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Abstract: Biowaste conversion into activated carbon is a sustainable and inexpensive approach
that relieves the pressure on its disposal. Here, we prepared micro-mesoporous activated carbons
(ACs) from cucumber peels through carbonization at 600 ◦C followed by thermal activation at
different temperatures. The ACs were tested as supercapacitors for the first time. The carbon
activated at 800 ◦C (ACP-800) showed a high specific capacitance value of 300 F/g at a scan rate of
5 mV/s in the cyclic voltammetry and 331 F/g at the current density of 0.1 A/g in the galvanostatic
charge–discharge analysis. At the current density of 1 A/g, the specific discharge capacitance
was 286 F/g and retained 100% capacity after 2000 cycles. Their properties were analyzed by
scanning electron microscopy, energy-dispersive X-ray analysis, porosity, thermal analysis, and
Fourier-transform infrared spectroscopy. The specific surface area of this sample was calculated to
be 2333 m2 g−1 using the Brunauer–Emmett–Teller method. The excellent performance of ACP-800
is mainly attributed to its hierarchical porosity, as the mesopores provide connectivity between the
micropores and improve the capacitive performance. These electrochemical properties enable this
carbon material prepared from cucumber peels to be a potential source for supercapacitor materials.

Keywords: biowaste; capacitive performance; porous carbon; pore accessibility; cucumber peels

Highlights

• Cucumber-peel-derived carbons were tested as a supercapacitor for the first time.
• The carbon showed a high specific capacitance of 286 F/g at 1 A/g.
• The carbon activated at 800 ◦C displayed a high specific surface area (2333 m2/g).

1. Introduction

One of the most critical environmental protection issues is to develop a sustainable sys-
tem to provide electrical energy. Conventional energy sources such as fossil fuels (coal, oil,
and gas) are not only consumed at a rapid rate but are also accompanied by the destruction
of ecosystems, loss of wildlife, and environmental pollution. Developing renewable energy

Nanomaterials 2024, 14, 686. https://doi.org/10.3390/nano14080686 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano14080686
https://doi.org/10.3390/nano14080686
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-3716-0476
https://orcid.org/0000-0003-3468-3578
https://doi.org/10.3390/nano14080686
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano14080686?type=check_update&version=2


Nanomaterials 2024, 14, 686 2 of 15

can be accelerated by an efficient energy storage system. Energy storage and delivery tech-
nologies using supercapacitors can store and transmit energy at high rates and charge high
current densities quickly [1]. Besides, supercapacitors have a virtually unlimited charge
cycle at high power density and perform better than batteries at extreme temperatures [1].
Research on electrochemical energy storage devices such as supercapacitors and battery
storage has been widely explored. The design of hybrid supercapacitors that apply capaci-
tive materials as the negative electrode and battery-type materials as the positive electrode
is emerging and attractive since the device can combine the fast charging/discharging and
long lifespan of capacitive materials with the high capacity of battery-type materials [2,3]. It
is no exaggeration to say that the effective implementation of any renewable energy source,
hybrid or electric vehicles, and smart grids depends heavily on the availability of a suitable
energy storage system.

Using renewable materials as supercapacitor electrodes is of great value since the
materials have a low price and do not harm the environment [4]. Porous carbons from
biomass have been intensively studied as materials for supercapacitor electrodes and exhibit
excellent electrochemical properties. Their high specific surface area and large pore size are
crucial for improving the electrochemical performance of carbon-based supercapacitors.
Porous carbon materials for supercapacitor electrodes are mainly obtained by pyrolysis at
a temperature of 600–1000 ◦C in an inert atmosphere. Methods such as physical activation
(using water vapor, CO2, or air) and chemical activation (NaOH, KOH, ZnCl2, HNO3,
and H2SO4) are widely used to increase the porosity and surface area of carbon materials
during pyrolysis [5].

Various peels of biowaste have been used as precursors to produce activated porous
carbon, such as mangosteen, cassava, watermelon, onion, orange, lemon, pomelo, garlic,
banana [6–18], coconut [19–24], apricot [25–27], palm kernel [28–34], etc. Compared to
conventional carbon sources, these biomass materials are copious, natural, and renewable,
making them sustainable and inexpensive carbon sources. In the work of the Fasakin
group [16], the electrode material was made from banana peels activated by potassium
hydroxide at a temperature of 900 ◦C. The specific capacity was reported to be 165 F/g at
a current density of 0.5 A/g in a two-electrode cell configuration. The sample obtained
under the above conditions demonstrated such material properties as a hierarchical porous
nanostructure containing micropores and mesopores with the largest specific surface area
(1362 m2/g). Another study of banana-peel-derived carbon [17] involved carbonization in
the presence of melamine (N-dopant), sodium thiosulfate (S-dopant), and KOH activation to
design novel N, S-co-doped hierarchically porous carbonaceous materials. The synthesized
sample exhibited an interconnected porosity endowed with a high specific surface area
(2452 m2/g) and demonstrated a specific capacitance of 220 F/g at 0.5 A/g. Even though
the carbons were obtained from the same biomass source, the nitrogen and sulfur dopants
played a collaborative role in the chemical activation by forming a high surface area and
optimum pores. In the work of Ashraf et al. [24], steam-activated carbon obtained from
coconut was tested in a two-electrode cell. The group tested three acid-washing procedures,
and the best-performing carbon was the one washed with hydrofluoric acid, showing a
specific capacity of 162 F/g at a current density of 1 A/g. Treatment with HF yielded an
activated carbon sample with high purity and a surface area of 1864 m2/g that was 63%
mesoporous, which is suitable for facilitating the rapid diffusion and transport of electrolyte
ions. Shu et al. [26] obtained hierarchically porous activated carbons from apricot shells
through carbonization followed by steam activation. As a result, activated carbon with a
surface area of 1240 m2/g that was 26% mesoporous showed a specific capacity of 38 F/g
at 0.05 A/g in a two-electrode cell. It also demonstrated stability over 6000 cycles at 5 A/g
with 99% retention. Steam activation of different biomass sources leads to dramatic changes
in porous structure and capacitive value. Misnon et al. [28] carbonized the shells of oil
palms and subsequently activated them by chemical methods (KOH, 6 M) and physical
methods (steam activation). As a result, the chemically activated carbon exhibited a specific
capacity of 210 F/g at 0.5 A/g, while that of the physically activated carbon was 50%
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lower (123 F/g) than that of the chemically activated carbon. The authors stated that the
chemically activated carbon had micropores and mesopores, which facilitated ion transfer
from mesopores to micropores and improved its electrochemical characteristics, especially
the charge–discharge rate. The physically activated carbon possessed only micropores,
which limited the incorporation/extraction of ions on the carbon surface. In the work of
Gou et al. [13], nitrogen-doped porous carbon (PN-OPC) was synthesized from orange
peels. The micro-mesoporous network structure and nitrogen contents (7.8%) resulted in
the rapid penetration of electrolyte ions and electron transmission, giving the PN-OPC
electrode material a high specific capacity of 255 F/g at a current density of 0.5 A/g.
The biomass source, activation methods (chemical or physical), addition of dopants, and
acid washing can all play a role in the degree of carbon’s hierarchy of porous structure,
thus affecting their capacitive performance. Gopalakrishnan [35] synthesized graphene-
like carbon nanosheets by carrying out hydrothermal pre-carbonization followed by the
pyrolysis of cucumber. In the two-electrode cell setup, a specific capacity of 143 F/g was
reported at a current density of 0.2 A/g in 6 M KOH. Whereas a specific capacity decreased
to 58 F/g at a current density of 0.025 A/g. The high-capacity retention was 97% after
1000 cycles. The formation of a creasy graphene-like structure in the samples was one
of the reasons for their higher specific capacity. The micropores and mesopores in the
carbon nanosheets also provided a fast and convenient path for ion transport. Park’s group
recently prepared N-doped microporous carbons from cucumber peels, proving them to be
efficient for CO2 capture [36].

The abundance of specific agricultural biomass depends on geographic features and
farming choices. Like other peels of vegetables and fruits, cucumber peels are rich in
cellulose. However, no study has explored the potential of cucumber peels as a carbon
source to be applied to energy storage. In the present work, for the first time, micro-
mesoporous carbons based on cucumber peels were synthesized and tested as electrode
materials for a supercapacitor. By characterizing the surface chemistry and porosity of
the carbons, the reasons for their excellent electrochemical performance were explored.
The main objectives of the work were to demonstrate a facile route to obtain activated
nanoporous carbons from cucumber peels and their excellent electrochemical performance.

2. Material and Methods
2.1. Activated Carbon Preparation

The raw material cucumber peel used in this study was obtained from Almaty, Kaza-
khstan. Cucumber peels were dried at atmospheric conditions and then ground to obtain
an average particle size. Activated carbon samples were prepared from the washed and
dried (at 80 ◦C) cucumber peel by carbonization followed by the activation process, as
expressed in Figure 1. The first thermal treatment, namely carbonization, was carried out at
600 ◦C for 2 h. A tubular reactor was used, and argon gas (99.993% Ikhsan Technogas Ltd.,
Almaty, Kazakhstan, 100 cm3/min) was preferred to maintain the inert atmosphere. The
carbonaceous sample obtained after this process was designated as carbonated cucumber
peel (CCP).

For the activation step, the CCP sample was thoroughly mixed with potassium hydrox-
ide (KOH, ≥85%, Sigma Aldrich, St. Louis, MI, USA) in a mass ratio of 1:2. To complete
the chemical activation, the CCP-KOH sample was placed in a tubular furnace and the
second thermal treatment at 700 ◦C or 800 ◦C for 2 h was accomplished under argon gas
flow. The activated carbon samples were washed with 1 M HCl and then with distilled
water until reaching a stable pH. These samples were dried in an oven overnight. The
two activated carbons were designated as activated cucumber peel 700 (ACP-700) and
activated cucumber peel 800 (ACP-800). The carbon yield (%) was calculated by dividing
the mass of the activated carbon (g) by the mass of dried cucumber peels (g).
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2.2. Characterization

The surface morphology of CCP, ACP-700, and ACP-800 was measured by scanning
electron microscopy (SEM, JEOL, model JSM-6490LA, FEI, Hillsboro, OR, USA). In addition,
energy-dispersive X-ray analysis (EDAX, JSM-6490LA, FEI, USA) was applied to determine
the elemental composition of the samples.

An adsorption analyzer (SORBTOMETR-M, Catakon, Novosibirsk, Russia) was used
to obtain nitrogen adsorption isotherms at −196 ◦C. From the adsorption data, the surface
area was calculated using the Brunauer–Emmett–Teller (BET) model. The total pore volume
(Vt) was calculated when the relative pressure was at 0.99. The 2D-NLDFT method was
used to calculate the micropore volumes and pore size distributions by assuming the
heterogeneity of the pore wall [37].

The thermal decomposition behavior of the samples was determined using thermo-
gravimetric analysis (Setaram Labsys Evo TGA, Caluire, France). Initially, 10 ± 0.5 mg of
sample was placed in a 100 µL alumina crucible and heated from 25 to 1000 ◦C at a heating
rate of 20 ◦C/min under an N2 atmosphere (20 cm3/min).

For the Fourier-transform infrared spectroscopy (FT-IR, Perkin Elmer, Singapore)
analysis, the KBr pellets were made using the mass ratio of 1% sample to 99% KBr. Then,
the spectra were taken in the wavenumber range of 4000–400 cm−1.

The Solver spectrum instrument (NT-MDT, Moscow, Russia) was used to measure
Raman spectra with the help of a 473 nm laser. The laser beam was directed at the sample
using a 100 × 0.75 NA Mitutoyo lens, providing a laser spot < 2 µm in diameter.

2.3. Electrochemical Measurements
2.3.1. Electrode Preparation

For the preparation of activated carbon electrodes, 75 wt.% activated carbon, 15 wt.%
binders (polyvinylidene fluoride (PVDF), EQ-Lib-PVDF, MTI Corporation, Richmond,
CA, USA), 10 wt.% carbon black (EQ-Lib-SuperC45, MTI Corporation), and 1–2 mL of
1-methyl-2-pyrrolidone (≥99.0%, Sigma Aldrich, St. Louis, MI, USA) were mixed for
20 min. The prepared suspension was coated onto a titanium foil (MF-Ti-Foil-700L-105,
MTI Corporation) current collector of 1 cm × 2 cm. Then, the prepared electrodes were
dried at 130 ◦C for 12 h.

2.3.2. Electrochemical Measurements

The capacitive characteristics of CCP, ACP-700, and ACP-800 samples were tested
using the Potentiostat P-40X with an FRA-24M electrochemical impedance measurement.
The selected electrolyte solution was 6 M KOH in a two-electrode cell. In the symmetric
electrochemical cell device, two identical electrodes were placed and separated with a
separator. Different scanning rates ranging between 5 to 160 mV/s were applied during the
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cyclic voltammetry (CV) tests, where the potential window was 0.0–1.0 V. Galvanostatic
charge–discharge tests were applied at current densities of 0.1, 0.25, 0.5, 1.0, and 2.0 A/g
with a potential window of 0.0–1.0 V [38].

Equation (1), used to derive the specific capacitance (Cs), was applied to the cyclic
voltammetry data obtained from the two-electrode cell in order to calculate its value.

Cs =
A

m × k × (V2 − V1)
(1)

where A is the integral of the CV curve (C); m is the mass of the active substance of one
electrode (g); k is the scan rate (mV/s); V2 − V1 is the potential window (V).

The specific capacity was determined from the galvanostatic charge–discharge (GCD)
profiles of the two-electrode cell, employing a designated equation for computation:

Cs =
2I × t

m × (V2 − V1)
(2)

where I is the current density (A/g); t is the discharge time (s); m is the mass of the active
substance of one electrode (g); V2 − V1 is the potential window (V).

Impedance measurements were conducted across a frequency range of 300 kHz to
10 MHz, applying an alternating voltage with a 10 mV voltage amplitude to the electrode.

3. Results and Discussion
3.1. Activated Carbon Surface Characterization

Surface properties are important for materials for double-layer capacitors. The mi-
crostructural morphology of the CCP, ACP-700, and ACP-800 was studied using SEM
(Figure 2). A beehive-like skeleton structure consisting of three-dimensional macroporous
carbon walls was observed on both carbons. The carbonized material (Figure 2a) possessed
pores ranging from 2 µm to 33 µm. A decrease in surface pore size was more pronounced in
the activated carbons obtained by KOH activation (Figure 2b,c). The KOH-treated carbons
showed a hierarchical structure with more ridges and a uniform connected pore network
(Figure 2b,c).
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The electrochemical performance greatly depends on the activated carbon’s surface
area and pore structure. Nitrogen adsorption/desorption isotherms, pore size distributions,
and the carbons’ parameters are presented in Figure 3 and Table 1. The carbon after
carbonization (CCP) had a surface area of 20.34 m2/g. ACP-800 obtained by KOH activation
had a surface area of 2333 m2/g with a major microporous structure. The surface area of
ACP-800 was more than 100-fold greater than that of the CCP. In the presence of KOH, the
decomposition reaction occurred in two processes [39]. The metallic potassium intercalates
into the carbon matrix and removes the carbon atoms in crystallites [40]. As the gas (CO
and CO2) escapes, many pores form, contributing to its higher surface area than the porous
carbon without KOH activation. The pyrolysis of cucumber peels by treatment with an
activator in KOH improved the specific surface area and porous structure dramatically.
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Table 1. The parameters of the pore structure of ACPs. The pore volumes are calculated based on the
NLDFT method [37].

Sample SBET
(m2/g)

Vt
(cm3/g)

Vmeso
(cm3/g)

V<0.7 nm
(cm3/g)

V<1 nm
(cm3/g)

Vmic
(cm3/g) Vmeso/Vt

ACP-700 1878 1.077 0.196 0.242 0.542 0.881 0.18
ACP-800 2333 1.225 0.376 0.237 0.488 0.849 0.31

(1) The reaction of carbon with potassium hydroxide: 6KOH + 2C → 2K + 3H2 + 2K2CO3
(2) The decomposition reaction of potassium carbonate and the reaction of carbon with

CO2, K2CO3, and K2O: K2CO3→ K2O + CO2 CO2 + C → 2CO K2CO3 + 2C → 2K +
3CO C + K2O → 2K + CO

With the method of KOH activation, the carbon derived at high temperatures resulted
in a more developed porous structure. The total pore volume and mesoporous pore volume
increased with the increase in activation temperature. The mesoporous volume of ACP-800
was almost double that of ACP-700. A hierarchical structure was more pronounced in
ACP-800 than in ACP-700.

The elemental analysis carried out by EDAX is summarized in Table 2. The carbon
content in the ACP-700 and ACP-800 samples was 88 and 92%, respectively, while the
carbon content of the sample carbonized at a temperature of 600 ◦C was only about 68%.
High carbon content will increase the conductivity of the material, which will help the
material’s overall performance as a supercapacitor. The oxygen content in the CCP was
about three-fold greater than that of ACP-700 and two-fold greater than that of APC-800.
Additionally, most inorganic impurities (such as Mg, Si, K, P, and S) in the ACPs were
present in lower amounts than those in the CCP. At an activation temperature of 800 ◦C,
the inorganic matter was negligible. Additionally, it is essential to note that the yield of
ACP-700 and ACP-800 was 16.4% and 13.3%, respectively (Table 2).

Table 2. Elemental composition and yield of CCP and ACP (atomic concentration, at.%).

Sample Yield (%) C O Na Mg Al Si K Ca Cl P S

CCP 30.9 67.64 20.02 0.23 0.39 0.07 0.42 9.60 - 0.47 0.98 0.17
ACP-700 16.4 91.69 7.04 0.33 0.04 0.07 0.12 0.02 0.16 0.55 - -
ACP-800 13.3 88.21 11.79 - - - - - - - - -



Nanomaterials 2024, 14, 686 7 of 15

The thermal gravimetric curves indicate that the ACPs were more thermal stable than
the CCP (Figure 4). For the CCP, the peak at 100 ◦C is ascribed to the release of water.
Groups such as quinone, phenol, and lactone that are attached to the carbon matrix can
be released from 200 to 800 ◦C, resulting in their corresponding dTG peaks [41]. The
intense peak at 200 ◦C in ACP-800 indicates that its surface was more oxidized than that of
ACP-700. These results are consistent with the elemental composition from EDAX, which
showed a higher oxygen percentage for ACP-800. The peak at 680 ◦C in the ACP-700
sample is attributed to the partial gasification of the least thermally stable fragments of the
carbon structure, where the remaining oxygen-containing groups continue to decompose.
The carbon skeleton could also react with the released oxygen-containing species at this
temperature. However, ACP-800 showed a similar partial gasification around 720 ◦C. There
was a total mass loss of 9.9% and 11.6% for ACP-700 and ACP-800, respectively. From the
other thermal stability study [36], the carbons from cucumber peel activated at 800 ◦C and
900 ◦C showed excessive total mass losses of 65% and 76%, respectively. The ACP samples
demonstrated high thermal stability and high resistance to mass loss.
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Figure 4. (a) Thermal gravimetry (TG) curves and (b) differential thermal gravimetry (DTG) curves
measured in nitrogen [36].

FT-IR analysis was performed on the carbons, and the spectra are given in Figure 5.
More functional groups were observed for the CCP sample than for those activated at
700 ◦C and 800 ◦C. The broadband between 3550–3200 cm−1 is ascribed to O-H stretch-
ing vibrations arising from the moisture content of the material and was observed for
all samples [42]. The weak band between 2950–2850 cm−1 is assigned to C-H stretch-
ing vibrations due to the presence of alkanes and alkenes in the structure of CCP [42].
A strong band around 1620 cm−1 was observed for the CCP sample and is assigned to
the C=C stretching of sp2-hybridized carbon functional groups comprising unsaturated
ketones [43]. The medium band between 1440 and 1395 cm−1 for the O-H bending vibra-
tions shows the presence of carboxylic acids. C-O stretching vibrations were observed
between 1310–1250 cm−1 [44]. The overlapping bands in the fingerprint region, at around
850–750 cm−1, are ascribed to C-H out-of-plane bending in the aromatic rings. The intensity
of all these bands decreased after the activation process, which indicates the decomposition
of surface functional groups. After activation at 700 ◦C, the peaks indicate the presence of
O-H (3430 cm−1), C=C/O (1610 cm−1), and C-O (1400 cm−1) on the ACP-700 carbon [45].
A very weak peak for C=C/O (1610 cm−1) was also detected for ACP-800. As a result, the
number of functional groups decreased with an increase in heat treatment temperature,
indicating the removal of functional groups on the surface.
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The obtained carbons based on cucumber peel underwent Raman spectra analysis,
with the results depicted in Figure 6.
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According to Figure 6, the degree of graphitization is determined by calculating the
ratio of the G peak area to the total spectrum area between 700 cm−1 and 2000 cm−1. For
instance, the graphitization level is approximately 20% for cucumber peel carbonized at
600 ◦C, around 22% for cucumber peel carbonized at 600 ◦C and subsequently activated at
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700 ◦C (600/700), and about 74% for cucumber peel carbonized at 600 ◦C and activated at
800 ◦C (600/800).

The degree of graphitization is directly correlated with the width of the G peak in
Raman spectroscopy (Table 3). As the activation temperature rises, the degree of graphi-
tization calculated from the spectra also increases, peaking at approximately 74%. These
carbonaceous materials, characterized by partial graphitization, demonstrate high elec-
tronic conductivities, making them well-suited for electrode applications.

Table 3. Correlation of graphitization degree with FWHM (G) and FWHM (D) peaks.

Temperature
(◦C) Width of G Peak Width of D Peak Degree of

Graphitization

600 carbon 8,093,769 20,151,057 20%

600/700 7,347,576 16,164,958 22%

600/800 3,906,941 8,845,874 74%

Generally, a narrower G peak indicates a higher degree of graphitization, reflecting a
more ordered and crystalline graphite structure. Conversely, a broader G peak suggests
lower graphitization, often associated with a greater presence of defects or disordered
carbon structures, such as amorphous carbon or disordered graphite. Therefore, the width
of the G peak serves as a valuable indicator of the extent of graphitization in carbon
materials [46,47].

3.2. Electrochemical Characterization

The cyclic voltammetry (CV) of the ACP-700 and ACP-800 electrodes were tested in
the potential window of 0.0–1.0 V in a two-electrode cell. The CV curves of both samples
(Figures 7 and 8) show a rectangular electric double-layer capacitor (EDLC) shape over
a scan rate range of 5–160 mV/s. The rectangular shape of the CV plots at the high scan
rate of 160 mV/s indicates fast ion transfer. However, the deviation from the rectangular
shape of CVs can be also observed at a high scan rate, indicating a more significant ohmic
resistance in the pores [48]. The values of the specific capacitance (Cs) at different scan rates
of the material are summarized in Table 1. The ACP-700 sample demonstrated a specific
capacitance of 252 F/g at a scan rate of 5 mV/s, while ACP-800 demonstrated a higher
specific capacitance of 300 F/g. It is worth noting that there was a decrease in the Cs value
with an increase in scan rate. This is due to the lower amount of electrolyte ions exposed to
the active areas of the electrode when the scan rate is high [49].
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scanning speeds: (a) 5, 10, and 20 mV/s; (b) 40, 80, and 160 mV/s.

The galvanostatic charge–discharge was measured at various current densities. Figure 9a,b
shows typical charge–discharge curves for capacitance behavior. A highly symmetric isosce-
les triangle at various current densities suggested good electrochemical reversibility and
high Coulombic efficiency for both samples. The trend of the gravimetric capacitance of
the ACP-700 and ACP-800 electrodes obtained from the GCD measurements is plotted in
Figure 9c, and the specific values are shown in Table 2. At 0.1 A/g, ACP-700 had a specific
capacity of 237 F/g, while that of ACP-800 was 331 F/g. In Table 4, ACP-800 is compared
to other peel-biomass-derived carbons, and it demonstrated excellent specific capacitance
with the benefit of a high surface area.
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and 2000 mA/g) for electrodes based on (a) ACP-700 and (b) ACP-800; (c) value of the specific
capacitance of the electrodes measured at various current densities; (d) cyclic stability of ACP-800 for
2000 cycles at the current density of 1 A/g.
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Table 4. Comparison of ACP-800 to other peel-biomass-derived activated carbons.

Carbon Source SBET, m2/g Electrolyte Specific Capacitance, F/g Current Density, A/g Ref.

Mangosteen peel 1039 3 M KOH 182 0.5 [6]

Cassava peel 1352 0.5 M H2SO4 264 1 [7]

Cassava peel - 1 M H2SO4 183 1 [8]

Watermelon Peel - 6 M KOH 135 1 [9]

Onion peel - 1 M HCl 127 0.75 [10]

Orange peel 2160 6 M KOH 226 0.5 [12]

Orange peel 1514 6 M KOH 255 0.5 [13]

Pomelo peel 1582 6 M KOH 180 0.5 [14]

Garlic peel 787 1 M H2SO4 204 1 [15]

Banana peel 1362 1 M NaNO3 165 0.5 [16]

Banana peel 2452 1 M Na2SO4 220 0.5 [17]

Orange peel 912 1 M Na2SO4 376 1 [18]

Cucumber peel 2333 6 M KOH 286 1 [this work]

With an increase in the current density to 2 A/g, the gravimetric capacity of ACP-800
remained at 279 F/g, demonstrating a retention of capacity of 84.3%. For ACP-700, the
capacitive retention was 93.7%. Both carbons’ high-capacity retention can be linked to
their high surface area and hierarchical porous structure, which was beneficial for the
electrolyte’s penetration and the electrolyte ions’ diffusion in the electrode at a high current
density. Figure 9d presents the cyclic stability of ACP-800 for 2000 charge-discharge cycles
at a current density of 1 A/g. The cell with activated carbon electrodes demonstrates stable
operation over 2000 cycles in the 0–0.9 V potential range without significant fluctuations.

Figure 10 represents the relationship between the gravimetric capacitance and the
square root of the discharge time.
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Figure 10. The relationship between the gravimetric capacitance and the square root of the discharge time.

From the Trasatti analysis, gravimetric capacitance (Cg) can be expressed by the
addition of the bilayer capacitance (Cb) and pseudocapacitance (Cp) of carbons based
on the equation Cg = K1 + K2t1/2, in which the rate control K1 corresponds to the bilayer
capacitance (Cb) and the diffusion control part K2t1/2 corresponds to the pseudocapacitance



Nanomaterials 2024, 14, 686 12 of 15

(Cp) [50]. Figure 10 demonstrates the relationship between the gravimetric capacitance and
the square root of the discharge time, with the intercept of the diagonal line on the y-axis
representing the bilayer capacitance. It was found that the pseudocapacitance contribution
of both ACP-700 and ACP-800 was low.

Figure 11a shows a curve of the dependence of Coulombic efficiency on the current
density of electrodes made from activated cucumber peel in an aqueous electrolyte with 6 M
KOH. The Coulombic efficiency at different current densities was calculated from the GCD
curves η = Td/Tc × 100 (Td and Tc represent the discharge and charge times, respectively).
The average Coulombic efficiency value for the ACP-700 electrode was determined as
83.9%, and 89.5% for the ACP-800 electrode at current densities from 0.1 A/g to 2 A/g,
while the maximum values of Coulombic efficiency for ACP-700 and ACP-800 were 91.7%
at 1 A/g and 94.8 A/g at 2 A/g, respectively.
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Figure 11. (a) Coulombic efficiency as a function of current density for activated cucumber peel
electrodes in 6 M KOH and (b) Nyquist plot for activated cucumber peel electrodes.

To study the fundamental behavior of the carbon in EDLCs, electrochemical impedance
spectroscopy was performed by using an open-circuit potential over a frequency range of
100 kHz to 10 MHz. The Nyquist plot is shown in Figure 11b.

At very high frequencies, the actual resistance (x-axis) comes from the bulk electrolyte.
The values of both carbons were around 0.01 Ω, which indicated low resistance of the
electrolyte. At a medium–high frequency, the diameter of the semicircle represents charge
transfer resistance (Rct), which can be correlated with electrical conductivity [51] or the
porous structure of carbon [52]. The charge transfer resistance (Rct) of the system was
approximately 0.07 Ω for ACP-700 and 0.025 Ω for ACP-800. The low resistance of charge
transfer of ACP-800 can be due to a more developed porous structure and high electrical
conductivity due to the high activation temperature; thus, the rate of electron diffusion
increased. The ion diffusion rate is affected by the porous structure of carbon, which is
reflected by the slope in the Nyquist plot in the low-frequency region. The larger slope
angle of the straight line in the low-frequency region indicates a faster ion diffusion in the
electrolyte to the electrode interface for ACP-800 [53–55].

4. Conclusions

Micro-mesoporous carbon was successfully synthesized by an economical and simple
method using cucumber peel biowaste material. The electrochemical properties of the
carbons showed potential as effective energy storage materials. In the galvanostatic charge-
discharge measurement, the carbon activated at 800 ◦C (ACP-800) showed a high specific
capacitance value of 331 F/g at the current density of 0.1 A/g. The carbon activated
at 700 ◦C (ACP-700) showed 237 F/g in the same conditions. The specific discharge
capacitance of the former carbon was 286 F/g at a current density of 1A/g, exhibiting 100%
capacity retention after 2000 cycles. SEM images showed that the surface of the carbons
formed ridges and pore openings. The specific surface area of the sample activated at 800 ◦C
was 2333 m2 g−1, determined using the Brunauer–Emmett–Teller theory, which is higher
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than that of carbon activated at 700 ◦C (1878 m2 g−1). The activation process increased the
carbons’ surface area dramatically and decreased the number of oxygen species and metal
impurities. The high surface area and meso-micropore volume ratio of the sample activated
at 800 ◦C led to its low charge transfer resistance and faster ion transport than that of the
sample activated at 700 ◦C. This activated carbon was produced through KOH chemical
activation, which creates a unique three-dimensional porous structure consisting of both
micro and mesopores. This structure is believed to be a result of the specific chemical
activation process used. These interconnected nanoporous networks provide efficient
pathways for electrolyte ions, suggesting that this material could facilitate rapid ionic
transport within its hierarchical texture.
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