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Abstract: Water pollutants harm ecosystems and degrade water quality. At the same time, many
pollutants carry potentially valuable chemical energy, measured by chemical oxygen demand (COD).
This study highlights the potential for energy harvesting during remediation using photocatalytic
fuel cells (PCFCs), stressing the importance of economically viable and sustainable materials. To
achieve this, this research explores alternatives to platinum cathodes in photocathodes and aims to
develop durable, cost-effective photoanode materials. Here, zinc oxide nanorods of high density
are fabricated on carbon fiber surfaces using a low-temperature aqueous chemical growth method
that is simple, cost-efficient, and readily scalable. Alternatives to the Pt cathodes frequently used in
PCFC research are explored in comparison with screen-printed PEDOT:PSS cathodes. The fabricated
ZnO/carbon anode (1.5 × 2 cm2) is used to remove the model pollutant used here and salicylic acid
from water (30 mL, 70 µM) is placed under simulated sunlight (0.225 Sun). It was observed that
salicylic acid was degraded by 23 ±0.46% at open voltage (OV) and 43.2 ± 0.86% at 1 V with Pt as the
counter electrode, degradation was 18.5 ± 0.37% at open voltage (OV) and 44.1 ± 0.88% at 1 V, while
PEDOT:PSS was used as the counter electrode over 120 min. This shows that the PEDOT:PSS exhibits
an excellent performance with the full potential to provide low-environmental-impact electrodes
for PCFCs.

Keywords: ZnO nanorods; aqueous chemical growth; screen printing; PEDOT:PSS cathode; carbon
fibers; photocatalytic fuel cells (PCFCs); salicylic acid; pollutant removal

1. Introduction

Water is a basic requirement for life. At the same time, an increasing number of artificial
substances are entering natural waters, threatening both aquatic life and the quality of
sources for drinking water. The remediation of aquatic pollutants is complicated by their
typically low concentrations, making their effective removal difficult and costly. A case in
point is the difficulties encountered in the remediation of pharmaceutical substances, where
even low concentrations can harm aquatic life. Consequently, there is a need for remediation
techniques that are techno-economically feasible for low-concentration pollutants. In this
light, photocatalysis is an interesting option [1,2]. The motivation behind employing
photocatalytic fuel cells for wastewater treatment stems from a dual objective: not only
the effective removal of pollutants but also the harvesting of their energy content. This
innovative approach combines the principles of the photocatalytic degradation of pollutants
and energy harvesting to address environmental concerns, while simultaneously tapping
into the potential energy reservoir within pollutants. Combining wastewater treatment
with an energy-generating process has the potential to create sustainable and economically
viable solutions. This integration of photocatalytic fuel cells not only improves the efficiency
of pollutant removal, but also contributes to the broader goal of resource optimization,
offering a promising avenue for environmentally friendly wastewater treatment with added
energy benefits.
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The rapid advancement of materials and technologies for water purification has been
ongoing for a long time. One of its main goals is to find a treatment that is efficient, low-
cost, up-scales easily, and is environmentally friendly; the most challenging objective is its
accessibility on a global scale.

The chemical energy carried by water pollutants can be harvested through oxidation
processes. This is defined as the chemical oxygen demand (COD) of polluted water.
The energy content of water pollutants can potentially be captured and used. Heidrich
estimated the energy content of industrial and household wastewater to be 1 × 107 J/m3

(137 × 1017 J/year). For the United States, that would translate into 4.4 × 1017 J, which
corresponds to 2.8% of the total electricity consumption in the United States [3].

Salicylic acid is one of the major pollutants that is mainly found in the wastewater from
our cosmetics, pharmaceutical, and food industries. Further, it is suitable as a model com-
pound to test the remediation of pharmaceutical pollutants. One main, typical challenge
with pharmaceutical pollutants is their very low concentration. This makes removal and
destruction very expensive with conventional methods. Photocatalysis, on the other hand,
is one of very few pollution-removal methods that can be viable for low-concentration
pollutants [4,5].

Heterogeneous photocatalysis based on nanostructures has the full capability to meet
this demand, and it has the potential to provide a comparatively simple and cost-effective
solution. Currently, the photocatalytic purification of water under sunlight is an outstand-
ing approach in comparison to other traditional techniques [6,7]. Typically, there are three
main phases of any photocatalytic reaction: (i) Light (photons) strike on the surface of the
semiconductor, and if the incident photons have greater energy than the semiconductor’s
bandgap energy, then the valance electron will obtain enough energy to jump into the
conduction band. (ii) Holes (electron vacancies) in the valance band of the semiconductor
will oxidize donor molecules and produce hydroxyl radicals when they react with water
molecules. These hydroxyl radicals have a very strong oxidization power to degrade
pollutants. (iii) In the conduction band, the electrons will react with dissolved oxygen
groups to produce superoxide ions. In this fashion, the electrons (in the conduction band)
and holes (in the valence band) will undergo ongoing oxidation and reduction reactions
with various species on the semiconductor’s surface [8].

Photocatalytic fuel cells (PCFCs) can remediate pollutants from wastewater while
harvesting the chemical bond energy of the pollutants [9]. The motivation behind employ-
ing photocatalytic fuel cells for wastewater treatment stems from a dual objective: the
effective removal of pollutants and the harnessing of their energy content. This innovative
approach combines the principles of photocatalysis and energy harvesting to address en-
vironmental concerns, while simultaneously tapping into the potential energy reservoir
within pollutants. By generating energy from a wastewater treatment process, a sustainable
and economically viable solution can be provided. This integration of photocatalytic fuel
cells not only improves the efficiency of pollutant removal but also contributes to the
broader goal of resource optimization, offering a promising avenue for environmentally
friendly wastewater treatment with added energy benefits. Different PCFC configurations
are reported for different applications, for example, double-photoelectrode PCFCs, single-
photoelectrode PCFCs, dual rotating-disk PCFCs, optofluidics based micro-PCFCs, and
air-cathode PCFCs are reported for the treatment of wastewater, generation of electricity,
and hydrogen production [10].

The PCFCs have several advantages over conventional microbial fuel cells. For exam-
ple: (i) PCFC systems utilize sunlight as an energy source which leads to the immediate
generation and transfer of electrons and holes and, as a result, it boosts the degradation
efficiency of pollutants; (ii) it is possible to design/develop advanced and efficient photo-
catalytic nanomaterials; (iii) PCFCs can be fabricated through simple, cheap, and scalable
approaches and can be used easily in limited-reaction circumstances; and (iv) PCFC systems
have excellent oxidation ability through photogenerated holes and OH ions [11]. PCFC
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systems have been previously used for the degradation of a broad range of pollutants, for
example, dyes, antibiotics, heavy metal ions, and alcoholic compounds [12].

Advancements in composite light harvester materials and strategies for design opti-
mization are needed for an efficient photocatalysis process. Materials with a large surface
area are required because heterogeneous chemical reactions need a greater contact surface
between the material and fluid. When sunlight is selected as a source of radiation to treat
water, there is a need for photostable and nontoxic semiconducting materials that can
harvest the maximum amount of sunlight.

Among the most investigated photocatalytic materials (CeO2, WO3, Fe2O3, GaN, CdS,
and ZnS), semiconductor metal oxides (ZnO and TiO2) are cheap, efficient, abundant, and
nontoxic materials. These can be fabricated through fast, simple, cost-effective, and scalable
fabrication techniques like aqueous chemical growth (ACG), chemical vapor deposition
(CVD), vapor–liquid–solid (VLS), and electron beam evaporation. Recently, the superior
photocatalytic activities of TiO2 have been widely studied. It is a low-cost material swith
good stability. But, it has limited applications due to low quantum yield with a high rate of
charge carrier recombination [13–19].

ZnO is one of the most widely investigated photocatalysts [20]. This is an extremely
photosensitive inert semiconductor, possessing a 3.37 eV bandgap energy and remarkable
electron mobility, reaching 1000 cm2 V−1 s−1 for individual nanowires [21], which provides
fast electron transport and decreases the recombination of charge carriers. ZnO exhibits
good conductivity for both electrons and holes when compared to other oxide materials.
The main advantage of ZnO over TiO2 is its ability to absorb a larger fraction of sunlight.
Several reports have demonstrated that the modified ZnO nanowires (NWs) demonstrate
superior photocatalytic properties along with other elements [22].

ZnO NRs provide several advantages because they offer a high surface area leading to
a much higher surface area for photocatalytic reactions. It also enhances light scattering
for improved absorption and more effective charge separation and collection due to the
closeness between the photogenerated charge carriers and the interface (NWs-electrolyte).
The photocatalytic properties of different ZnO nanostructures have been studied, for exam-
ple, NWs, nanorods (NRs), nanodiscs, nanowalls, and microspheres [23,24]. It considerably
decreases the charge-carrier diffusion length and enhances the surface evolution kinetics.
The photocatalytic properties of ZnO can be enhanced by constructing composites with
carbon-based materials (carbon fiber/ZnO NRs). Further, it is also estimated that by de-
positing the NWs on carbon fiber, the surface area can increase by at least 400,000 times
compared to a thin film deposited on the fiber.

Carbon fiber/ZnO nanostructured composites have been previously investigated for
various applications, including photocatalysis, environmental remediation, and energy
harvesting [25–27]. Carbon fibers (CFs) have good flexibility and chemical resistivity with
higher electroconductivity and great mechanical strength [28–30].

Carbon fibers have been extensively studied as a substrate material to develop water
and gas treatment/purification systems [31–33]. Carbon fiber substrates are also used
in the development of photocatalytic devices as a structured support material and have
shown a much better photocatalytic performance as compared to other substrates [34–36].
In this way, the carbon fibers are not only providing their surface for the deposition of the
photocatalytic materials, but their high conductivity and absorptivity are also contributing
to enhancing the overall photocatalytic activity of the composite material [25,37,38]. For
the reasons stated above, ZnO nanorods grown on carbon fibers as photo-anode materials
are deemed techno-economically feasible for the PCFC concept.

In this study, densely packed ZnO nanorods on carbon fibers were fabricated using a
straightforward and low-temperature aqueous chemical method. This strategy was used
to produce functional carbon fibers in an easy, facile, and cost-effective manner, which is
suitable for large-scale manufacturing. The photocatalytic degradation of salicylic acid in
water under the simulated sunlight at 0 and 1 V applied voltage was demonstrated. The
morphology, structure, elemental composition, and optical properties of the synthesized
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material were analyzed using scanning electron microscopy (SEM), energy-dispersive X-ray
spectroscopy (EDS), and UV–visible spectroscopy.

Replacing expensive and scarce noble metal catalysts such as platinum is a prereq-
uisite for the techno-economical feasibility and sustainability of PCFCs. For this reason,
PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate) is investigated as an
alternative low-cost and sustainable cathode catalyst for PCFCs. Moreover, PEDOT:PSS
compositions can be deposited by scalable and low-cost methods. Here, PEDOT:PSS’s
electrode characteristics were compared to those of the platinum electrodes in PCFCs.

2. Materials and Methods
2.1. Materials

Commercially purchased carbon fibers (from ABIC Kemi, Norrköping, Sweden) with
a diameter of 8 ± 1 µm were acquired in the form of fabric sheets. The fabric sheet samples
were cut to a size of 2 × 2 cm2. Coatings on the fiber surface were removed by exposing
the fibers to a flame followed by ultrasonication in ethanol and DI water for 20–50 min.

Zinc nitrate hexahydrate (Zn(NO3)2 6H2O) 99%, zinc acetate dihydrate (Zn(CH3COO)2
2H2O) 99.0%, hexamethylenetetramine (HTMA, C6H12N4) 99%, and salicylic acid
(2(HO)C6H4CO2H) were purchased from Sigma-Aldrich. All chemicals used in this study
were of analytical grade with a purity of 99% and no further purification was necessary.
The PEDOT:PSS ink (from Heraeus with conductivity ∼1000 S/cm) was screen printed
on polyethylene terephthalate (PET) substrate at Printed Electronics Arena (PEA), RISE
Research Institutes of Sweden, Norrköping, Sweden, with a film thickness of ∼1.0 µm.

2.2. Growth of ZnO NWs on Carbon Fibers

Densely packed ZnO nanorods are produced on carbon fiber surfaces employing an
economical, low-temperature (<100 ◦C) aqueous chemical growth method, as outlined by
Vayssieres et al. [39]. The process involves depositing a ZnO seeding layer on the carbon
fiber surface prior to nanorod fabrication, following the method introduced by Womelsdorf
et al. [40]. In the initial step, a solution containing 0.01–0.7 M zinc acetate dihydrate in
methanol was heated to 55–85 ◦C for 1–3 h with continuous magnetic stirring. Subsequently,
0.02–0.06 M KOH was slowly added. Carbon fibers were immersed in this solution for
2–5 min to achieve a thin and uniform ZnO seeding layer, followed by air drying. The
growth solution comprised equimolar amounts (0.15–0.70 M) of zinc nitrate hexahydrate
(Zn(NO3)2·6H2O) and hexamethylene tetramine (HMT and C6H12N4) in DI water was
then prepared. Lastly, the ZnO-seeded carbon fibers were placed in an electric furnace at
60–95 ◦C for 2–5 h to facilitate the growth of ZnO nanorods through specific reactions [41].

In the 1st step, the ammonia was produced due to the reaction between HMT (C6H12N4)
and water, where

(CH2)6 N4 + 6H2O → 6HCHO + 4NH3 (1)

In the 2nd step, the reaction between ammonia and water produces ammonium and
hydroxide ions, where

NH3 + H2O → NH4
+ + OH− (2)

In the 3rd step, the reaction between hydroxide ions with zinc ions produce solid ZnO
NRs on the surface of carbon fibers, where

2OH− + Zn+2 → ZnO(s) + H2O (3)

The photocatalytic reactions were performed using an H-shaped PEC cell under the
simulated sunlight of 0.225 Sun. The simulated sunlight was directed on the surface of the
working electrode (carbon fiber/ZnO NRs fabric sheet with a size of 1.5 × 2 cm2) as shown
in schematic Figure 1. The H-shaped PEC cell consisted of two parts which were separated
by an ion-exchange membrane. Salicylic acid solution (30 mL, pH 6.0) with a concentration
of 70 µM was filled in both chambers of the H-shaped fuel cell. The photodegradation
was monitored every 40 min for 2 h at 0 and 1 V and samples with a volume of 1 mL
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were collected after every 20 min for UV–visible absorption spectroscopy measurements.
Platinum electrodes (surface area 9.4473 cm2) and PEDOT: PSS-coated film (surface area
6.0 cm2) electrodes were used as counter electrodes for comparative studies. The voltage
was applied through a Keithley 2400 source meter, and the photocurrent was measured.
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Figure 1. Schematic illustration of an H-shaped photoelectrochemical cell with a carbon fiber/ZnO
NW anode and a PEDOT:PSS cathode, separated into two parts through a glass frit. The current
flows through an external circuit (Keithley source meter 2000).

2.3. Measurements

The morphology, structure, and elemental composition of the fabricated ZnO nanorods
were investigated through scanning electron microscopy (SEM, Sigma 500 Gemini equipped
with EDS). The SEM images were obtained using the In-lens detector, which primarily
gathered secondary electrons, offering topographical details of the sample at magnifications
ranging from 250× to 1,000,000. The working distance stood at 5.0 mm, operated under a
voltage (ETH) of 1.0 kV.

Elemental analysis was performed by utilizing energy-dispersive X-ray spectroscopy
(EDS) in conjunction with the SEM.
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Absorption spectroscopy investigations were conducted at room temperature using
the Absorption Spectrometer Lambda 900 (232003—Lambda 900 PerkinElmer). The salicylic
acid showed a maximum absorption peak at ~285 nm. This peak was used to investigate
the change in the absorbance peak of salicylic acid at a maximum wavelength of 285 nm
and DI water was used as a reference.

3. Results and Discussions

The top section of Figure 1 illustrates the primary steps involved in the decoration
of carbon fibers with ZnO nanorods. The functionalization of carbon fibers with ZnO
nanorods was achieved through a straightforward and low-temperature aqueous chemical
growth process. Figure 1 (bottom) shows the schematic illustration of an H-shaped PEC
cell (divided into two sections by glass frit with a carbon anode and a PEDOT:PSS counter
electrode. A glass frit was used between both sections as an ion-transfer membrane. The
current ran through an external circuit connected to a Keithley 2400 source meter.

Uniform and densely arranged ZnO nanorods on carbon fibers, fully covered by
vertically aligned ZnO nanorods with hexagonal structures, were prepared. The ZnO
nanorods exhibit a uniaxial orientation of 0001 concerning the carbon fiber surface. SEM
images in Figure 2 reveal the apparent average diameter and length of the fabricated ZnO
nanorods, estimated at approximately 100–250 nm and 800–1200 nm, respectively. SEM
images give insights into the size distribution and morphology of the fabricated nanorods.
The precise control over the size, orientation, and arrangement of the nanorods is crucial for
tailoring the material’s properties for various applications, such as in electronics, sensors,
catalysts, or energy storage.
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Figure 3 displays the EDS spectra and elemental mapping images of the ZnO NRs/
carbon fibers with the analysis of chemical compositions by percentage. It was applied
to determine the chemical composition of grown ZnO NRs. The EDS analysis confirms
the presence of carbon (C), oxygen (O), and zinc (Zn) elements, affirming the absence
of any other impurities in the ZnO NRs/carbon fiber sample. The EDS spectral peaks
of Zn are located at 1.0 and 0.88 keV, and for O it is centered at 0.5 keV, and for C it is
positioned at 0.3 keV. These peaks are distinctive and arise from the interaction of X-rays
with the atoms in the sample. The strong intensity of the Zn and O peaks is attributed to
the dense coverage of ZnO NRs on the carbon fibers. Figure 3 displays elemental mapping,
indicating the presence of C, O, and Zn atoms in the ZnO NRs/carbon fiber sample. It
verifies the uniform distribution of O and Zn elements across the entire carbon fiber. This
uniformity is crucial for ensuring consistent material properties and performance. Atomic
and weight percentages of C, O, and Zn elements are tabulated in Figure 3, providing
quantitative data on the elemental composition of the sample. These percentages offer
valuable information for understanding the stoichiometry and overall makeup of the ZnO
NRs/carbon fiber composite. Overall, the EDS results show a detailed characterization of
the chemical composition and spatial distribution of elements within the ZnO NRs/carbon
fibers, confirming their successful fabrication and providing essential insights for further
analysis and optimization.

Figure 4 shows a schematic illustration of charge generation, transfer, and pollutant
degradation at the ZnO/carbon-fiber anode and the PEDOT:PSS cathode under sunlight.
The proposed mechanism for the fabricated fuel cell is as follows:

ZnO + Sunlight → ZnO
(
e−CB + h+

VB
)

(4)

H2O + h+ → OH•(hydroxyl radical) + H+ (5)

Salicylic acid + OH• → Oxidation Product CO2 + H2O (6)

O2 + e− → O−
2 (superoxide anion) (7)

O−
2 + H2O → H2O2 + OH• (8)

Salicylic acid + OH• → (Oxidation of Salicylic acid) CO2 + H2O (9)

As sunlight shines on the surface of the ZnO NRs, the absorbed photons provide
enough energy for electrons in the valence band to transition to the conduction band,
creating holes in the valance band. The interaction between holes and water at the surface
of the ZnO NRs yields hydroxyl radicals (•OH), which act as strong oxidizing agents
to reduce the pollutant (salicylic acid) present in the water. Electrons are transferred
toward the counter electrode through the carbon fibers, where they react with oxygen and
subsequently reduce it into superoxide anions (O2−), where either these anions directly
attack organic pollutants in water, or they react with water to produce hydroxyl radicals
(•OH), which again reduce the pollutant in the water.

Figure 5 shows the UV–visible spectral time scans of salicylic acid solutions collected
after every 40 min (0–120 min) illuminated under the simulated sunlight (0.25 Sun). It
shows a continuous degradation of salicylic acid with time. There is an exponential decrease
in the concentration of salicylic acid with the illuminated time (0–120 min). The application
of 0 V and 1 V potential across the electrodes, while using platinum and PEDOT:PSS film
as counter electrodes, reveals that the degradation rate of salicylic acid is approximately
doubled when a potential of 1 V between the electrodes as compared to 0 V is applied.
Figure 5e shows UV–visible spectral time scans of the control sample (carbon fibers without
ZnO NWs) at 1 V applied potential with a Pt counter electrode and there is no degradation
of salicylic acid after 120 min (about 2 h).
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Figure 4. Schematic illustration of charge generation, transfer, and pollutant degradation at
ZnO/carbon-fiber anode and PEDOT:PSS cathode under the sunlight.

Figure 5f shows a plot of time verses percentage degradation for salicylic acid. It
shows that the PEDOT:PSS counter electrode has a very good performance, and it competes
with the Pt electrode very well. Therefore, screen-printed PEDOT:PSS film exhibits the full
potential to contend with Pt electrodes and can compete with Pt electrodes while providing
low-environmental-impact electrodes for PCFCs.

PEDOT:PSS cathodes show promise across various fields due to the conducting poly-
mer’s high electrical conductivity, flexibility, and environmental stability, presenting an
alternative to metals like platinum. These cathodes efficiently catalyze electrochemical
reactions such as oxygen reduction reactions (ORRs) in fuel cells and metal–air batter-
ies, with comparable activity to platinum, especially in alkaline conditions, making them
suitable for renewable energy applications. Additionally, PEDOT:PSS exhibits durability
and corrosion resistance, ensuring long-term stability in electrochemical systems. Beyond
energy conversion, PEDOT:PSS cathodes have applications in sensors, actuators, and
electronic devices. Their compatibility with flexible substrates and solution-based process-
ing enables the fabrication of lightweight, flexible electrochemical devices for wearable
electronics and biomedical applications. Moreover, their biocompatibility and ease of
functionalization make them suitable for interfacing with biological systems, paving the
way for bioelectronic applications and biosensors. However, further research is necessary
to optimize PEDOT:PSS’s catalytic activity, stability, and scalability compared to traditional
metal catalysts like platinum. Comparative studies with other non-precious metal cata-
lysts and advanced materials are also essential to understand PEDOT:PSS’s advantages
and limitations in various electrochemical applications. Integrating PEDOT:PSS cathodes
offers exciting opportunities for advancing electrochemical technologies and addressing
sustainability and cost-effectiveness challenges.
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Figure 5. UV–visible spectral time scan of salicylic acid solutions collected after every 40 min
(0–120 min, (a) 0 V applied potential while using platinum as a counter electrode, (b) 1 V applied
potential with Pt counter electrode, (c) 0 V applied potential while using PEDOT:PSS as a counter
electrode, (d) 1 V applied potential while using PEDOT:PSS as a counter electrode, (e) control sample
(carbon-fibers without ZnO NWs), 1 V applied potential with a Pt counter electrode, and (f) graph of
time verses percentage degradation for salicylic acid.
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The degradation (%) of salicylic acid was calculated at 283 nm using the absorbance
values according to the following relation:

Degradation (%) = 100 × (1 − At/A0) (10)

where, At is the absorbance after time t minutes, and A0 is the absorbance at zero time.
It is found that the salicylic acid is degraded 23 ± 0.46% at OV and 43.2 ± 0.86% at 1 V
in 120 min when the Pt mesh was used as a counter electrode while it was degraded
18.5 ± 0.37% at OV and 44.1 ± 0.88% at 1 V in 120 min when PEDOT:PSS was used as a
counter electrode.

The SEM images of the fabricated ZnO nanowires (NWs) on carbon fibers post-
photocatalytic measurements are depicted in Figure 6. The SEM images reveal that the
NWs show no signs of degradation or damage.
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Figure 6. SEM images of fabricated ZnO NRs on the surface of carbon fibers after the photocatalytic
measurements.

Table 1a,b shows the measured photocurrent and dark current for 2 h at 0 V and
1 V applied potential with the Pt counter electrode, and Table 1c,d shows the measured
photocurrent and dark current at 0 V and 1 V applied potential with the PEDOT:PSS
counter electrode. It was found that the PEDOT:PSS electrode shows very good electrode
characteristics compared to platinum electrodes and exhibits full potential to provide
efficient electrodes for PCFCs.
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Table 1. (a,b) shows measured photocurrent and dark current at 0 V and 1 V applied potential with
Pt counter electrode, and (c,d) shows measured photocurrent and dark current at 0 V and 1 V applied
potential with PEDOT:PSS counter electrode.

(a) 0V (b) 1V

Time (min) Current (µA) Dark current (µA) Time (min) Current (µA) Dark current (µA)

0 21.6 ± 0.1 4.0 ± 0.1 0 74.09 ± 0.1 32.01 ± 0.1

40 19.1 ± 0.1 3.8 ± 0.1 40 64.0 ± 0.1 25.6 ± 0.1

80 18.53 ± 0.1 3.7 ± 0.1 80 57.03 ± 0.1 20.3 ± 0.1

120 17.31 ± 0.1 3.6 ± 0.1 120 53.01 ± 0.1 16.21 ± 0.1

(c) 0V (d) 1V

Time (min) Current (µA) Dark current (µA) Time (min) Current (µA) Dark current (µA)

0 9.1 ± 0.1 1.6 ± 0.1 0 39.56 ± 0.1 17.6 ± 0.1

40 8.3 ± 0.1 1.5 ± 0.1 40 35.93 ± 0.1 14.5 ± 0.1

80 8.02 ± 0.1 1.5 ± 0.1 80 32.59 ± 0.1 12.7 ± 0.1

120 7.95 ± 0.1 1.4 ± 0.1 120 31.05 ± 0.1 12.1 ± 0.1

4. Conclusions

In summary, this research work shows the fabrication of highly dense ZnO NRs on
the surface of carbon fibers with a low-cost, simple, and scalable aqueous chemical process.
The fabricated ZnO NRs/carbon fibers are highly photocatalytic under simulated sunlight.
The electrode’s durability allows for practical use in a variety of polluted water matrices.
The ZnO NW carbon electrodes may be applied in other devices, for example, piezoelectric
energy harvesters, UV/strain/chemical/biosensors, solar cells, light-emitting diodes, and
charge storage devices. Importantly, the finding that PEDOT:PSS functions as a low-cost
alternative to noble metal catalysts in PCFC cathodes takes the concept a step further
towards its possible implementations. This research work not only presents compelling
results regarding the fabrication and performance but also contributes valuable insights to
the existing literature in the field. Moving forward, further exploration of the applications
and optimization of these materials could lead to even more impactful advancements in
environmental remediation and beyond.
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