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Abstract: Silver-based antibacterial coatings limit the spread of hospital-acquired infections. Indeed,
the use of silver and silver oxide nanoparticles (Ag and AgO NPs) incorporated in amorphous
hydrogenated carbon (a-C:H) as a matrix demonstrates a promising approach to reduce microbial
contamination on environmental surfaces. However, its success as an antibacterial coating hinges
on the control of Ag+ release. In this sense, if a continuous release is required, an additional barrier
is needed to extend the release time of Ag+. Thus, this research investigated the use of a plasma
fluoropolymer (CFx) as an additional top layer to elongate Ag+ release and increase the antibacterial
activity due to its high hydrophobic nature. Herein, a porous CFx film was deposited on a-C:H
containing Ag and AgO NPs using pulsed afterglow low pressure plasma polymerization. The
chemical composition, surface wettability and morphology, release profile, and antibacterial activity
were analyzed. Overall, the combination of a-C:H:Ag (12.1 at. % of Ag) and CFx film (120.0◦,
F/C = 0.8) successfully inactivated 88% of E. coli and delayed biofilm formation after 12 h. Thus,
using a hybrid approach composed of Ag NPs and a hydrophobic polymeric layer, it was possible to
increase the overall antibacterial activity of the coating.

Keywords: silver nanoparticles; amorphous hydrogenated carbon; fluoropolymer; low pressure plasma

1. Introduction

Silver (Ag)-based antibacterial coatings have been developed in the last decade, be-
coming one of the most widely studied metal-based coatings owing to their potential in
preventing and limiting the spread of hospital-acquired infections (HAIs, i.e., infections
that patients acquire while receiving health care) [1,2]. Specifically, the use of Ag NPs
embedded in amorphous hydrogenated carbon (a-C:H) coatings have been studied for
their potential to delay or to inhibit bacterial colonization on environmental surfaces (i.e.,
non-intrusive soft or hard surfaces located in hospitals). Indeed, Ag NPs are known to
be biologically active when they produce Ag ions (Ag+), exhibiting antibacterial activity
against Gram-positive and Gram-negative bacteria [3,4]. The release of Ag+ has proven
to be dependent mainly on the concentration and the size of Ag NPs, as well as their oxi-
dation state [5]. However, there are still certain challenges that have delayed their impact
on clinical practice. For instance, designing coatings that maintain released Ag+ levels
within a concentration high enough to kill bacteria but low enough to limit cytotoxicity
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towards humans and the environment remains a significant task to overcome [6]. Not to
mention that silver resistance determinants (i.e., resistance genes and mutations that give
a microbe the ability to resist the effects of one or more drugs) are widely found among
environmental and clinically relevant bacteria [7,8]. This is of concern because the extensive
use of Ag-based products will increase the release of silver in the environment, potentially
inducing the dissemination of silver resistance and, therefore, cross-resistance to antibiotics.
Ultimately, their success depends on their ability to deliver precise doses within a proper
timeframe (i.e., controlled release).

The deposition of an additional permeable polymeric top layer can act as a barrier
to extend the duration of sustained-released Ag+. Particularly, fluoropolymers (CFx) in
the form of thin films have attracted recent attention due to their outstanding tribological,
wetting, and bioactive properties [9–13]. In fact, their inherent non-stick properties due to
their low surface energy have shown to prevent the initial steps of bacterial adhesion on a
substrate surface and, therefore, the subsequent formation of biofilm [14–18]. In addition,
several studies have reported their application as a fluoropolymer matrix containing Ag
NPs [19–23]. A promising approach to deposit these fluoropolymers is using low-pressure
plasma polymerization, known to produce highly adherent coatings [24]. Due to the versa-
tility of plasma polymers, other fluoropolymer designs have been proposed, like sandwich
and multi-layered coatings [25,26]. Moreover, the thickness, the degree of crosslinking,
inversely proportional to porosity, and the hydrophobicity of the fluoropolymer can be
tuned; thus, the release profile can be controlled.

Therefore, the aim of this work was to investigate the influence of a plasma fluo-
ropolymer as a top layer on amorphous hydrogenated carbon coatings containing Ag and
AgO NPs on the release profile of Ag+. To the authors’ best knowledge, this is the first
study where the combination of a porous and hydrophobic CFx film is desired and used
to modulate the release of Ag+ from Ag-based a-C:H coatings. Indeed, the combination
of the above-mentioned components into a multi-layered coating emerges as a promising
multi-approach strategy to increase their antibacterial activity without further increasing
Ag concentration. To this end, Ag and AgO NPs were first simultaneously deposited on
an a-C:H film using a hybrid low pressure plasma method, combining physical vapor
deposition and chemical vapor deposition. The fluoropolymer was then deposited by
pulsed afterglow plasma polymerization on a glow discharge low pressure plasma reactor.
Special attention was focused on the porosity of the CFx layer as the main factor to control
the release of Ag+ [27]. Herein, a comprehensive report is presented on the chemical
composition, the surface wettability and morphology, as well as the final release profile
and antibacterial behavior of the coatings.

2. Experimental Section
2.1. Materials

The 100-oriented single silicon substrates were supplied by University Wafers (Boston,
MA, USA). The substrates were cut into 1 cm2 and sequentially cleaned in an ultra-sonic
bath with acetone (Thermo Fisher Scientific, Saint-Laurent, QC, Canada), deionized mil-
lipore water (DI, resistivity: 18 MΩ-cm), and methanol (Thermo Fisher Scientific, Saint-
Laurent, QC, Canada) before plasma deposition.

BD BactoTM Tryptic Soy Broth (TSB), BD BactoTM Dehydrated Agar, glycerol and
glutaraldehyde were provided by Thermo Fisher Scientific (Saint-Laurent, QC, Canada).

2.2. Sample Preparation

The a-C:H:Ag and the a-C:H:AgO coatings were then prepared using a plasma en-
hanced chemical vapor deposition—physical vapor deposition hybrid reactor (PECVD-
PVD, modified FLARION series system, Varennes, Plasmionique, QC, Canada). The
preparation of the a-C:H coatings has been explained in detail elsewhere [5]. Briefly, it
consisted of a continuous process in two successive sequences: H2 activation and a-C:H
deposition using a mixture of CH4/Ar (1:1 ratio). The Ag and the AgO NPs, as dopant



Nanomaterials 2024, 14, 609 3 of 18

agents, were simultaneously introduced during a-C:H deposition using an RF-magnetron
sputtering system with a commercially purchased Ag target (99.99%, Kurt J. Lesker Com-
pany, Jefferson Hills, PA, USA) and a plasma modified AgO target. The amount of Ag
and AgO NPs deposited on the carbon matrix was controlled by the voltage applied on
the Ag and the AgO target in the PECVD-PVD system. Subsequently, the a-C:H samples
were introduced into a tubular Pyrex radio-frequency glow discharge (RFGD) plasma
reactor (13.56 MHz, internal diameter: 1.9 cm) capacitively coupled through an impedance
matching network. The reactor has been previously described in detail [28]. The deposition
of the topmost polymeric coating was then performed using pulsed afterglow plasma
polymerization at 11 cm below the discharge, with a mixture of C2F6 and H2, and using the
following conditions (as summarized in Table 1): peak power input of 150 W, varying duty
cycles (5.3%, 10%, and 20%), gas pressure of 700 mTorr, gas flow rate of 20 sccm (94% C2F6
and 6% H2), and deposition time of 5 min. These parameters have been selected according
to previous studies; however, the duty cycle (DC) was varied to study its effect on surface
porosity. Three different duty cycles were chosen to compare and assess the deposition the
fluoropolymer (CFx) coating on a-C:H, a-C:H:Ag, and a-C:H:AgO, namely 5.3% (5.3CFx),
10% (10CFx), and 20% (20CFx). After plasma polymerization, the samples were removed
from the reactor and stored under vacuum until further use.

Table 1. Plasma deposition parameters for topmost fluoropolymer (CFx) coating.

Parameters
Polymerization

C2F6 + H2

Peak power (W) 150

Duty cycles
5.3% (ton = 5 ms, toff = 90 ms)
10% (ton = 5 ms, toff = 45 ms)
20% (ton = 5 ms, toff = 20 ms)

Gas pressure (mTorr) 700
Gas flow rate (sccm) 19.0 for C2F6 and 1.2 for H2

Distance to the powered antenna (cm) 11
Treatment time (min) 5

2.3. Surface Characterization
2.3.1. X-ray Photoelectron Spectroscopy (XPS)

The chemical composition was assessed by X-ray photoelectron spectroscopy (XPS)
and Auger electron spectroscopy (AES) using PHI 5600-ci equipment (Physical Electronics,
Chanhassen, MN, USA). XPS and AES spectra were acquired at a detection angle of 45◦,
using a Kα line of a standard aluminum X-ray source operated at 300 W with a pass
energy of 187.85 eV for survey and 5.85 eV for high resolution and Auger transitions.
The curve fittings for high-resolution XPS spectra were determined by means of the least-
squares method using Gauss–Lorentz functions with a Shirley background subtraction. All
peak positions were normalized to that of the C1s peak, which was considered at 285 eV.
The chemical form of silver has been analyzed using the modified Auger parameter (α’).
The modified Auger parameter of silver was calculated by adding the binding energy of
the Ag3d5/2 peak and the kinetic energy of the M4N45N45 Auger peak, as indicated on
Equation (1):

(α’ = Ek (M4N45N45) + Eb (3d5/2)) (1)

Each condition was analyzed using one sample scanned at three different positions to
monitor the homogeneity of the coatings.

2.3.2. Contact Angle and Surface Energy

Water contact angles (WCA) of the samples were measured by the sessile drop method
with the VCA optima XE (AST Products, Billerica, MA, USA) using distilled water drops of
1 µL. For each condition, five drops were placed at different locations of one sample. The
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reported contact angles are the average of those measurements. Then, the surface energy of
the samples was measured using the Fowkes Theory [29]. It describes the surface energy
of a solid as having two components: a dispersive component and a polar component.
Diiodomethane (50.8 mN/m) and water (46.4 mN/m) were used as probe liquids placing
5 drops of 1 µL at different locations of one sample per condition.

2.3.3. Atomic Force Microscopy (AFM)

Surface images were obtained using a Digital Instruments Dimension TM3100 atomic
force microscopy (AFM, Santa Rosa, CA, USA) operating in tapping mode and equipped
with an etched silicon tip (model NCHV, tip radius = 10 nm, Bruker). The roughness of
the surface was evaluated using the root mean square roughness (RRMS) since it represents
the standard deviation of the distribution of heights, and it is also more sensible to large
deviation from the mean line [30]. The measurements were evaluated over 5 µm × 5 µm
on one sample for each condition.

2.3.4. Scanning Electron Microscopy (SEM)

Surface morphology of the samples after contact with bacteria was analyzed using
scanning electron microscopy (Quanta 250, FEI Company Inc. Thermo-Fisher Scientific,
Hillsboro, OR, USA). Prior to analysis, the samples were fixed, dehydrated, and coated
with a thin gold film to obtain scanning electron images with improved quality. Afterwards,
secondary electrons (SE) were used to obtain at least three images of two samples per
condition operated with an acceleration voltage of 15 kV.

2.3.5. Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS)

All ToF-SIMS analyses were performed using a ToF-SIMS IV spectrometer (ION-TOF
GmbH, Münster, Germany). A commercial PTFE sample (50 µm thickness, Goodfellow Ltd.,
Pittsburgh, PA, USA) was first analyzed to provide a reference material for evaluating the
mass fragments of the fluoropolymer. ToF-SIMS spectra were acquired from 0 to 800 m/z.
Elemental and molecular distribution maps, called images, were obtained using a 25 keV
Bi3 = ion beam (current = 0.06 pA) rastered over an area of 100 µm × 100 µm with a pixel
density of 256× 256 pixels, in burst alignment mode (high lateral resolution mode) using
one sample per condition. A low-energy electron flood gun was used to ensure charge
compensation. Depth profile measurements were obtained with a dual beam design, using
25 keV Bi3+ ions as primary beam (current = 0.25 pA, rastered = 150 µm × 150µm, pixel
density = 128 × 128 pixels, in high-current bunch mode (HCB)) and 500 eV Cs

+ ions as
sputter beam (current = 30 nA; raster = 450 µm × 450 µm) using one sample per condition.
The sputtering was operated in non-interlaced mode, with 5 s sputter time and 1 s pause.
Each data point was acquired using 3 analysis frames. Similarly, a low-energy electron
flood gun was used to ensure charge compensation. The profiling time was adapted for
each sample and stopped when the signal of the substrate was apparent. The sputtering
time needed to completely etch the coating depends on the thickness of each layer but also
on the type of sample leading to variations in their sputtering yields. During imaging and
depth profiling, the negative and positive polarity were analyzed; however, the negative
polarity was chosen since the use of Bi3+ and Cs+ strongly favors the formation of negative
ions [31].

2.4. Release Profile

Release analysis from the samples was analyzed and performed in static conditions
using DI millipore water. Three coated samples per condition were immersed in 2 mL of
DI water and kept at room temperature for a period varying between 30 min and 7 days.
The fluids were then sampled and analyzed by microwave plasma—atomic emission
spectroscopy (MP-AES model 4100, Agilent Technologies, Santa Clara, CA, USA) with a
detection limit of 1 µg/L.
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2.5. Antibacterial Essay
2.5.1. Bacterial Strain and Culture Preparation

E. coli (ATCC 25922) was used in this study. The strain was maintained in TSB with
10% glycerol and stored at −80 ◦C. Prior to the experiment, the stock culture was streaked
on Tryptic Soy Agar (TSA) and incubated at 37 ◦C for 24 h. Afterward, the bacteria were
suspended in TSB medium at a concentration of 106 cell/mL.

2.5.2. Antibacterial Activity Test

The antibacterial behavior was studied using a modified version of the American
Society for Testing and Materials International E2149 (ASTM E2149). In this case, the
samples had a reduced surface area and longer contact with bacteria compared with the
standard. The substrates were first sterilized using UV light for 30 min, flipping every
15 min. Next, 10 mL of the bacterial suspension was added to each substrate in a 50 mL tube
and shacked incubated at 125 rpm for 12 h at 37◦. Then, 100 µL serial tenfold dilutions of
the resulting suspension were used to determine the number of colony-forming units (CFU).
The results represent the average of at least three different samples for each condition. It is
worth mentioning that after 12 h, a-C:H and CFx/a-C:H samples presented delamination
and are not shown in the CFU results.

After the assay was performed, the Ag-based samples were fixed and dehydrated
to be analyzed by SEM. The process involved fixing the samples with a solution of 1%
glutaraldehyde for 30 min at room temperature. Then, they were rinsed with deionized
water for 5 min, repeating three times. Finally, the samples were dehydrated using four
ethanol solutions with increasing concentrations (20%, 50%, 90%, and 100%) for 5 min,
repeating two times for each one. The samples were removed from the solution and keep
at room temperature until their use.

2.5.3. Statistical Analysis

Statistical significance was calculated using analysis of variance (ANOVA) non-
parametric Kruskal–Wallis method with Dunn post hoc test through the software InStat™
version 3.05 (GraphPad Software, San Diego, CA, USA). Values of p < 0.05 or less were
considered significant.

3. Results
3.1. Chemical Characterization

The survey results, presented in Figure 1a, show the atomic concentration for a-C:H
films with and without the addition of the CFx film.
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For the bare a-C:H coatings, survey analyses show an expected composition of mainly
carbon and oxygen. The presence of silver is evidenced with an atomic concentration of
12.1 ± 0.2 at. % for a-C:H:Ag and 11 ± 3 at. % for a-C:H:AgO. To corroborate the chemical
state of the silver, the modified Auger parameter (αAg’, see Equation (1)) was evaluated
(Figure S1). The αAg’ values for metallic silver, disilver oxide (Ag2O), and silver oxide
(AgO) are reported at 726.5 eV, 723.9 eV, and 724.4 eV, respectively [32]. Indeed, the obtained
αAg’ value corroborates that the oxidation state of the silver in a-C:H:AgO (724.8 ± 0.5 eV)
corresponds to that of silver oxide, as expected. In the case of a-C:H:Ag (725.5 ± 0.2 eV),
the resulting value suggests a mixture between mostly metallic and partially oxidized
silver [5,33].

The incorporation of a fluoropolymer (CFx) coating is evidenced by the presence of
fluorine regardless of the duty cycle and the a-C:H surface used (Figure 1a). However,
as observed in Figure 1b, decreasing the pulse off time changes the composition of the
fluoropolymer film considerably. Indeed, for the CFx/a-C:H coating, the highest F/C ratio
is achieved using 5.3% DC; this value then decreases below 1 as a shorter pulse off time is
used. Regarding the coatings containing Ag and AgO NPs, a different behavior is observed.
For the CFx/a-C:H:Ag and CFx/a-C:H:AgO coatings, the highest F/C ratio was obtained
at 5.3% DC and 20% DC, respectively. Interestingly, both coatings displayed the lowest
F/C value using 10% DC, which is accompanied with a slight increase in the silver amount
detected. Nevertheless, it is important to mention that a concentration between 3 and
8 at. % of silver was detected regardless of the duty cycle used (Figure 1a).

The influence of the duty cycle on the chemical composition of the a-C:H films has been
further investigated with high-resolution XPS. The C1s spectra of the CFx films (Table 2)
were decomposed into five peaks, assigned to C-H and C/C (BE = 285–285.8 eV), -C-CF
(BE = 286.5–287.8 eV), -CF (BE = 288.6–290 eV), -CF2 (BE = 292 eV), and -CF3 (BE = 294–
294.8 eV) [24]. As oxygen was detected in the survey spectra, the bands at 286.4–287 eV,
288–288.4 eV, and 289.1–289.6 eV can also be attributed to oxygen groups such as C-O, C=O,
and O-C=O, respectively. The components of interest are C-C/C-H, CF2, and CF3, as they
are directly related to chain organization. Indeed, CFx are characteristic of chain length
and CF3 of chain termination [34]. The undoped CFx/a-C:H sample exhibited an increase
in the CF2 and CF3 content as the pulse off time was increased (5.3% DC). Intriguingly,
for CFx/a-C:H:Ag, the highest CFx content was observed when using 5.3% and 20% DC.
Whereas for CFx/a-C:H:AgO, a higher content of CF2 and CF3 was observed by decreasing
the pulse off time (20% DC), agreeing with the F/C ratios.

Regarding the surface wettability of the films, uncoated a-C:H, a-C:H:Ag, and a-
C:H:AgO showed contact angles of 90.4 ± 0.5◦, 92 ± 4◦, and 73 ± 1◦, respectively. The
slight decrease in the contact angle observed for the AgO-doped coating is correlated to
the oxidation state of the NPs, as observed previously, and suggests a more hydrophilic
surface. Then, the total surface energy for a-C:H, a-C:H:Ag, and a-C:H:AgO was estimated
as the sum of the dispersive and the polar components which resulted in 40.3 ± 0.7 mN/m,
49.2 ± 0.7 mN/m, and 39 ± 2 mN/m, respectively. These results are in accordance with
previous findings, where the incorporation of metallic NPs increases the total surface
energy of the a-C:H films [5]. However, the further deposition of the fluoropolymeric film
as the top layer lowered the total surface energy, leading to more hydrophobic surfaces,
as presented in Figure 2. When using 5.3%, 10%, and 20% DC, the reported WCA values
increased to: 118.6 ± 0.3◦, 122.8 ± 0.4◦, and 120.0 ± 0.5◦ for CFx/a-C:H films; 120.0 ± 0.6◦,
117 ± 1◦, and 119.7 ± 0.3◦ for CFx/a-C:H:Ag films; and 118 ± 5◦, 117 ± 1◦, and 115 ± 3◦ for
CFx/a-C:H:AgO films, respectively. Their respective WCA images are shown in Figure S2.
Regarding the total surface energy, when using the CFx layer, the values considerably
decreased and ranged between 10.9 and 8.3 mN/m, 12.5 and 9.5 mN/m, and 13 and
10.5 mN/m for CFx/a-C:H, CFx/a-C:H:Ag, and CFx/a-C:H:AgO films, respectively.
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Table 2. Component proportions by high-resolution XPS of the fluoropolymer films deposited on
a-C:H, a-C:H:Ag, and a-C:H:AgO depending on the duty cycle used (5.3%, 10%, and 20%).

Sample

Proportion (%)

Component
Duty Cycle

5.3% 10% 20%

CFx a-C:H C-C/C-H 32 ± 5 32 ± 1 39 ± 5
C-CF 15 ± 5 19.0 ± 0.7 16 ± 3

CF 8 ± 3 14.2 ± 0.4 13 ± 3
CF2 35 ± 4 28 ± 1 26.0 ± 0.6
CF3 9.6 ± 0.4 6 ± 1 5.8 ± 0.7

CFx a-C:H:Ag C-C/C-H 33 ± 2 47 ± 2 32 ± 8
C-CF 22 ± 3 22 ± 7 28 ± 7

CF 17 ± 2 15 ± 5 19 ± 1
CF2 23 ± 4 12 ± 2 16.3 ± 0.6
CF3 4.5 ± 0.8 4 ± 1 5 ± 1

CFx a-C:H:AgO C-C/C-H 41 ± 7 24 ± 7 14 ± 6
C-CF 18 ± 3 28 ± 5 17 ± 5

CF 11 ± 1 18 ± 2 16 ± 5
CF2 22 ± 5 23 ± 2 43 ± 8
CF3 8 ± 4 6 ± 3 10 ± 1
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Figure 2. Summary of water contact angles (WCA) and calculated total surface energy of uncoated
and CFx a-C:H samples by studied duty cycle.

The fluoropolymer coatings show significant variations in composition and surface
energy, which can be correlated to the varied duty cycles, but they also depend on the
underlying surface chemistry. In fact, these variations were more important for the coat-
ings with added Ag and AgO NPs, meaning that the growth of the fluoropolymer is
impacted. Therefore, the surface morphology of the modified coatings has been thoroughly
investigated by AFM and is shown in Figure 3.
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3.2. Surface Morphology

Analysis of the images in Figure 3 shows the variation of a non-uniform coating with
the presence of nanometric holes and ribbon-like features on the surface of the modified
films depending on the surface chemistry underneath and the duty cycle applied. Nonethe-
less, the images show a smooth surface in a nanometric scale varying between 0.9 nm and
1.8 nm.

The presence of holes is visible on all the surfaces, and their diameters are measured. It
clearly appears that their sizes are dependent on the DC used. In fact, with 5.3% DC, the hole
diameter varied between 118 and 431 nm for CFx/a-C:H, 157–314 nm for CFx/a-C:H:Ag,
and 78–176 nm for CFx/a-C:H:AgO. When increasing the DC, their diameter increased
between 275 and 863 nm with 10% DC and 353 and 706 nm with 20% DC for a-C:H; from
333 to 490 nm with 10% DC and to 392 nm with 20% DC for CFx/a-C:H:Ag; and between
176 and 529 nm with 10% DC and 196 and 294 nm with 20% DC for CFx/a-C:H:AgO
samples. However, their presence is more apparent when using a DC of 5.3%, whereas their
occurrence decreases as the DC is increased up to 20%. Indeed, only one or two holes were
found on the surface when using 20% DC, suggesting a more homogenous deposition.

In addition to nanometric holes, the occurrence of ribbon-like features is evidenced
when using 10% DC on the surface of CFx/a-C:H and on a CFx/a-C:H:Ag sample, both
several micrometers long, whereas only small (with a lower spread in height) and randomly
scattered particles (brighter spots) are present on the CFx/a-C:H:AgO surface. The presence
of holes and ribbon-like features has been observed previously in several studies during
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plasma deposition of fluoropolymers, and can be attributed to the film growth mechanism,
where initial nucleation sites (brighter spots) are formed, which then grow and multiply
to create ribbon-like features, thereby increasing the surface roughness [34]. A different
behavior is perceived in the case of CFx/a-C:H:AgO, where higher nucleation density
(brighter spots) and roughness are also observed when using 5.3% DC. By increasing
the duty cycle, the nucleation density then slightly decreases, without the presence of
ribbon-like features whatsoever.

In light of the obtained results, 5.3% DC was chosen to further investigate the overall
effect of depositing an additional topmost polymeric layer with the objective to elongate the
release of Ag+ and provide an additional antibacterial mechanism. Indeed, a smaller pore
size has been shown to lengthen the concentration of Ag+ released, whereas a relatively
high F/C ratio and a low surface energy have shown to enhance the antibacterial effect
of fluoropolymer films [22,26]. Additional analyses like ToF-SIMS images and depth
profile, Ag+ release profile, and antibacterial tests were therefore performed on CFx/a-C:H,
CFx/a-C:H:Ag, and CFx/a-C:H:AgO samples produced using 5.3% DC.

3.3. ToF-SIMS Analysis

ToF-SIMS imaging and depth profiling were used to better understand the interaction
between the fluoropolymer (at 5.3% DC) and the modified a-C:H coatings with Ag and AgO
NPs. Indeed, the main interest when using ToF-SIMS was to study the lateral homogeneity
and the depth distribution of the 5.3CFx film on the a-C:H coatings, which can help predict
their permeability. Indeed, as previously stated, the addition of a fluoropolymer layer
(highly hydrophobic) is expected to limit bacteria adhesion, while the defects or holes will
allow the Ag+ to be released. For this purpose, the F− ion was identified to represent the
fluoropolymer layer, while the C4H− ion was used to represent the a-C:H matrix, for both
static and depth profiling conditions. In addition, SiO2

− and Ag− ions were designated
to represent, respectively, the silicon substrate and the distribution of silver NPs (Ag and
AgO NPs) throughout the coating.

Regarding the imaging of the fluoropolymer coating, the F− ion was identified on all
the surfaces, as shown in Figure 4. Amongst all, the 5.3CFx/a-C:H:AgO surface shows the
most homogenous distribution of F− concentration. However, after careful examination,
small (roughly 1 µm in size) and scattered spots are detected, indicating a decrease in
F− intensity. Similar observations were made on 5.3CFx/a-C:H and 5.3CFx/a-C:H:Ag
images, the latter exhibiting the lowest density of F− concentration over the entire surface.
Moreover, low intensities of C4H− (attributed to a-C:H coatings) are observed on all the
CFx films, which could be related to the presence of holes in a nanometric scale evidencing
the substrate underneath.

ToF-SIMS depth profile analysis of 5.3CFx/a-C:H, 5.3CFx/a-C:H:Ag, and 5.3CFx/a-
C:H:AgO is shown in Figure 5. The ToF-SIMS technique is not quantitative in nature,
and since no absolute calibration concerning sputtering depth and ion concentration has
been performed, only qualitative profiles are obtained. Figure 5 shows the sputtering
time required to pass through each layer starting from the CFx film (represented by F−),
then a-C:H matrix (represented by C4H−) unloaded and loaded with Ag and AgO NPs
(107Ag− and 109Ag− isotopes), down to the silicon substrate (characterized by SiO2

−). It
is important to note that both Ag isotopes are shown in the depth profiling to represent the
presence of Ag. Specifically, Ag is present in the coating when the intensity signals of both
isotopes overlap since they have a mass ratio of approximately 1.0. For simplicity purposes,
the 107Ag− and 109Ag− fragment are defined as Ag− in the following description and in
this manuscript. That being said, it takes approximately 35 s, 50 s, and 100 s for sputtering
F−, and 650 s and 325 s to sputter Ag− from 5.3CFx/a-C:H, 5.3CFx/a-C:H:Ag, and 5.3CFx/a-
C:H:AgO, respectively. Although the same deposition parameters were used for each layer,
it is evident that different sputtering times are obtained. This can be attributed to different
growing mechanisms of the CFx layer depending on the type of underlying surface, as
evidenced by AFM analyses. Regarding the Ag− signal, different behaviors are observed
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depending on the deposition process involving the incorporation of Ag or AgO NPs. For
the 5.3CFx/a-C:H coating containing Ag NPs, the Ag− signal can be divided in three
different zones. First, over the initial 50 s, the intensities of signals F− and Ag− do not
reach their maximum at the same sputtering time. This suggests a higher concentration of
silver between the CFx and the a-C:H interface (0–200 s); thus, a strong mixing between
silver and the fluoropolymer can be expected. Second, the Ag− remains constant in the
upper part of a-C:H (200–500 s), suggesting a homogenous distribution of the NPs in the
matrix. Third, in the bottom part of a-C:H, the Ag− signal drops to noise level. This is
in accordance with the deposition process of a-C:H:Ag, where Ag NPs are incorporated
after the a-C:H matrix was grown on the Si substrate. In the case of the 5.3CFx/a-C:H
coating containing AgO NPs, the same three different zones are observed. However, two
main differences are visible in the profile; the transition between the first two zones is
less abrupt and the Ag− signal in the second zone is spread over a narrower sputtering
time interval (no plateau as previously observed) before dropping to noise level. These
results are in correlation with the sputtering time needed to pass through the a-C:H layer
(1710 s, 1400 s, and 1035 s to sputter C4H− from 5.3CFx/a-C:H, 5.3CFx/a-C:H:Ag, and
5.3CFx/a-C:H:AgO, respectively) and with previous findings where the deposition rate
and the growing mechanism of the a-C:H film depends on the nature of the target used to
sputter Ag or AgO NPs [5]. Specifically, the use of a metallic silver target results in more
energetic condensation of Ag particles and a higher density of hydrocarbon molecules. In
contrast with a silver oxide target, the presence of atomic oxygen radicals and O2

+ species
can promote carbon etching and decrease the generation of hydrocarbon ion densities, and
consequently, a thinner a-C:H coating.
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Figure 5. ToF-SIMS depth profile of 5.3CFx/a-C:H, 5.3CFx/a-C:H:Ag, and 5.3CFx/a-C:H:AgO
showing F−, C4H−, 107Ag−, 109Ag−, and SiO2

− fragments representative of the CFx layer, the
a-C:H matrix, Ag and AgO NPs, and the Si substrate.

It is worth noting the higher intensities of Ag−, F−, and SiO2
− ions at the interface

between two layers, either between the CFx film and a-C:H matrix or the a-C:H matrix
and Si substrate. These variations, attributed to the transition between two layers, have
been attributed to a matrix effect [35–38]. Similarly, both Ag isotopes are present in the Si
substrate region for all the conditions. However, the fact that both Ag isotopes (with a mass
ratio of approximately 1.0, i.e., the intensities should overlap and not separate) appear on
the depth profiling of 5.3CFx/a-C:H, when in theory, it should show the absence of any
Ag fragments, evidences that the observed Ag fragments on 5.3CFx/a-C:H:Ag and for
5.3CFx/a-C:H:AgO samples (after approximately 1250 s and 1000 s, respectively) do not
correspond to Ag from the coating, the target, or the deposition process.

All in all, ToF-SIMS analyses suggest the presence of Ag and AgO NPs in the 5.3CFx/a-
C:H-based coatings’ interfaces, as desired. Thus, a continuous flow of Ag+ is expected to
pass throughout the CFx layer in a controlled manner.

3.4. Release of Silver Ions

Figure 6a,b show the release profiles of Ag+ from a-C:H:Ag, a-C:H:AgO, 5.3CFx/a-
C:H:Ag, and 5.3CFx/a-C:H:AgO samples immersed in deionized water for 30 days to
highlight the effect of the fluoropolymer topmost layer deposited using 5.3% DC.

Uncoated samples a-C:H:Ag and a-C:H:AgO were first analyzed and the results
show a maximum Ag+ concentration of 0.44 ± 0.03 mg/L and 1.12 ± 0.09 mg/L after
30 days (Figure 6a), respectively. As already reported, oxidizing Ag NPs accelerates the
release of Ag+ without increasing the loading concentration of NPs in the coating. This
strategy avoids the use of an excessive amount of Ag NPs and efficiently releases Ag+.
However, it is important to note that between 24 h and 14 days, the concentration of
Ag+ stabilizes and slowly reaches a saturation point on both coatings. In this case, the
introduction of an additional topmost fluoropolymer (Figure 6b) flattens the saturation
curve, delays the release of Ag+ and prolongs the complete depletion of the NPs from
the a-C:H matrix. After 30 days, the Ag+ concentration released from 5.3CFx/a-C:H:Ag
and 5.3CFx/a-C:H:AgO reached 0.50 ± 0.09 mg/L and 0.493 ± 0.008 mg/L, respectively.
Although this type of strategy decreases the concentration of Ag+ released in the first
few hours, a slow continuous release (without reaching a saturation point) is particularly
desired on environmental surfaces for longer efficacy. In this sense, the incorporation of
the 5.3CFx film not only plays a key role in tuning the release profile of Ag+ but may also
function as an additional antibacterial mechanism due to its high hydrophobic nature. The
latter aspect will be explored in detail in the next section.
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3.5. Antibacterial Activity

The antibacterial results in Figure 7 demonstrate a significant decrease in E. coli
growth after 12 h in direct contact with both a-C:H:Ag and a-C:H:AgO, in comparison with
Si (negative control). The antibacterial activity of Ag NPs has been widely reported in
literature and it has been well demonstrated to be dependent on Ag concentration in the
coating; higher concentration of Ag NPs, higher antibacterial activity [39,40]. However, by
incorporating AgO NPs in the coating (with the same concentration of Ag), it is possible
to induce a slightly higher inhibition of bacterial growth (77% inhibition) in comparison
with metallic Ag NPs (69% of inhibition). Regarding the addition of the CFx layer, 5.3CFx/
a-C:H:Ag showed an inhibition of 88%, 19% higher than the uncoated a-C:H:Ag film.
Evidently, the incorporation of a hydrophobic layer exerts an added antibacterial effect. As
for the 5.3CFx/a-C:H:AgO coating, unexpectedly, no antibacterial activity was reported
after 12 h. It is important to note that the antibacterial activity of Ag-based coatings not
only depends on the amount of Ag NPs but also, in this case, on their ability to penetrate
through the top CFx layer and into the bacteria medium.
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After 12 h in contact with E. coli, the samples were then examined by SEM. This analysis
was used to qualitatively determine the number and the morphology of bacteria remaining
on the surface for each condition. Figure 8 shows SEM images of E. coli on the surface of
(i) Si, (ii) a-C:H:Ag, (iii) a-C:H:AgO, (iv) 5.3CFx/a-C:H:Ag, and (v) 5.3CFx/a-C:H:AgO films.
Among all the conditions, a-C:H:AgO and 5.3CFx/a-C:H:Ag images display the presence of
mostly single and isolated bacterium. On the other hand, the surface of 5.3CFx/a-C:H:AgO
shows a high density of well-defined rod-shaped bacteria, as well as the attachment of
aggregated and multilayered bacteria, which could indicate the initial stages of biofilm
formation and is in accordance with results in Figure 7. Regarding sample a-C:H:Ag, the
SEM image evidences the attachment of a mixture of monolayered and single bacteria
on the surface. For the a-C:H:AgO sample, it is worth mentioning the appearance of
craters/pits on the bacterial surface. Similarly, 5.3CFx/a-C:H:Ag displays the presence of
only disrupted single bacterium on the surface. The occurrence of craters/pits on bacteria,
when in contact with silver-based coating, is a well-known phenomenon reported in the
literature and has been attributed to the disruption of bacterial cell walls by Ag+ [20,41]. In
this sense, taking into consideration both quantitative and qualitative results, 5.3CFx/a-
C:H:Ag successfully delays the formation of biofilm and promotes the inactivation of E. coli
by the disruption of their cell wall after 12 h.
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4. Discussion

In line with previous studies in the literature, it has been shown that it is possible to
tune the composition of a fluoropolymer film deposited by low pressure plasma. To the
authors’ best knowledge, this is the first study where the presence of a porous fluoropolymer
with circular defects or holes is desired and used as a physical barrier to modulate the
release of Ag+ from Ag-based a-C:H coatings. Indeed, the results obtained herein indicate
the potential offered by variable duty cycle pulsed plasma polymerization in tailoring not
only the surface composition but also the surface morphology, the release of Ag+, and
consequently, the antibacterial activity. Therefore, the pertinence of this work falls on using
the deposited topmost fluoropolymer layer to elongate the release of Ag+ whilst increasing
the antibacterial activity of the coating (i.e., multifunctional or synergistic approach). These
findings hold significant relevance when designing Ag-based antibacterial coatings, since
bacteria are constantly adapting and changing. As a result, most studies have focused on
solely increasing the concentration of Ag in the coating. However, higher concentrations
of silver can lead to adverse health effects when in contact with human cells, especially
on surfaces that are frequently touched by multiple individuals in healthcare settings (i.e.,
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environmental surfaces). More importantly, bacteria may develop resistance to Ag over
time if constantly exposed to high concentrations. Herein, the main focus is not only Ag
concentration but, more importantly, on developing an efficient method to increase their
antibacterial activity while minimizing any potential risks.

4.1. Effect of the Duty Cycle on the Deposition of CFx Films

Understanding the deposition process of fluoropolymers is essential in controlling the
structure and the surface morphology of the final CFx coatings. The present modulated
experiments have shown the influence of varying the duty cycle during pulse plasma
polymerization for obtaining a hole-dense surface. Indeed, for all the CFx/a-C:H-based
surfaces, longer pulse off times (i.e., shorter DC, 5.3%) increased the hole density, as shown
in Figure 3. A plausible explanation can be attributed to the polymerization process itself.
In pulse plasma polymerization, it is more probable to favor chain propagation during each
pulse by attachment of the monomer molecules at one or few radical sites [42]. During
the next pulse, at another radical, the chain propagation continues. Then, by increasing
the pulse off time, the polymerization rates decrease [42]. Thus, with shorter DC, the final
fluoropolymer consists of short segments of polymeric chains with more irregularities (e.g.,
circular defects).

As evidenced by the XPS, AFM, and ToF-SIMS results, the presence of Ag and AgO
NPs on the surface influenced the deposition of the CFx layer. In general, it is evident that
the hole density decreased and the F/C ratio remained under one regardless of the DC used,
with the exception of 20% DC for CFx/a-C:H:AgO. Specifically for CFx/a-C:H:Ag coatings,
a shorter pulse off time (i.e., longer DC, 20%) achieved less hole density and decreased
CF2 content, whilst the CF3 proportion remained unchanged. In addition, the presence
of Ag NPs caused tertiary and quaternary carbons (i.e., CF and C-CF), corresponding to
branched structures, to increase. Similar results were obtained by Cioffi et al., where the
incorporation of Au NPs on a Teflon-like film was related to a decrease in the intensities
of the carbon species belonging to linear chains, such as CF2. Their changes were related
to a restructuring of the polymeric matrix, undergoing cross-linking, thus becoming more
organized and tied [43–45]. In the case of CFx/a-C:H:AgO coatings, an opposite trend
is observed. By increasing the DC, the content of CF2 and CF3 species increases while
the proportion of CF and C-CF bonds remains fairly similar. Typically, the presence of
oxygen in the plasma gas tends to consume CF2 through the formation of COF, CO, CO2,
and/or F, thus reducing the deposition rate and favoring the etching process rather than
deposition [46]. However, the presence of oxygen during plasma polymerization has also
shown to increase the formation of a higher density and smoother polymer [47]. In this
case, the presence of an oxygen-rich surface (due to the presence of AgO NPs) enhanced the
formation of carbon species related to linear chain and chain termination, when increasing
the DC (Table 2). Specifically, the plasma polymerization using 20% DC on the oxygen-rich
surface stabilized the forming film by creating a surface with fewer defects and lower hole
density [48–51].

4.2. Use of 5.3% DC Fluoropolymeric Film as a Barrier Coating to Enhance Antibacterial Activity

The interplay between surface morphology and surface energy, as well as the incorpo-
ration of silver NPs, a well-known bactericidal agent, is translated to significant differences
in the antibacterial behavior of the tested surfaces. Herein, two different parameters were
taken into consideration to improve the antibacterial activity of a-C:H-based coatings: the
oxidation of Ag NPs and the incorporation of a fluoropolymer coating. As evidenced by
the release profile (Figure 6a) and the antibacterial essays (Figures 7 and 8), the use of AgO
NPs in a-C:H coatings is a simple and efficient approach to activate the release of Ag+

and improve their antibacterial effect, without increasing the concentration of silver. Their
effect on the a-C:H matrix and the mode of action have been extensively explained in a
previous study [5]. However, as reported by Ellinas et al., there is a limit to the antibacterial
action of any engineered surface [52]. In this case, the limit was reached when the highest
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concentration of AgO NPs (11 ± 3 at. % Ag) was used in these a-C:H coatings. Over the
last decade, the integration of both antibacterial NPs and hydrophobic polymers has been
demonstrated as one of the most efficient strategies to produce a coating with strong an-
tibacterial activity [53]. In this study, a fluoropolymer layer with pores in a nanometric scale
was deposited on a-C:H:Ag and a-C:H:AgO coatings to increase their antibacterial action
and demonstrate a hybrid approach with both antiadhesive and bactericidal properties.
For this purpose, 5.3CFx was chosen and introduced to increase the WCA, render a lower
surface energy, and control the release of Ag+, as shown in Figures 2 and 6.

Unexpectedly, no antibacterial activity was reported for the 5.3CFx/a-C:H:AgO coating.
There are different possible explanations to determine their null antibacterial activity at
12 h, such as a higher roughness value (i.e., 1.7 ± 0.5 nm, Figure 3), a smaller size range
of holes (78–176 nm, Figure 3), a bimodal particle size distribution (Figure S3), and the
incubation time of the samples with E. coli. Indeed, it has been reported that irregularities
in polymeric surfaces promote bacterial adhesion and biofilm formation, unlike smooth
surfaces that do not favor bacterial deposition [54]. This can be attributed to a greater
surface area and the fact that depressions in roughened surfaces provide more favorable
sites for colonization. It is also worth mentioning the difference in the average particle size
and distribution between NPs on a-C:H:Ag and a-C:H:AgO coatings (Figure S3). While Ag
NPs exhibit an average particle size of 27 ± 5 nm and a normal distribution, the histogram
of AgO NPs yields an average particle size of 23 ± 5 nm and a bimodal size distribution,
with two different modes at 20 nm and 33 nm. In combination with a smaller size range of
holes, these factors could limit the penetration of bigger (i.e., >30 nm) AgO NPs [53]. In this
context, it is possible that after 12 h, 5.3CFx/a-C:H:AgO had completely released the AgO
NPs small enough to pass through the CFx layer. Indeed, after 4 h in contact with E. coli, the
5.3CFx/a-C:H:AgO coating exhibited significantly higher bacterial inhibition with 63% in
comparison with 46% inhibition for the 5.3CFx/a-C:H:Ag sample (Figure S4). Afterwards,
a combination of all these factors mentioned beforehand come into play, weakening the
antibacterial activity of the coating after 12 h.

For 5.3CFx/a-C:H:Ag, the incorporation of a CFx coating successfully delayed bacteria
growth and biofilm formation, whereas Ag NPs efficiently inactivated and disrupted
bacteria cell walls. Even though this coating released a lower concentration of Ag+ for the
first 24 h (0.16 ± 0.04 mg/L), in comparison with uncoated a-C:H:Ag (0.41 ± 0.02 mg/L), it
is evident that the release profile determinates how Ag+ will interact with bacteria, where
the CFx layer allows for a slow and continuous release of Ag+. Indeed, using this hybrid
scenario, the required metal quantity is significantly reduced, diminishing any potential
toxic effect of silver [52]. Similar results were obtained by Yin et al., where the addition of a
hydrophobic layer prolongated the release of Ag+, exhibiting antibacterial activity until
14 days [22]. Their obtained results were compared to a traditional silver-based coating with
a higher released concentration of Ag+ and lower antibacterial activity at that time point. In
this context, the use of a hydrophobic coating enhances the stability of silver-based coatings
and prolongs the duration of the sustained release of antibacterial Ag+. By combining these
two different approaches, it is possible to provide longer and thorough protection against
bacterial colonization and transmission on environmental surfaces in healthcare settings.

5. Conclusions

In this study, an additional fluoropolymer layer produced by low pressure plasma was
deposited on a-C:H films containing Ag (12.1 ± 0.2 at. % of Ag) and AgO NPs (11 ± 3 at. %
of Ag). The main objective was to study the influence of CFx on the release profile of Ag+

and the overall antibacterial activity of the coating. The deposition of the porous CFx layer
was explored by varying the duty cycle. In this sense, the incorporation of the CFx layer
produced at 5.3% DC proved to modify the release profile, by delaying the release of Ag+

and prolonging its complete depletion from the a-C:H matrix. Even though the released
concentration decreased in comparison with the uncoated a-C:H:Ag and a-C:H:AgO films,
it is evident that the release profile determinates how Ag+ will interact with bacteria,
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where the 5.3CFx layer allowed a rather slow and sustained release without reaching a
saturation point. Indeed, out of all the conditions, 5.3CFx/a-C:H:Ag successfully delayed
the formation of biofilm and promoted the inactivation of bacteria by the disruption of
their cell walls. Thus, using a hybrid approach composed of Ag NPs and a hydrophobic
polymeric layer, it was possible to increase the overall antibacterial activity of the coating.
The impact of this research highlights the importance of using multi-approach coatings as
a promising tactic to overcome the inherent challenges associated with each strategy and as
multiple lines of defense against bacteria on environmental surfaces to help prevent and
limit the spread of HAIs.

Further studies are needed to better understand and improve the performance of
CFx/a-C:H:AgO coatings, with special attention to the polymerization parameters used
to deposit the additional CFx layer. In addition, further experimental investigations are
needed to perform an exhaustive antibacterial assessment with longer contact time points
and including Gram-positive bacteria.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/nano14070609/s1, Figure S1: (a) High resolution XPS spectra of Ag 3d and
(b) AES spectra of Ag MNN region for a-C:H:Ag (top) and a-C:H:AgO (bottom). Figure S2: WCA
images of the uncoated and CFx coated a-C:H samples depending on the duty cycle used and their
respective WCA values; Figure S3: Particle size distribution and AFM images of (a) a-C:H:Ag and (b)
a-C:H:AgO coatings before CFx deposition; Figure S4: Percentage of E. coli growth after 4 h in contact
with Si (as negative control), 5.3CFx/a-C:H:Ag, and 5.3CFx/a-C:H:AgO.
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