenges within PNNs, various strategies were proposed.
These encompass advanced error correction codes customized for optical communication
systems, adaptive signal processing algorithms adept at discerning noise from genuine
signals, and innovative optical amplifier designs aimed at amplifying signal strength
while mitigating noise interference [111–113]. Furthermore, ongoing research explores
techniques such as optical phase modulation and dispersion compensation to counteract
signal attenuation and distortion, thereby enhancing the resilience and efficacy of optical
systems within neural network frameworks [114,115].

The realm of PNN architecture is expansive, encompassing a rich tapestry of tech-
niques and devices utilized to manifest these structures. Within this domain, our explo-
ration unveiled a diverse array of architectures, each leveraging distinct methodologies.
Our examination organizes the extensive literature into distinct categories: resonator-based
operations, interferometer-based operations, diffractive optics-based operations, and op-
tical amplification/lasing-based operations. Each PNN architecture possesses its unique
set of advantages and limitations, and the appropriateness of a specific architecture hinges
upon the application context. Resonators, for instance, can store and manipulate light
efficiently, facilitating computations. Moreover, their nonlinear behavior is advantageous
for implementing activation functions in neural networks. However, resonators are vul-
nerable to environmental factors like temperature fluctuations and mechanical vibrations,
which can adversely impact their performance. Furthermore, the fabrication of high-quality
resonators can be both challenging and costly.

Interferometers, on the other hand, excel in manipulating the phase and amplitude of
optical signals, thereby enabling complex computations. Their inherent parallel processing ca-
pability allows for the simultaneous handling of multiple inputs. Nonetheless, interferometers
are susceptible to phase variations and necessitate precise alignment for optimal functionality.
Moreover, coherence and stability issues may arise in practical implementations.
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Diffractive optics offer the capacity to execute intricate mathematical operations us-
ing diffraction patterns. Their parallel computing capability and scalability are notable
advantages. However, the introduction of noise and aberrations by diffractive elements
can compromise computational accuracy. Additionally, achieving high precision in the
fabrication of diffractive optical elements poses a significant challenge.

Optical amplification and lasing mechanisms play a crucial role in amplifying optical
signals, facilitating long-distance communication and high-speed processing. Their ability
to deliver high gain with low noise characteristics is advantageous. Nonetheless, ensuring
stability and preventing instabilities such as mode hopping and noise requires sophisticated
control mechanisms. Moreover, the fabrication and integration of optical amplifiers/lasers
can be complex and expensive.

In selecting the most suitable PNN architecture for a specific application, various
factors must be considered. These include the nature of computations required (e.g.,
linear vs. nonlinear operations), scalability to handle large-scale neural networks and
datasets, robustness against environmental factors and noise, ease of integration with
existing photonic or electronic systems, and cost considerations encompassing fabrication,
operation, and maintenance.

To advance the implementation of PNNs beyond the existing bulky prototypes built on
optical tables, several promising directions can be explored for denser integration. One key
approach is the development of integrated photonic circuits, where photonic components
are miniaturized and integrated onto a single chip or substrate. This integration could
involve leveraging technologies like silicon photonics or photonic integrated circuits (PICs),
which enable the creation of complex optical systems on a small footprint [2]. Another
direction involves exploring novel materials and structures that can manipulate light at
smaller scales, such as metasurfaces or nanophotonic devices. These technologies could
allow for the realization of compact and efficient photonic components tailored for neural
network applications [116]. Additionally, exploring advanced packaging techniques that
facilitate dense stacking and the interconnection of optical elements could lead to more
compact and portable PNN implementations. Furthermore, investigating new architectures
that optimize the use of light for neural network computations, such as employing reconfig-
urable photonic networks or hybrid photonic–electronic systems, holds promise for denser
and more practical PNN designs. By focusing on these directions, researchers can pave
the way for the realization of much denser and scalable PNNs, enabling their integration
into a wide range of applications, including efficient deep learning, optical computing, and
brain-inspired computing paradigms.

Ultimately, the selection process necessitates a thorough trade-off analysis of these
factors to pinpoint the architecture that best aligns with the requirements of the target ap-
plication. Furthermore, experimental validation and performance evaluation play a pivotal
role in assessing the suitability of a particular PNN architecture in practical implementa-
tions. For a comprehensive overview, we present a synthesis of the covered architectures in
Table 1.

Table 1. Compilation of several noteworthy previous studies on PNN Structure.

Devices Application Results Ref.

Micro-rings

Lorenz attractor simulation
to benchmark against a
traditional CPU-based
continuous time RNN

Reports 294× acceleration
in simulation over

traditional CPU-based
continuous time RNN

[117]
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Table 1. Cont.

Devices Application Results Ref.

VSCEL-Sas
SNN for learning and

recognizing arbitrary spike
patterns

- [118]

SOA-MZIs

RNN benchmarked using a
finance forecasting

application utilizing the
FI-2010 dataset

Gated optical RNN
achieved an F1 score of

41.85%
[119]

Micro-rings and
SOAs.

Various benchmarks,
including MNIST, tested on

photonic CNNs

Reduction in operation cost
when compared to

GPU-based
implementations, with up

to 25× better
computational efficiency

[120]

Micro-rings MNIST classification using
CNNs

Faster when compared to
GPU-based

implementations and 0.75
times the power

consumption

[121]

Micro-disks
Binarized CNN

acceleration for MNIST and
ImageNet classification

16.9× better FPS and 17.5×
FPS/W over [122] [123]

VCSOA and VCSELs SNN for learning and
recognizing arbitrary spike - [124]

SOAs and AWGs
DNN implementation.
Tested on Fisher’s Iris

classification

A prediction accuracy of
85.8% achieved [125]

SOA Spoken digit recognition
using RC

The work reports a
minimum WER of 4.5% for
their coherent SOA-based

reservoir

[126]

MZIs Photonic DNN for vowel
recognition

Achieved 76.7% accuracy
in vowel recognition [127]

MZIs
MNIST dataset

classification using
structured NN

98.5% accuracy [128]

MRs

This exercise aimed to
demonstrate the viability of

B&W-based SNNs. No
experiments based on

applications were carried
out in this study.

- [129]

GST-embedded MRs MNIST classification with
MLPs 98.06% accuracy [130]

Furthermore, let us contrast two specific ANN setups by examining their respective
mathematical operations. This comparison will enable us to gauge the resulting advantages
of optical implementation. The initial configuration is centered around the 4-f Fourier-
correlator arrangement (refer to Figure 7), representing an optical CNN with a solitary layer
denoted as H(u,v) [131]. This layer H(u,v) is defined through the Fourier transformation
of the kernel extracted from a standard CNN’s convolutional layer. It can be manifested
either as a diffractive optical element (offering damage resistance) or as an SLM (offering
dynamic or adaptable properties). The mathematical equivalent to the Fourier-correlator
framework comprises two Fourier transformations:

W f (u, v) =
1

λ f

x

R2

w(x, y) exp
[
−i

2π

λ f
(xu + yv)

]
dxdy, (1)
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where f is the focal length of a lens and λ is the wavelength of the optical radiation and
also includes the spatial filtering operation:

G(u, v) = W f (u, v)H(u, v). (2)
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The second configuration (refer to Figure 8) involves a sequence of diffractive optical
elements that form pre-trained diffraction layers within a deep diffraction neural network
(DDNN) [132]. The mathematical correspondence was established by iteratively applying
two operations across successive layers. Specifically, at the pth layer, we perform field
propagation over a defined distance using the Rayleigh–Sommerfeld diffraction formula
[133,134]:

wp(u, v) = −
dp

2π

x

R2

ŵp−1(x, y)
exp

(
i2πRp/λ

)
R2

p

(
i
2π

λ
− 1

Rp

)
dxdy, (3)

where Rp =
√
(x − u)2 + (y − v)2 + d2

p and includes a multiplication of wp(u, v) by com-
plex values Tp(u, v) of the corresponding pre-trained diffraction layer:

ŵp(u, v) = wp(u, v)Tp(u, v). (4)
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Note, in paraxial approximation, one can use the Fresnel–Kirchhoff integral instead of
Equation (3):

wp(u, v) = −
i exp

(
i2πdp/λ

)
λdp

x

R2

ŵp−1(x, y)ŵp(x, y) exp
{

iπ
λdp

[
(x − u)2 + (y − v)2

]}
dxdy. (5)

The use of Equation (5) can provide the use of some fast calculation algorithms [135].
Various composite and hybrid versions of the systems discussed above are possi-

ble [136], for example, as in Figure 9.
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Considering the fact that the operation of many PNNs is assumed to be closely coupled
with a classical computer through input-output devices in the form of SLMs and light-
sensitive matrices, it is possible to make a rough estimate of the computing speed in such
devices. When calculating, it should be considered that no operations on floating point
numbers (Flops) are performed in such systems. I/O devices generate a signal with a bit
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depth of 1 to 16 bits (most often 8 bits). Therefore, we can talk about either the number of
bits per second or operations per second (Ops).

Let us perform a comparative estimation of the speed and efficiency of calculations for
PNN using the above two ANN configuration examples (Figures 7 and 8).

When estimating speed, we can assume that the optical system performs the same
mathematical transformations that are used when simulating its operation on a computer.
In particular, for the Fourier-correlator scheme (Figure 7), the main computational cost
comes from performing two Fourier transforms.

The computational complexity of the discrete Fourier transform (the discrete analog
of expression (1)) without the use of fast algorithms is proportional to N4, where N is the
dimension of the transformed array. Then, one can write a simple formula to estimate the
speed of calculations:

V = 2 × N4 × r/t, (6)

where N is the size of the camera matrix, t is the camera exposure time, r is the camera bit
depth. The speed V, in this case, is expressed in bits per second. So, if the SLM with 1024 ×
1024 pixels and an operating frequency of 30 Hz is applied with the camera bit depth of 8
bit (approximately corresponds to the physical experiment in [101]), the speed is

V = 2.6 × 1015 bits/s ≈ 3.2 × 1014 bytes/s = 3.2 × 1014 Ops = 320 TOps, (7)

The authors of [101] believe that the speed calculation should be based on the fact
that the Fourier transform can be calculated using the fast Fourier transform (FFT) and
obtain an estimate that is several orders of magnitude lower: V = 9 × 108 Ops. However,
they point out that the TOps metric may not always accurately reflect actual performance.
For example, running two FFTs and one elementwise multiply on an RTX 3090 GPU takes
approximately 0.9 ms, which is slower than their PNN prototype (0.7 ms). At the same
time, the performance of the RTX 3090, according to the manufacturer, is about 30 TFLops.

In the second scenario, utilizing a PNN built upon a sequence of DOEs (see Figure 8),
the significance of estimation increases notably due to the absence of standard rapid
algorithms for computing the Rayleigh–Sommerfeld or Kirchhoff integrals. Within discrete
analogs of expressions (3) and (5), the most substantial computational challenge lies in
evaluating the exponent. Typically, computing the exponent demands approximately two
orders of magnitude more operations compared to the simplest binary operation. Therefore,
it can be inferred that when computing the Rayleigh–Sommerfeld integral, the number of
basic operations will be approximately 100 × N4.

If we use SLM with the resolution of 2048 × 2048 pixels and the frequency of 60 Hz as
each diffraction element, the number of simple operations on one layer performed in 1 s
will be

100 × 20484 × 60 Hz ≈ 1017 bits/s ≈ 1.2 × 1016 bytes/s = 1.2 × 1016Ops = 1.2 × 104 TOps. (8)

The value (8) is multiplied by the number of layers. It is also quite easy to determine
the energy efficiency of calculations for a PNN. In particular, the energy efficiency of
0.02 Tops/W is indicated in [101] for an optoelectronic circuit power of 65 W. However,
considering the above calculations, when training a PNN using the Kirchhoff integral, this
estimate can be significantly increased up to 100 TOps/W.

4. Discussion on PNNs and Concluding Remarks

The escalating demand for processing vast amounts of data at ever-increasing speeds
has prompted a critical need to surpass the limitations posed by the traditional von Neu-
mann architecture. Innovations in neural network training and testing are imperative,
driving the exploration of novel structures capable of accommodating this demand effi-
ciently [137,138]. The surge in research interest is evidenced by the proliferation of publica-
tions and patents worldwide, as illustrated in Figure 10. Optical processors, renowned for
their exceptional speed and minimal power consumption, emerged as a frontrunner in this
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pursuit, spurred by the rapid advancements in dedicated hardware for PNNs. Leveraging
the inherent advantages of optics, such as high-speed parallel computing and low-energy
consumption, optical neural networks exhibit tremendous potential [139]. The trajectory of
development in optical neuromorphic computing seems inexorable, with significant strides
being made in research and experimentation [103]. Although still in its nascent stages,
photonic neuromorphic computing has witnessed the emergence of diverse optimization
solutions, indicative of a promising path forward.
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PNNs offer significant advantages over traditional analog neural networks, making
them a compelling focus for research and development. One primary benefit is their po-
tential for ultra-fast processing speeds, driven by the high propagation velocity of light
compared to electrical signals. This speed advantage can substantially decrease infer-
ence times and facilitate the real-time processing of complex data. Additionally, photonic
systems inherently support massive parallelism, as light waves can be processed simulta-
neously across multiple channels, aligning well with the parallel nature of neural network
computations. Furthermore, photonic systems are naturally suited for low-power opera-
tions, essential for energy-efficient computing. Prioritizing research and development in
PNNs over analog alternatives can unlock the unique capabilities of light-based computing,
leading to breakthroughs in deep learning, optical computing, and neuromorphic engineer-
ing. Leveraging photonics’ advantages may help overcome scalability and speed limitations
faced by traditional electronic neural networks, fostering transformative advancements in
AI and computational neuroscience.

Designing PNNs often requires specialized software and hardware resources tailored
to the unique demands of photonics-based computing. NeuralDesigner is a powerful soft-
ware tool designed to facilitate the creation, training, and deployment of neural networks
for various tasks, including classification, regression, clustering, and forecasting [140]. At
its core, NeuralDesigner employs a user-friendly interface that allows users to construct
neural network architectures through a visual drag-and-drop approach, eliminating the
need for intricate coding. The software employs sophisticated algorithms to automatically
optimize network parameters, such as weights and biases, during the training process,
thereby enhancing performance and accuracy. Utilizing advanced techniques like backprop-
agation and gradient descent, NeuralDesigner iteratively refines the network’s parameters
based on the provided dataset, ultimately yielding a model capable of making precise
predictions or classifications. Furthermore, NeuralDesigner offers comprehensive tools for
data preprocessing, validation, and model evaluation, ensuring robustness and reliability
in the developed neural networks. With its intuitive interface and robust functionality,
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NeuralDesigner empowers users to harness the power of neural networks effectively, even
without extensive expertise in machine learning algorithms. Additionally, hardware re-
sources like PICs offer a scalable platform for realizing PNNs, leveraging the inherent
advantages of photonics, such as high bandwidth, low energy consumption, and parallel
processing capabilities. Companies like Lightmatter [141] and Intel’s Silicon Photonics
division [142] are at the forefront of developing PICs optimized for PNN applications,
providing researchers and engineers with the necessary hardware infrastructure to explore
and deploy PNNs effectively.

In the complex architecture of a PNN, the propagation of light signals encounters
numerous optical modules, each introducing its own set of challenges. One significant
issue is the degradation of light signals as they traverse through these modules due to
losses, dispersion, and noise accumulation. To combat this degradation and maintain
signal integrity, the network employs a sophisticated mechanism for signal regeneration.
This process involves strategically placed regeneration nodes that detect and amplify
weakened signals, restoring them to their original strength and clarity. By incorporating
such regeneration mechanisms, the PNN ensures that light signals retain their fidelity
throughout the intricate pathways of optical processing, facilitating efficient and reliable
information transmission and computation. Despite the strides made, challenges persist
for PNNs, yet ongoing efforts hold promise for overcoming these hurdles. The comparison
of various neural network architectures reveals a spectrum of capabilities and trade-offs,
each tailored to specific computational and imaging tasks [9].

The training process of PNNs diverges significantly from that of ANNs. Unlike
ANNs, which rely on electronic signals for computation, PNNs leverage photons, the
fundamental particles of light, to perform calculations. PNNs encode data into optical
signals, which propagate through photonic circuits that emulate the functionalities of
neurons and synapses. This optical computing paradigm offers unique advantages such as
high parallelism, low energy consumption, and potentially high-speed processing due to
the intrinsic speed of light [143]. However, the training of PNNs can be more challenging
compared to ANNs due to the specialized hardware requirements and the complexity of
optical signal processing. While PNNs hold promise for ultra-fast computation and the
efficient processing of massive datasets, their training speed may not necessarily surpass
that of ANNs in all scenarios. The optimization and calibration of photonic components
and the development of suitable training algorithms are ongoing areas of research aimed at
enhancing the efficiency and scalability of PNN training [144]. Therefore, while PNNs offer
exciting prospects for future computing paradigms, their training speed and effectiveness
currently depend on various factors and remain an active area of investigation in the field
of photonics and neuromorphic computing [2].

FNNs offer simplicity and efficiency, making them suitable for structured data anal-
ysis and pattern recognition [145,146]. FNNs have a multitude of potential implications
across various domains. In finance, they can be employed for stock market prediction and
algorithmic trading [147,148]. In healthcare, they may aid in disease diagnosis and drug dis-
covery. Within the realm of autonomous vehicles, FNNs can contribute to advanced driver
assistance systems and collision avoidance. Moreover, in natural language processing, they
can enhance language translation and sentiment analysis. Overall, the potential implica-
tions of FNNs span across industries, promising advancements in efficiency, accuracy, and
decision-making processes.

RC is a novel approach to ML that harnesses the dynamics of a fixed RNN known
as the reservoir. This network is untrained, acting as a reservoir of dynamics to process
input signals [149]. The output layer, which is trained to perform a specific task, reads the
state of the reservoir to generate predictions or classifications. The potential implications
of RC are vast. In fields like time series prediction, RC offers remarkable accuracy and
efficiency, outperforming traditional methods. It also shows promise in areas such as
speech recognition, where its ability to capture temporal dependencies leads to improved
performance. Moreover, RC has applications in robotics, control systems, and cognitive
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modeling, suggesting its potential for advancing various domains of AI [150,151]. Its effi-
cient training process and adaptability make RC a promising avenue for tackling complex
real-world problems.

CNNs, renowned for their hierarchical feature extraction and translational invari-
ance, dominate image-related tasks with their ability to capture spatial hierarchies ef-
fectively [152]. The effectiveness of classification, measured by metrics like accuracy,
misclassification rate, precision, and recall, is significantly influenced by the configuration
of convolutional layers in a CNN. Factors such as the number of pooling layers, filters, filter
sizes, stride rates, and pooling layer placements play pivotal roles in shaping CNN perfor-
mance. Given the resource-intensive nature of CNN training, reliant on potent hardware
like GPUs, extensive experimentation with different parameter combinations demands
substantial time and computational resources [153]. Hyper-parameter selection profoundly
impacts CNN performance, with even minor adjustments capable of yielding significant
changes. Therefore, meticulous consideration of parameter choices is imperative when
devising optimization strategies. Over time, CNN architectures have evolved from modest
layer counts (e.g., AlexNet) to encompass hundreds of layers, thereby enhancing compact-
ness and effectiveness (e.g., ResNet, ResNext, DenseNet). However, these advancements
introduce immense model complexities, necessitating large datasets and powerful GPUs for
training. Consequently, there is a burgeoning interest in developing lightweight networks
to mitigate redundancy further. Choosing the optimal detection network for a specific
application and embedded hardware entails striking a balance between speed, memory
utilization, and accuracy. Preferably, compact models with fewer parameters should be
prioritized, even if it entails sacrificing detection accuracy initially [154]. Techniques like
hint learning, knowledge distillation, and refined pre-training methods offer avenues for
compensating for this reduction in accuracy. These enhancements empower CNNs to glean
insights from data at varying depths and structural configurations. Recent studies advocate
for utilizing blocks instead of conventional layers, showcasing considerable potential for
enhancing CNN performance.

RNNs offer several advantages in the realm of sequential data processing [155]. One
significant advantage is their ability to capture and utilize temporal dependencies within
sequential data, making them well-suited for tasks such as time series prediction, natural
language processing, and speech recognition. Furthermore, RNNs are highly flexible and
adaptable, capable of processing sequences of varying lengths, which is crucial for handling
real-world data with irregular temporal structures. Additionally, advancements such as
Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures address
the vanishing gradient problem associated with traditional RNNs, enhancing their ability to
capture long-term dependencies and improving overall performance on complex sequential
tasks [156].

SNNs, inspired by biological neurons, excel in energy efficiency and event-driven
computation, making them ideal for neuromorphic computing and real-time applications.
SNNs offer promising applications due to their resemblance to biological brains and unique
computational capabilities [157]. Particularly in neuromorphic engineering, SNNs closely
mimic biological brain functions, making them ideal for tasks like sensory processing,
pattern recognition, and motor control in robots and autonomous systems [158,159]. Their
event-driven nature also makes them advantageous for low-power computing environ-
ments, making them suitable for IoT sensors and wearable electronics. Moreover, SNNs
contribute to neuroscience research by modeling neural dynamics and enhancing the un-
derstanding of brain functions, thereby advancing cognitive science and brain–computer
interfaces [160].

PIMs harness the power of optics for parallel processing and optimization tasks,
potentially outperforming conventional computing for specific problems [83]. Utilizing
principles from both quantum and classical physics enables the tackling of mathemati-
cal computations that pose challenges to conventional electronics. Recently, PIMs have
emerged, showcasing the ability to compute spin Hamiltonian minima, offering a pathway
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to groundbreaking hardware for accelerated ML [91]. However, existing systems face
scalability issues or are constrained by a limited number of spins. In response, a large-scale
optical Ising machine using a straightforward setup with a spatial light modulator was
demonstrated. The experiments achieve configurations encompassing thousands of spins,
converging to ground states within a low-temperature ferromagnetic-like phase, featuring
all-to-all and adjustable pairwise interactions. These findings pave the way for classical
and quantum PIMs, harnessing light’s spatial degrees of freedom for parallel processing of
extensive spin systems with programmable couplings [91].

ONNs blend optics and electronics, offering high-speed processing and massive paral-
lelism, albeit with challenges in hardware complexity and fabrication costs [99,161]. ONNs
offer vast potential across diverse applications thanks to their unique integration of optics
and electronics, which grants them advantages in speed, energy efficiency, and parallel
processing capabilities. A notable application lies within AI and ML tasks, where these
networks excel in accelerating intricate computations, facilitating the real-time analysis
of extensive datasets. This capability proves invaluable in domains such as image and
pattern recognition, natural language processing, and autonomous systems [162]. Fur-
thermore, ONNs exhibit promise in areas like medical diagnostics, where the swift and
precise analysis of medical imaging data is essential for timely diagnosis and treatment
planning. Leveraging their parallel processing capability enhances the speed and accu-
racy of interpreting medical images, thereby improving healthcare outcomes [163,164].
Moreover, these networks hold potential in communication and data processing networks,
offering high bandwidth and low power consumption, thereby enhancing the efficiency
of data transmission and processing. This contributes to the development of faster and
more energy-efficient communication systems [165]. In computing and imaging, the choice
among these architectures depends on factors such as data characteristics, computational re-
quirements, and performance objectives. While each architecture presents unique strengths
and weaknesses, ongoing research and technological advancements continue to refine
these models, promising further innovations in neural network computing and imaging
applications and shaping the future of AI-driven solutions across diverse domains.

In the end, we would like to conclude the paper by stating that there are still several
hurdles that must be overcome for PNNs to become practical, even for niche applications.
One significant challenge is the development of efficient and compact photonic components
that can perform neural network operations reliably. Current photonic devices often rely
on bulky and expensive setups, requiring precise alignment and stabilization, which limits
their practical deployment. Miniaturizing and integrating these components into scalable
systems, such as PICs, is essential for practical PNN implementation. Another obstacle
is achieving compatibility between photonic and electronic systems for data interfacing
and processing, as seamless integration with existing computing platforms is crucial for
adoption. Additionally, addressing issues related to noise, nonlinearities, and signal loss in
photonic systems is essential to ensure the accuracy and robustness of PNNs. Moreover,
developing efficient training algorithms specifically tailored for photonic hardware and ex-
ploring novel architectures optimized for light-based computations are critical steps toward
practical PNNs. Overcoming these hurdles will unlock the full potential of PNNs, enabling
their use in diverse applications ranging from high-speed computing to neuromorphic
engineering and beyond.
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