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Abstract: The availability of carbon nanotube (CNT)-based polymer composites allows the develop-
ment of surface-attached self-sensing crack sensors for the structural health monitoring of reinforced
concrete (RC) structures. These sensors are fabricated by integrating CNTs as conductive fillers
into polymer matrices such as polyurethane (PU) and can be applied by coating on RC structures
before the composite hardens. The principle of crack detection is based on the electrical change
characteristics of the CNT-based polymer composites when subjected to a tensile load. In this study,
the electrical conductivity and electro-mechanical/environmental characterization of smart skin
fabricated with various CNT concentrations were investigated. This was performed to derive the
tensile strain sensitivity of the smart skin according to different CNT contents and to verify their
environmental impact. The optimal CNT concentration for the crack detection sensor was determined
to be 5 wt% CNT. The smart skin was applied to an RC structure to validate its effectiveness as
a crack detection sensor. It successfully detected and monitored crack formation and growth in
the structure. During repeated cycles of crack width variations, the smart skin also demonstrated
excellent reproducibility and electrical stability in response to the progressive occurrence of cracks,
thereby reinforcing the reliability of the crack detection sensor. Overall, the presented results describe
the crack detection characteristics of smart skin and demonstrate its potential as a structural health
monitoring (SHM) sensor.

Keywords: carbon nanotube; polyurethane; crack detection; self-sensing; structural health monitoring

1. Introduction

Reinforced concrete (RC) structures are essential to modern infrastructure, underpin-
ning critical facilities like bridges, high-rise buildings, and dams. Despite their inherent
strength and durability, these structures are susceptible to cracking due to environmental
factors, load variations, and material aging. Early detection and monitoring of these cracks
are vital for preserving structural integrity and ensuring safety. Traditional structural health
monitoring (SHM) methods, such as visual inspections and standard sensing techniques,
have proven inadequate [1–5]. They often miss small cracks that can lead to significant
damage, are labor-intensive, and lack continuous, real-time monitoring. This shortfall
in effective monitoring poses a risk, especially for structures critical to public safety and
urban life. Consequently, there is a pressing need for advanced, real-time monitoring
technologies in SHM for RC structures. Such innovative solutions would greatly enhance
SHM’s accuracy and contribute to the longevity and safety of these essential structures,
marking a significant advancement in civil engineering and ensuring the resilience and
safety of our infrastructure.

In recent years, the field of SHM has experienced remarkable advancements, driven by
the development of smart material sensing technologies using carbon-based nanocompos-
ites. Carbon nanomaterials such as carbon nanotubes (CNTs), graphene, graphite carbon,
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and hybrid nanostructures are robustly used due to their thermal and mechanical stability,
and electrical and electronic properties. Among these, CNTs are known for their unique
structural feature of an elongated bundle shape, which provides higher mechanical re-
inforcement with polymer composites and superior flexibility in stretchable electronics
compared to other carbon nanomaterials [6–9]. Additionally, their cost-effectiveness, com-
pared to other materials, affords them a high level of selectivity as a key nanomaterial for
application in large-scale structures such as civil, aviation, and space infrastructures in
SHM applications [10–13]. For example, Park et al. [14] developed a glass fiber-reinforced
plastic skin embedded with CNT fiber sensors to implement SHM in aircraft structures.
The CNT fiber sensors showed strain measurement results similar to conventional strain
gauge measurements. In addition, Nonn et al. [15] observed crack propagation behavior
using CNT films for electrical impedance tomography imaging. They confirmed that cracks
were clearly observed through the electrical impedance tomography program as they grew
larger. Olejnik et al. [16] synthesized a composite by printing CNT onto polyurethane (PU)
and investigated the potential for structural damage detection based on the increase in
sensor signal with increasing deformation. Furthermore, the critical role of mechanical
properties inherent in nanostructured materials should not be overlooked, as empha-
sized by Magazzù, A. et al. [17]. Echoing this perspective, Szeląg, M. [18] confirmed the
beneficial impact of structural integration enabled by the mechanical characteristics of
CNT’s nanostructure, which facilitate cohesive connections leading to enhanced bending
tensile strength.

The strain sensing capability of CNT-based composites is considered a key require-
ment for future SHM techniques and applications. To address these challenges and re-
quirements, several studies have attempted to develop novel self-sensing nanocomposites
for such applications [19–22]. Lu et al. [23] manufactured conductive aggregates coated
with CNT polymer nanocomposites and evaluated their sensitivity to deformations in
concrete structures caused by external factors. They used materials coated with CNT poly-
mer nanocomposites at a 20 wt% CNT content to compare the electrical resistivity under
cyclic compressive loads. The maximum fractional change in the resistivity value under
periodic compression was around 80%, indicating somewhat low detection performance.
Castañeda-Saldarriaga et al. [24] developed a cement composite containing CNTs for detect-
ing damage due to deformation and conducted characterization tests of its piezoresistive
behavior. Consequently, the optimal CBM/CNT concentration was determined to be
0.8 w%. They focused on investigating the electrical properties induced by piezoresistance
to demonstrate its suitability for SHM applications. Meoni et al. [25] developed cement
materials integrated with CNTs to assess sensitivity to structural changes, observing an
increase in electrical resistance due to the formation of compressive cracks. However, they
faced issues with inconsistent gauge factors and complete loss of detection capability after
initial crack formation. Additionally, there was no evaluation on how environmental condi-
tions affect the materials’ response. The reviewed CNT-based sensors for civil structures
rely solely on electrical changes that occur immediately upon crack formation, leading
to somewhat inaccurate detection performance. In such instances, errors can arise from
electrical changes caused by minor shocks. Furthermore, in real scenarios, it is crucial
to monitor crack growth post-occurrence. Most studies discuss embedded CNT sensors,
which pose significant challenges such as being difficult to repair and apply to existing
concrete structures.

In this study, we propose a smart skin composed of a CNT/PU composite for detecting
cracks in RC structures. The smart skin is applied as a coating on the exterior of structures
to serve as a sensor monitoring the occurrence and growth of cracks. To develop the optimal
sensor, the electrical conductivity at various CNT concentrations is investigated. Following
this, the electrical properties under mechanical and environmental changes are analyzed to
evaluate the smart skin’s tensile strain sensitivity and environmental impact. Finally, the
applicability, reproducibility, and reliability of the smart skin as a crack detection sensor
are assessed upon its application to structures.



Nanomaterials 2024, 14, 632 3 of 14

2. Materials and Methods
2.1. Materials

CNTs were acquired from Nanolab (Waltham, MA, USA), with diameters ranging from
10 to 30 nm, lengths varying nominally from 5 to 20 microns, and a carbon purity greater than
85 wt%. The impurities include iron and ceramic oxides. The characteristics of the CNTs are
displayed in Figure 1. Figure 1a shows a transmission electron microscopy image of the CNTs,
revealing their multi-walled nature [26]. Here, we observe a 10 nm inner diameter, 9 concentric
walls, and a clear inner channel. The Fourier-transform infrared (FTIR) spectrum of the CNTs
is depicted in Figure 1b [27]. Peaks appeared at 1000, 1375, 1540, 1575, 1615, and 3450 cm−1,
which can be attributed to C=O stretching, C–O, and OH stretching of the carboxylic acid
group, respectively, formed on the side wall of the CNTs. Figure 1c presents the Raman
spectrum of the CNTs, featuring two characteristic bands: mode D (1304.3 cm−1) and mode G
(1593.3 cm−1) [28]. In Figure 1b,c, the red lines indicate peak values in Figure 1b and modes D
and G in Figure 1c, respectively. A medium-flexibility PU casting resin was purchased from
Easy Composite (Stoke-on-Trent, UK), characterized by a viscosity range of 450–650 mPa·s, a
curing time of 1–2 h at room temperature, and a tensile strength of 3.4–3.8 MPa. The solvent
used for dispersing CNTs was high-purity acetone, with a 99.7% purity level, supplied by
Samjeon Chemical (Gyeonggi, Republic of Korea).
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2.2. Fabrication Procedure

The smart skin was fabricated by uniformly dispersing CNTs within a PU matrix,
employing the same methodology as previous studies [29–31], as illustrated in Figure 2.
Approximately 50 mL of acetone was used as a dispersing agent to dissolve the high-
viscosity PU resin, facilitating the high-quality dispersion of CNTs. The dispersion of
CNTs within the PU matrix was achieved using a Q700 sonicator (Qsonica, Newtown, CT,
USA). Ultrasonic dispersion breaks the strong van der Waals forces between the CNTs,
resulting in a homogeneous mixture. To minimize the overheating effects of the sonicator,
the mixture-containing beaker was placed within a larger beaker filled with ice, and the
sonicator was operated in pulse mode (15 s on, 15 s off) for a duration of 80 min. The total
energy output was approximately 100,000 J. The dispersed mixture was then placed on
a hot plate at 60 ◦C for 24 h to evaporate the acetone. A PU hardener was added to the
mixture in the same ratio as the PU resin, and it was thoroughly mixed using a TR50M three
roll mill (Trilos, San Ramon, CA, USA). The mixture was then coated to a constant thickness
of 0.7 mm, and to minimize voids in the samples, it was subjected to vacuum drying for
24 h. Afterward, the hardened samples were cut into pieces measuring 70 mm × 10 mm.
For the electrical conductivity measurements of the smart skin, samples were prepared
with varying CNT concentrations ranging from 0 to 7 wt%.
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2.3. Characterization

The microstructure of CNTs within the PU matrix was observed using a Mira 3
scanning electron microscope (Brno, Czech Republic) at 15 kV. The samples were coated
with a thin layer of platinum using a Q300T sputter coater. The electrical conductivity
of the smart skin was calculated by measuring the electrical resistance of the samples
using a Keithley 2450 (Keithley, Solon, OH, USA). Samples with high electrical resistances
above 109 Ω were measured using a Keithley 6517B (Keithley, Solon, OH, USA). The
electrical resistance of the samples was measured using the two-point probe method. To
minimize measurement errors due to contact resistance between the probe tips and the
sample, copper tape was attached to both ends of the sample, and high-purity silver ink
was applied between the sample and the copper tape [32,33]. The electrical conductivity of
the samples was calculated using Equation (1):

σ =
L

AR
(1)



Nanomaterials 2024, 14, 632 5 of 14

where σ (S/m) is the electrical conductivity of the smart skin, R (Ω) is the electrical re-
sistance of the smart skin, A (m2) is the area of the electrode, and L (m) is the distance
between electrodes.

For the electro-mechanical/-environmental characterization, smart skin samples with
CNT concentrations of 2 wt%, 3 wt%, and 5 wt% were prepared. Electro-mechanical
characterization was conducted using a servohydraulic test system equipped with a 100 kN
load cell. The system applied a pure tensile force to the samples at a displacement rate of
5 mm/min. Concurrently, the electrical resistance of the samples was measured using a
Keithley DMM 6500 (Keithley, Solon, OH, USA). Electro-environmental characterization
was performed using a temperature and humidity chamber. The electrical resistance of
the samples was measured using a Keithley 2700 (Keithley, Solon, OH, USA). Tests were
conducted based on standard environmental conditions of 20 ◦C room temperature and
45% relative humidity, with temperature and humidity ranges adjusted between −10 ◦C
and 70 ◦C and 20% and 80%, respectively.

3. Results and Discussion
3.1. Electrical Conductivity of Smart Skin

Figure 3a shows the electrical conductivity of the smart skin as a function of
the CNT concentration. The electrical conductivity of pure PU is approximately
1 × 10−10 S/m, indicating its insulating characteristics. As the conductive nanomaterial
CNT was reinforced within the PU matrix, a percolation threshold was observed near 1
wt% CNT. An increase in electrical conductivity from 1 wt% to 5 wt% CNT was observed,
indicating the formation of conductive pathways within the PU matrix as the CNT concen-
tration increased [34–36]. Beyond 5 wt% CNT, even if the CNT concentration was increased,
the conductive path became saturated, and there was no significant change in electrical
conductivity. This behavior suggests that the conductive pathways among the CNTs within
the PU matrix became saturated, leading to minimal changes in conductivity with further
increases in CNT concentration. Figure 3b shows the scanning electron microscope (SEM)
image of smart skin, showcasing the well-established conductive pathways among the
CNTs embedded in the PU matrix. Additionally, to aid understanding, SEM images of the
pure PU matrix and CNTs were indeed acquired as negative controls. Specifically, Figure 3c
shows the SEM image of the pure PU matrix, while Figure 3d presents the SEM image of
the CNTs.
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Figure 3. Electrical properties of smart skin: (a) conductivity; (b) SEM of smart skin (5 wt%); (c) SEM
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3.2. Electro-Mechanical Characterization of Smart Skin

Compared to pure PU, adding 5 wt% CNT significantly improved performance, in-
creasing the maximum tensile stress from 2.1% to 4.5%, representing an approximate
enhancement of 114%. Figure 4b demonstrates that the addition of CNTs led to an increase
in Young’s modulus and a decrease in ultimate tensile strain. The maximum tensile strain
reduced from 309% to 101%, a decline of about 67%. This tendency is primarily attributable
to the inherent high strength and stiffness of CNTs. When CNTs are added to a PU matrix,
a more robust composite material is produced. Additionally, the smart skin, fabricated
using an ultrasonicator, ensures the even dispersion of CNTs within the PU matrix, thereby
enhancing interactions such as interfacial adhesion between PU and CNTs [37–42]. Impor-
tantly, with respect to the research goal of detecting cracks in RC structures, even though
the tensile strain of the smart skin was reduced, it achieved this goal by having an ultimate
tensile strain that was much higher than the critical failure strain of concrete, which is 0.3%.

Figure 4c,d show the electrical behavior of the smart skin across the full-range strain
and at the fracture strain, respectively. It can be clearly seen that the electrical resistance of
all samples increased with increasing tensile loading because of the loss of contact between
CNTs and the widening of the inter-CNT distances [43–45]. At full-range strain, a rapid
increase in electrical behavior in electrical resistance was observed as the concentration of
CNT increased. At the fracture strain, all samples exhibited a similar behavior in electrical
resistance. The tensile strain sensitivity of the smart skin was calculated by dividing the
fractional change in electrical resistance by the tensile strain and is shown in the small graphs
of Figure 4c,d. At full-range strain, lower concentrations of CNT correspond to significantly
higher values of tensile strain sensitivity. At fracture strain, the tensile strain sensitivity of all
samples consistently remained around 10. This is because at lower CNT concentrations, the
conductive pathways were less stable and more susceptible to disruption or alteration due to
strain. As shown in Table 1, all samples of the smart skin exhibited a strain sensitivity more
than 3.1 times higher than that of conventional metal-type strain gauges [46,47].

Table 1. Tensile strain sensitivity vs. CNT concentration.

CNT
Concentration (wt%)

Full-Range Strain Fracture Strain Metal-Type Strain Gauge
SensitivitySensitivity Error Range Sensitivity Error Range

2 224.0 ±87.0 10.5 ±1.0

2.0–3.23 36.5 ±11.8 10.9 ±0.8

5 9.8 ±0.9 9.6 ±0.4
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3.3. Electro-Environmental Characterization of Smart Skin

The smart skin applied to the surface of structures can be exposed to a wide range of
environmental conditions. This exposure necessitates a thorough investigation into how
various environmental factors affect the electrical behavior of the smart skin. Figure 5
reports the relative change in the electrical resistance of the smart skin due to temperature
and humidity, and ultimately compares it with the relative change in electrical resistance
caused by tensile strain.

Figure 5a shows the electrical properties of the smart skin with respect to temperature
changes. The temperature was adjusted within the range of −10 ◦C to 70 ◦C, starting from
a baseline of 20 ◦C, considered room temperature (RT), highlighted by a green line in the
graph. All samples exhibited behavior where electrical resistance decreased as the temperature
increased. The higher the CNT concentration in the smart skin, the smaller the relative change
in electrical resistance due to temperature changes. These findings have been summarized
and represented as a negative temperature coefficient of resistance (TCR) in Figure 5b. This
behavior occurs because an increase in temperature leads to an increase in electron activity,
which consequently reduces the electrical resistance of the smart skin [48,49].

Figure 5c shows the electrical properties of the smart skin in response to changes in
humidity. The humidity was adjusted within the range of 20% to 80%, starting from a base-
line of 45%, considered room humidity (RH), highlighted by a green line in the graph. All
samples showed behavior where electrical resistance increased as the humidity increased.
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This increase occurs because the composite expands as the humidity rises. Overall, the
higher the CNT concentration, the lower the environmental sensitivity of the smart skin
was observed. This is because a higher CNT concentration leads to an increase in the
conductive network within the composite and a higher stiffness of the composite, resulting
in minimal changes in the spacing between CNTs due to environmental changes [50–53].
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Figure 5. Electro-environmental characterization of smart skin: (a) temperature vs. change in
electrical resistance (green line: RT 20 ◦C); (b) TCR vs. CNT concentration; (c) humidity vs. change in
electrical resistance (green line: RH 45%); and (d) comparison of the maximum value of change in
electrical resistance due to temperature, humidity, and tensile strain.

Figure 5d presents the results comparing the maximum rate of change in electrical
resistance due to environmental changes and tensile strain. The smart skin showed a signifi-
cantly higher change in electrical resistance due to tensile strain compared to environmental
changes. This suggests that even if environmental changes occur, if tensile strain is applied,
the changes in electrical resistance due to environmental factors can be disregarded.

3.4. Application of Smart Skin to RC Structure

Figure 6 shows the test setup of the smart skin applied to an RC structure. To validate
the functionality of the smart skin as a crack sensor, a four-point bending test was performed
on a rectangular RC structure measuring 700 mm in length, 150 mm in width, and 150 mm
in height. The test was conducted at a constant displacement rate of 1.2 kN/min until the
point of fracture of the RC structure. To check for sections with cracks, the smart skin was
coated over five sections on the bottom surface of the RC structure, each section sized at
70 mm in length, 10 mm in width, and 0.7 mm in thickness. The CNT concentration of the
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smart skin was selected as 5 wt% CNT, which demonstrates stable electrical behavior in
response to mechanical deformation and environmental changes. Electrodes were formed
at both ends of each section using copper tape, copper wire, and silver ink, and were
connected to a Keithley 2700 with DAQ to record the electrical resistance of the smart skin
at one-second intervals. Simultaneously, strain gauges were attached near the smart skin to
measure the width of cracks developed in the RC structure.
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Figure 7a shows the image of the RC structure after the test, with cracks occurring.
Cracks were observed in sections B, C, and D, with the largest crack width found in section
B. After the growth of the cracks, the smart skin in all sections remained intact without any
damage. Particularly in section B, the strain gauge failed to withstand the crack growth
and detached, in stark contrast to the performance of the smart skin.

The crack width for each section over time was derived from the electrical resistance
values of the smart skin, which were measured at one-second intervals, and from the
tensile strain sensitivity determined in 3.2, as shown in Figure 7b. The comparison of the
measurements recorded by the smart skin and the strain gauge is presented in Figure 7c. The
cracks occurred in the order of sections C, D, and B, and both the smart skin and the strain
gauge indicated the same time of crack initiation. The comparison of the maximum crack
widths measured by the smart skin closely matched those recorded by the strain gauges
in each section. Furthermore, regression analysis was conducted to compare the crack
data measured by the smart skin with those measured by strain gauges, and the Pearson
correlation coefficient value was derived, as presented in Table 2. The interpretation of the
correlation coefficient values is further elucidated in Table 3 [54–56]. Across all sections,
the correlation coefficient values exceeded 0.90, indicating a very high correlation. The
reason for not achieving a value closer to 1.00 is that the strain gauges were not attached
directly next to the smart skin, leading to potential discrepancies in the sizes of the cracks
detected by the smart skin and the strain gauges. The smart skin failed to detect bending
deformations that occurred before the onset of cracks because it had low sensitivity due to
the 5 wt% CNT used in this test. This result demonstrates the potential of the smart skin to
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monitor only the occurrence and growth of cracks in structures, without detecting bending
deformations of the structures.
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Figure 7. (a) Image depicting the occurrence of cracks by section in the RC structure after testing (left
image: side view of the RC structure, right image: bottom view of the RC structure, arrows indicate
the direction of applied load); (b) change in crack width over time by section; (c) comparison between
smart skin and strain gauge measurements; (d) electrical resistance oscillation across repeated crack
cycles; and (e) electrical response of smart skin to various crack widths during stepwise testing (red
text: the size of cracks at the peak of electrical resistance changes).

Additionally, as crack detection sensors need to be able to accommodate the growth
of complex cracks, reproducibility becomes a crucial factor to consider in their design.
Additional analysis was performed over 10 cycles within the crack range of 0 µm to 1000 µm,
resulting from the results in Figure 7b, as shown in Figure 7d. The results indicated that the
electrical resistance of the smart skin oscillated between −1.3% and 12.0%. The minimum
value averaged −0.7% and the maximum value averaged 11.0%, demonstrating good
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stability. Furthermore, the smart skin should exhibit good signal stability under different
crack widths to ensure reliable performance in complex working conditions. Figure 7e
presents the results of stepwise tests at various crack widths. The smart skin showed
electrical changes only during the crack formation stage and no electrical changes were
observed when the cracks did not grow. This emphasizes the signal stability and reliability
of the smart skin as a crack detection sensor and presents its potential applicability as an
SHM sensor.

Table 2. Section-wise Pearson correlation coefficient values.

Section Correlation Coefficient (r)

A 0.90

B 0.93

C 0.99

D 0.94

E 0.90

Table 3. Meaning of Pearson correlation coefficient value.

Scale of Correlation Coefficient (r) Value

0 < r ≤ 0.19 Very low correlation

0.20 < r ≤ 0.39 Low correlation

0.40 < r ≤ 0.59 Moderate correlation

0.60 < r ≤ 0.79 High correlation

0.80 < r ≤ 1.00 Very high correlation

4. Conclusions

The results of this study confirm that smart skin is promising as a crack detection
sensor for RC structures in civil engineering applications. The concentration of CNT is
a key factor that can influence the various properties of the smart skin. Through electro-
mechanical/environmental characterization tests, the electrical behavior of the smart skin
at different CNT concentrations was analyzed. Overall, a CNT concentration of 5 wt% was
determined to be suitable for crack detection sensors in RC structures. This suitability is
attributed to its appropriate tensile strain sensitivity and its stable electrical resistance be-
havior under mechanical deformation and environmental changes. Based on these findings,
the smart skin was applied to RC structures and effectively monitored the formation and
growth of cracks. It demonstrated excellent reproducibility during cycles of crack width
changes, and its reliability as a crack detection sensor was further confirmed through electri-
cal stability throughout these cycles. The presented results validate the smart skin as a crack
detection sensor for actual RC structures and demonstrate its potential application as part
of an SHM system suitable for integration with IoT systems and implementation in smart
cities. Future research will evaluate the material’s resistance to thermal and ultraviolet
degradation when applied on concrete surfaces exposed to varying seasonal temperatures
and solar intensities. This direction aims to ascertain the smart skin’s maintenance of critical
properties under such conditions, ensuring its long-term efficacy and reliability.
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