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Experimental and Calculation Methods 
Materials 

Zinc sulfate heptahydrate (ZnSO4•7H2O, AR), potassium permanganate (KMnO4, 
AR), and manganese sulfate (MnSO4, AR) were purchased from the Aladdin company 
(Shanghai, China). Commercial Zn foil (thickness: 0.1 mm, 99.9 % purity), Cu foil (thick-
ness: 50 µm, 99.9 % purity), and glass microfiber (Whatman, GF/D) were obtained from 
Shenzhen Kejing Technology (Guangdong, China). Erythritol (Et) was purchased from 
Shandong Sanyuan Biotechnology Co., Ltd (Shandong, China). Deionized (DI) water was 
obtained from an ultrapure purification system in our lab.  

Electrolyte preparation  
First, 1.8 M ZnSO4 aqueous electrolyte was acquired by dissolving zinc sulfate hep-

tahydrate in DI water. Subsequently, various amounts of Et (0.5 g, 1 g, and 2 g) additive 
were mixed with 5 mL of the prepared ZnSO4 electrolyte. The resulting mixtures were 
stirred for 3 h to obtain the uniform hybrid electrolyte.  

Materials characterizations  
The Raman spectra of various electrolytes were collected by a micro-Raman spectros-

copy system (532 nm laser). The solvation structure of Zn2+ was measured by a nuclear 
magnetic resonance spectrometer (1H NMR, Bruker AVANCE NEO 600M). SEM (FESEM, 
JEOL JSM-7610FPlus, 15 KV) was employed to analyze the morphology of the samples. 
Crystalline structures of all samples were characterized with X-ray diffraction (XRD, 
Rigaku D/MAX-2600) with Cu-K𝛼 (𝜆 = 1.540 Å) radiation. The morphology evolution of 
Zn anodes with/without the Et additive during the Zn deposition process was observed 
using an in situ optical microscope, where the current density was set at 10 mA cm−2. 
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Zn||MnO2 full battery assembly  
The δ-MnO2 was prepared using a hydrothermal method. In detail, 5 mM KMnO4 

was dissolved in 75 mL of DI under vigorous stirring; then, 1.75 mL of concentrated hy-
drochloric acid was added and stirred at room temperature for 45 min. The obtained so-
lution was stirred to get a homogeneous solution and transferred to a 100 mL Teflon au-
toclave for hydrothermal synthesis. Subsequently, the autoclaves were put in an electric 
oven for 8 h at 100 ℃; then, the products were filtered, washed with DI and ethanol, and 
dried at 80 ℃ overnight. The MnO2 working electrode was prepared by blending active 
materials, Super P, and polyvinylidene fluoride in a weight ratio of 7:2:1 using N-methyl-
2-pyrrolidone as a solvent. The slurry was coated onto the conductive PE film and dried 
at 80 °C for 8 h under vacuum. The typical loading of active material was controlled as 
1.0~2.0 mg cm−2. CR2032 coin-type cells were constructed coupling with the MnO2 cath-
ode, glass fiber separator, and Zn anode.  

Electrochemical characterization  
The plating/stripping tests for the asymmetric and symmetric cells were performed 

on a Neware battery test system. The cyclic voltammetry (CV), chronoamperometry (CA), 
linear sweep voltammetry (LSV), and electrochemical impedance spectroscopy (EIS) 
measurements were conducted on a CHI760E electrochemical workstation (Shanghai 
CHENHUA, China). Linear sweep voltammetry (LSV) was performed in a three-electrode 
configuration, where the platinum foil was used as the working electrode and counter 
electrode, and Ag/AgCl as the reference electrode with a scan rate of 5 mV s−1. The corro-
sion potential and corrosion current density of the Zn anode were obtained by linearly 
fitting Tafel plots in a three-electrode configuration, where the Zn foil was used as the 
working electrode, platinum foil as the counter electrode, and Ag/AgCl as the reference 
electrode with a scan rate of 1.0 mV s−1. Electrochemical impedance spectroscopy (EIS) of 
the Zn||Zn symmetrical cell was conducted in a frequency range of 0.01 Hz to 100 kHz. 
Chronoamperometry (CA) curves were conducted at a constant overpotential of −150 mV 
for 400 s. Cyclic voltammetry (CV) of the Cu||Zn asymmetric cell was conducted in a 
voltage range of −0.2–0.4 V (vs. Zn2+/Zn) with a scan rate of 1 mV s−1. The assembled full 
batteries were tested at a series of current densities with a voltage window of 0.8–1.9 V.  

Calculation methods  
Molecular Dynamics (MD) Simulation: The partial charge of ZnSO4 and Et molecules 

was calculated using Gaussian 16 code, and the 6-311g(d, p) basis functions were applied 
[1]. The OPLSS-AA force field [2] and MKTOP [3] were used to parametrize all atoms, 
such as the bond parameters, angle parameters, dihedral angles, and so on. In system 1, 
90 ZnSO4 molecules and 2778 H2O molecules were randomly inserted into a 6.0 nm*6.0 
nm*6.0 nm cube. In system 2, 90 ZnSO4 molecules, 80 Et molecules, and 2778 H2O mole-
cules were randomly inserted into a 6.0 nm*6.0 nm*6.0 nm cube. The MD simulations were 
performed using the GROMACS 2021 software package [4-6]. The steepest descent 
method was applied to minimize the initial energy for each system with a force tolerance 
of 1 kJ/(mol−1 nm−1) and a maximum step size of 0.002 ps before MD calculations [7]. In all 
three directions, periodic boundary conditions were imposed. The leapfrog algorithm was 
used to integrate the Newtonian equation of motion. The MD simulation was processed 
in an NPT ensemble, and the simulation time was 20 ns. In the NPT simulations, the pres-
sure was maintained at 1 bar by the Berendsen barostat in an isotropic manner [8], and 
the temperature was maintained by the V-rescale thermostat at 298.15 K. The Particle 
Mesh Ewald (PME) method with a fourth-order interpolation was used to evaluate the 
electrostatic interactions, and a cutoff of 1.0 Å was employed to calculate the short-range 
van der Waals interactions [9].  
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DFT Calculation: The first-principles tool Vienna Ab initio Simulation Package 
(VASP6.3.2) [10, 11] was employed to perform all density functional theory (DFT) calcula-
tions within the generalized gradient approximation (GGA) using the Perdew–Burke–
Ernzerhof (PBE) [12] formulation. We have chosen the projected augmented wave (PAW) 
potentials [13, 14] to describe the ionic cores and take valence electrons into account using 
a plane wave basis set with a kinetic energy cutoff of 450 eV. Partial occupancies of the 
Kohn−Sham orbitals were allowed using the Gaussian smearing method and a width of 
0.05 eV. For the optimization of both geometry and lattice size, the Brillouin zone integra-
tion was performed with a 0.04 Å-1 k-mesh Gamma centered sampling [15]. The self-con-
sistent calculations applied a convergence energy threshold of 10-5 eV. The equilibrium 
geometries and lattice constants were optimized with maximum stress on each atom 
within 0.02 eV Å-1. The 17 Å vacuum layer was normally added to the surface to eliminate 
the artificial interactions between periodic images. The weak interaction was described 
with the DFT+D3 method using empirical correction in Grimme’s scheme [16, 17]. The 
adsorption energy was calculated as follows: Eads = E(*adsorbent) - E(*) - E(adsorbent). 
E(*adsorbent), E(*) and E(adsorbent) represent the total energy of * adsorbent, * and ad-
sorbent molecule, respectively.   

  
Figure S1. 1H NMR spectrum of pure H2O solution. 
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Figure S2. Snapshot of the MD simulation of the ZnSO4 electrolyte and the local solvation structure 
of hydrated Zn2+. 

  
Figure S3. RDF for Zn2+-O(Et) obtained from MD simulation results in the Et/ZnSO4 hybrid electro-
lyte system. 
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Figure S4. EIS of ZnSO4 electrolytes with various amounts of Et and their enlarged view (inset). 

  
Figure S5. pH of ZnSO4 electrolytes with various amounts of Et. 



Nanomaterials 2024, 14, 644 6 of 11 
 

 

  
Figure S6. SEM image of pristine Zn foil. 

  
(a) (b) 

Figure S7. Cross-sectional SEM images of Zn foil cycled in ZnSO4 electrolyte without (a) and with 
(b) Et after 50 cycles. 

  
Figure S8. CE of Zn plating/stripping at 2 mA cm−2 and 1 mAh cm−2 on Cu foils in ZnSO4-based 
electrolytes with/without Et. 
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Figure S9. The corresponding voltage curves of Zn plating/stripping at 2 mA cm−2 and 1 mA h cm−2 
on Cu foils in ZnSO4-based electrolytes with/without Et. 

  
Figure S10. Cycling performance of the Zn||Zn cells in the different electrolytes at 5 mA cm−2 and 
1 mAh cm−2. 
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Figure S11. Comparison of Zn||Zn symmetric batteries’ thickness after cycling at 5 mA cm−2 and 1 
mAh cm−2. 

  
Figure S12. XRD pattern of the prepared δ-MnO2. 
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Figure S13. SEM image of the prepared δ-MnO2. 

  
Figure S14. Corresponding galvanostatic charge/discharge curves of full cell with pristine 1.8 M 
ZnSO4 electrolyte at various current densities. 
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Table S1. Comparison of this work with previously reported electrolyte modification strategies for 
improving the cycling ability of Zn||Zn symmetrical cells. 

Additive types  Current density/Areal capacity  
(mA cm-2/mAh cm-2)  

Cycling life (h)  Reference  

Ethylene glycol (EG)  0.5/0.5   1400   [18]  
Acetonitrile (AN)  2/2  650  [19]  

Arginine (Arg)  0.5/0.5  515  [20]  
Glucose  1/1  2000  [21]  

Tridentate citrate   5/1.25  400  [22]  
Vanillin  1/1  1000  [23]  
Glycerol  1/1  1500  [24]  
Glycine  1/0.5  2000  [25]  

Inositol (Ino)  1/1  1700  [26]  
TMA2SO4  0.5/0.5  1800  [27]  

15-Crown-5  2/2  770  [28]  
Tripropylene glycol (TG)  0.5/0.25  2000  [29]  

Et  
1/1  3990  

This work  
5/1  1400  
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