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Abstract: The luminescence properties and excellent carrier transfer ability of carbon quantum dots
(CQDs) have attracted much attention in the field of photocatalysis. In this work, we loaded the CQDs
on the surface of Cu2O to enhance the visible-light property of Cu2O. Furthermore, the composite
was used for selective oxidation of benzyl alcohol to benzaldehyde. The composite catalyst achieved
high selectivity (90%) for benzaldehyde at room temperature, leveraging its visible-light-induced
electron transfer properties and its photocatalytic activity for hydrogen peroxide decomposition. ·OH
was shown to be the main reactive oxygen species in the selective oxidation reaction of benzyl alcohol.
The formation of heterostructures of CQDs/Cu2O promoted charge carrier separation and provided
a fast channel for photoinduced electron transfer. This novel material exhibited enhanced levels
of activity and stability for selective oxidation of benzyl alcohol. Potential applications of carbon
quantum dot composites in conventional alcohol oxidation reactions are shown.

Keywords: carbon quantum dots; photocatalysis; selective oxidation; benzyl alcohol

1. Introduction

The selective oxidation of alcohols to aldehydes has an important place in the fine
chemical industry [1] and is also an important branch of organic synthesis. Benzaldehyde
is one of the most widely used aromatic aldehydes, and can be used as a spice and flavor-
ing agent; also, its derivatives have a wide range of applications in the field of dyestuffs,
cosmetics, pharmaceutical intermediates, etc. [2]. Conventional procedures for carrying out
this conversion typically rely on employing stoichiometric quantities of potent oxidizing
agents (e.g., chromate, permanganate, and high-valent iodine as the inorganic oxidants) [3].
Chen [4] and Saffari’s [5] research groups obtained considerable benzaldehyde yields at
high temperatures by employing noble metals Au and Pd, respectively. However, these
methods have significant disadvantages, including high expenses, low productivity, strin-
gent or fragile reaction conditions, and the generation of substantial waste by-products [6].
Besides this, conventional organic processes pose a serious threat to the development
of human society. Hence, the search for novel, economical, and eco-friendly synthetic
techniques for alcohol oxidation to tackle the aforementioned problems continues to be
significant and captivating.

Photocatalytic oxidation technology utilizes inexhaustible solar energy, offers mild
reaction conditions, produces no secondary pollution, and ensures stability and recy-
clability [7]. It has great potential to solve the problems of energy consumption and
environmental pollution [8]. Dai et al. [9] successfully performed the selective oxidation of
primary alcohols to aldehydes through photocatalysis at room temperature, utilizing O2
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as a substitute for stoichiometric chemical oxidants (for example, MnVII, CrVI, and OsIV).
Ho et al. [10] achieved 49% benzaldehyde yield by constructing a Zn0.2Cd0.2S catalyst on
MoS2 nanoflowers, and demonstrated that the MoS2/Zn0.5Cd0.5S heterostructure promoted
the separation of photogenerated electron–hole pairs and showed improved catalytic ac-
tivities in the oxidation reaction of benzaldehyde. Wu et al. [11] synthesized ZnTi-LDH
nanosheets as a photocatalyst for the selective oxidation of benzyl alcohol to benzalde-
hyde under visible-light irradiation and illustrated that the surface -OH groups provide
additional active sites for O2 activation. Zhang et al. [12] synthesized InVO4/TiO2 het-
erojunction composite catalyst, which exhibited favorable conversion rates and selectivity
towards benzaldehyde. The outstanding catalytic activity of the InVO4/TiO2 photocatalyst
is attributed to the successful assembly of the heterojunction structure, promoting efficient
charge separation and transfer between the components.

Carbon quantum dot (CQDs) is a new type of nanosized catalytic semiconductor with
excellent photoelectric properties [13–15]. CQDs have gained significant attention in recent
years due to their simple synthesis protocol, low toxicity, cheap cost, abundant surface
functional groups, and the ability to act as electron donors or acceptors, which has made
them very suitable for photocatalytic organic processes [16]. Kang et al. [17] reported the
photocatalytic activity of near-infrared light-controlled CQDs for highly selective alcohol
oxidation, but only carbon quantum dots are not conducive to the isolation and recycling
after the reaction. Mohammadi et al. [18] obtained a non-homogeneous nanocatalyst via
ionic liquid-modified carbon-quantum-dot-anchored tungstate ions (WO4

2−) for selec-
tive oxidation of alcohols in the water, which showed a more satisfactory performance.
However, the reaction still required heating conditions and the tedious extraction step for
catalyst recycling. Problems such as low yield and the difficulty associated with carbon dot
materials’ recycling have limited their application in photocatalytic organic reactions, and
suitable carriers or scaffolds are required for their modification.

According to previous reports, the upconversion photoluminescence property of CQDs
can effectively extend the light absorption range into the visible and even the near-infrared
region [19]. Meanwhile, the carbon dots can serve as excellent electron donors, which
can effectively separate photogenerated charge carriers and provide the necessary redox
environment for the reaction [14]. Therefore, the organic reaction efficiency can be further
improved through modifications in CQDs. CQDs have been used in conjunction with
other substances to enhance the photocatalytic efficiency of reaction by exploiting various
interfacial regions, increasing the abundance of charge carriers accessible for photoreaction,
and facilitating charge separation. Li et al. [20] prepared Fe3O4@CdS@CQDs ternary
core–shell heterostructured by in situ doping carbon quantum dots and CdS on Fe3O4
nanospheres, and used these as photocatalysts for selective alcohol oxidation. The modified
CQDs act as charge mediators to accelerate the photogenerated electron–hole separation
and provide active sites to facilitate the reaction. Kang et al. reported that the due to
existence of CQDs in the composite, the fast electron transfer process can become faster,
and the charge transfer efficiency can be enhanced [21]. The Cu2O can be synthesized
using a simple raw material and has favorable characteristics such as an appropriate
band gap, and an adjustable morphology, making it suitable for photocatalytic substrate
material [22,23]. Furthermore, it is necessary to evaluate the stability of catalysts under
reaction conditions since the structural morphology of the catalyst plays a major role in
the selectivity of the product during the alcohol oxidation process. CQDs-based composite
materials provide an effective alternative to address the selectivity and stability issues of
the alcohol oxidation process [24].

In this work, a composite photocatalyst with a heterogeneous interface was prepared
by combining Cu2O and carbon quantum dots through a facile synthesis method, and
used for room temperature selective oxidation of benzyl alcohol. The microscopic mor-
phology and structural features of the sample were studied via scanning and transmission
electron microscopy, XRD, FT-IR, and Raman spectroscopy. The photo-response ability
of the composites was observed via UV-Vis diffuse reflectance spectroscopy. The charge
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separation and movement in CQDs/Cu2O were evaluated via transient photocurrent re-
sponse, electrochemical impedance, Mott–Schottky diagram, linear scanning voltammetry,
and photoluminescence. Finally, the mechanism for the enhanced photocatalytic activity
of CQDs/Cu2O was proposed to provide an environmentally friendly way to solve the
selectivity and efficiency issues of alcohol oxidation.

2. Materials and Methods
2.1. Materials

All reagents and materials were used without further purification. Benzyl alco-
hol, toluene, anhydrous magnesium sulfate, copper sulfate pentahydrate, dextrose,
polyvinylpyrrolidone (PVP, K30), sodium hydroxide, hydrochloric acid, and anhydrous
ethanol were supplied by Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).
Nitrobenzene was purchased from Shanghai Aladdin Biochemical Technology Co., Ltd.
(Shanghai, China).

2.2. Preparation of CQDs

First, 50 mL of NaOH (1 M) solution was added to 50 mL of glucose (1 M) solution.
Then, the above-mixed solution was subjected to ultrasonication (100 W) for 1 h. After the
preliminary treatment, the pH of the solution was adjusted to neutral with HCl (0.1 M),
following the dialyzing procedure using a semi-permeable membrane (100–500 Da) to
remove impurities other than the sample of CQDs. Finally, the brownish-yellow solution of
CQDs was obtained after filtration treatment with a PTFE membrane (0.22 µm).

2.3. Preparation of CQDs/Cu2O

CQDs/Cu2O composite material was synthesized using a one-step sonication
method [25]. In a typical synthesis process, 150 mL of NaOH (1 M) solution was slowly
added to 150 mL of CuSO4 (0.1 M) solution to form a light blue suspension. The suspension
was subjected to ultrasonication (100 W) for 15 min, followed by the addition of 20 mL
of poly(vinylpyrrolidone) (50 g·L−1) solution. Then, 100 mL of glucose (1 M) solution
was slowly added to the above mixture under stirring, and then the ultrasonication was
continued for 60 min again. After aging the above sample for 16 h, the crude product
obtained was washed with deionized water and ethanol three times, respectively. Finally,
the sample was dried in a vacuum oven at 60 ◦C to obtain CQDs/Cu2O composite with
protruding structures.

2.4. Characterization

The prepared sample of CQDs/Cu2O composite was characterized via XRD, FT-IR,
Raman spectroscopy, SEM, and TEM. Powder X-ray diffraction (XRD) was carried out
on a XRD-6100 (SHIMADZU, Kyoto, Japan) diffractometer using 40 kV and 30 mA Cu
Kα radiation at a scanning rate of 7◦·min−1. Fourier-transform infrared spectroscopy
(FT-IR) was recorded in the range of 4000–400 cm−1 on an iS50 FT-IR (Thermo Fisher
Scientific Inc., MA, USA) spectrometer using a DTGS KBr detector. Raman spectroscopy
(Raman) was performed using a confocal Raman system (RTS2, Zolix, Beijing, China) with
an excitation source of 532 nm. Transmission electron microscopy (TEM)(JEM-2010, JEOL
Ltd, Tokyo, Japan) and high-resolution transmission electron microscopy (HRTEM) were
used to observe the morphology of the material. Gas chromatography (GC) was performed
using an Agilent 6890 N (Agilent Technologies, Inc., CA, USA) with a hydrogen flame
ionization detector and a 30 m Agilent polysiloxane HP-5 column (0.32 mm ID, 0.25 µm) to
analyze the product formation. Nitrogen was used as the carrier gas, the inlet temperature
was 250 ◦C, and the column box was held at an initial temperature of 130 ◦C for 1 min,
followed by heating from 130 ◦C to 160 ◦C at a rate of 10 ◦C·min−1, and held at the final
temperature for 1.5 min. The sample solution (0.2 µL) was injected using a 1:15 split ratio.
The thermogravimetric analysis (TGA) measurements of the sample were carried out using
a thermogravimetric analyzer (TG209F3, NETZSCH-Geraetebau GmbH, Selb, Germany)
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in an oxygen atmosphere (20 mL·min−1) with nitrogen as a protective gas. The sample
(2–5 mg) was heated from room temperature to 700 ◦C at a ramp rate of 5 ◦C·min−1.

2.5. Benzyl Alcohol Oxidation Test

The photocatalytic oxidation of benzyl alcohol experiment was carried out in a
50 mL three-necked quartz flask containing 10 mg of catalyst, 10 mmol of benzyl alcohol,
and 2 mL of deionized water. A total of 1 mL of H2O2 (30%) was added to the reaction
system through a continuous injection method. A 300 W xenon lamp (PLS-SXE300+,
Perfectlight Technology Co., Ltd., Beijing, China) was used as a simulated sunlight and
the reaction solution was vigorously stirred at room temperature. At the end of the
reaction, the reaction solution was dewatered via toluene extraction and anhydrous
magnesium sulphate, and the samples were analyzed using gas chromatography with
nitrobenzene as an internal standard.

2.6. Photoelectrochemical Performance Tests

Photoelectrochemical performance tests were performed on an electrochemical work-
station (CHI-660E, CH Instruments Inc., Shanghai, China) equipped with a standard three-
electrode system. Typically, 5.0 mg of catalyst was dispersed in 1.0 mL of isopropanol/water
mixture (3:1, v/v) and 15 µL of Nafion, and then dropped onto an ITO glass plate as the
working electrode. A platinum sheet and a saturated Ag/AgCl electrode were used as the
counter electrode and reference electrode, respectively, and 0.1 M Na2SO4 solution was
used as the electrolyte. The photocurrent density was measured under 300 W xenon lamp
irradiation with a light on/off period of 10 s. The photocurrent response curve (i-t curve)
of the material was collected. The electrochemical impedance test was performed using
the same sample preparation method with only a change in impedance solution at 105 Hz
for the high frequency and 1.0 Hz for the low frequency. The electrochemical impedance
spectroscopy measurement was carried out to choose a mixed solution of 0.1 M KCl and
5.0 mM K3[Fe(CN)6]/K4[Fe(CN)6] as the electrolyte. The LSV curves were scanned over
a range of 0.1 V to 1.0 V at a scanning rate of 0.1 V·s−1. For the LSV scan, 20 mg of the
sample was dispersed in 480 µL ethanol and 20 µL of Nafion and then dripped onto one
end of a 1 × 2 cm2 carbon paper as the working electrode. The electrolyte was an aqueous
solution of Na2SO4 (0.1 M) and benzyl alcohol (0.1 M).

3. Results

The synthesis strategy of CQDs/Cu2O is shown in Figure 1. The X-ray diffraction
patterns of Cu2O and CQDs/Cu2O are shown in Figure 2a. The 2θ peaks at 29.58◦, 36.44◦,
42.33◦, 61.41◦, and 73.56◦ for CQDs/Cu2O and pure Cu2O correspond to the cubic crys-
talline phases of Cu2O (PDF#78-2076) at (110), (111), (200), (220) and (311) crystal planes [26].
The XRD spectra of the composites clearly show the distinctive diffraction peaks of Cu2O,
suggesting that the crystalline structure of Cu2O remains unaltered after its composite
formation with CQDs. However, no significant carbon peaks are found due to the low
loading quantity of CQDs. The surface functional groups of the prepared sample are
analyzed via IR spectroscopy (Figure 2b). The characteristic functional groups observed on
the CQDs surface are as follows: the -OH bond at 3425 cm−1, the -CH bond at 2918 cm−1,
and the -C=C, -CH3, and -CO bonds at the positions of around 1619 cm−1, 1378 cm−1,
and 1080 cm−1, respectively [27,28]. The peak at 629 cm−1 is ascribed to the stretching
vibration of the Cu-O bond of Cu2O [29]. The successful combination of CQDs and Cu2O
was verified. Figure 2c shows the Raman spectra of the prepared samples; the characteristic
peak at 270 cm−1 corresponds to the bending vibration of the Cu-O bond in the Cu2O
phase, and 611 cm−1 corresponds to the stretching vibration of the Cu-O bond [30]. The
D-band (around 1350 cm−1) and G-band (around 1590 cm−1) signals from carbon quantum
dots were not observed in the Raman spectra of the CQDs/Cu2O [31] due to the low
concentration of CQDs in the composite. This result is in agreement with the results of the
XRD tests.
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The scanning electron microscopy (SEM) and transmission electron microscopy (TEM)
images of the composite (Figure 3) show that the CQDs/Cu2O composite has spherical
morphology with protrusions on the surface with an average diameter of ca. 1.2 µm after
aging for 16 h. The unique protruding structure of the CQDs/Cu2O composite allows
light to be observed in multiple reflections between the big particle surface and small
protruding particles, which can make greater use of solar energy and thus enhance its
photocatalytic activity as compared to the smooth surface morphology of CQDs/Cu2O
obtained by aging for 1 h [28]. The clear interface of CQDs successfully composited with
Cu2O can also be observed in the high-resolution TEM (HRTEM) map (Figure 3h). The
lattice spacing of 0.257 nm and 0.313 nm corresponds to the (100) crystalline plane of
graphitic carbon [27,32] and the (110) crystalline plane of Cu2O, respectively [21,33]. The
distribution of the elements of the EDS (Figure 3c–f) shows that C, O, and Cu elements
are present in the composite with uniform distribution, indicating that the CQDs are
successfully loaded on the surface of the Cu2O particle.

The results of the photocatalytic selective oxidation performance of benzyl alcohol by
CQDs/Cu2O at room temperature are shown in Table 1. Entry 5 shows that the benzyl
alcohol oxidation reaction is difficult to occur in the absence of any catalyst using H2O2
as a mild oxidant due to the inherent energy barrier of the reaction itself. Entry 1 shows
that the photocatalytic oxidation of benzyl alcohol by CQDs/Cu2O at room temperature
for 6 h shows a significant increase in conversion (35%) and exhibits a high selectivity
for benzaldehyde (90%); however, the pure Cu2O only exhibits insignificant reactivity. In
our experiment, we fixed the reaction time at 6 h due to slow kinetics in room tempera-
ture. This shows the important role of carbon quantum dots in the designed composites
(CQDs/Cu2O). Firstly, the abundant oxygen-containing functional groups (e.g., hydroxyl
groups, etc.) on the carbon quantum dots provide more activation sites and promote the
interaction between the reaction components; secondly, the conjugated structure of the
carbon dots promotes the adsorption of the substrate on the catalyst surface by the π–π
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interactions of the benzene ring [34]; and lastly, the introduction of the carbon quantum
dots improves the energy band distribution of the Cu2O and facilitates the separation and
movement of the carriers [35]. Entries 1–4 demonstrate that light is an important driving
force for benzyl alcohol oxidation. Meanwhile, we also compared the photocatalytic perfor-
mance of TiO2, a conventional photocatalyst (Entry 6), but its inherent wide bandgap and
susceptibility to agglomeration both limit its ability to effectively utilize the visible light,
resulting in low activity for benzyl alcohol oxidation [36].
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Table 1. Photocatalytic activity for the selective oxidation of benzylic alcohols over CQDs/Cu2O
under visible-light irradiation.
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Entry Catalyst Time (h) T (◦C) Conversion (%) Selectivity (%)

1 CQDs/Cu2O (hv) 6 r.t. 35 90
2 CQDs/Cu2O 6 r.t. 2 100
3 Cu2O (hv) 6 r.t. 10 100
4 Cu2O 6 r.t. - -
5 None 6 r.t. - -
6 TiO2 (hv) 6 r.t. 13 100
7 g-C3H4 (hv) 6 r.t. 12 100
8 CQDs (hv) 6 r.t. 18 91

Reaction condition: benzyl alcohol (10 mmol), photocatalyst (10 mg), H2O2 (1 mL, 30%), H2O (2 mL), temperature
(25 ◦C), irradiation time (6 h).
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The light-harvesting capabilities of Cu2O and CQDs/Cu2O photocatalysts were evalu-
ated through UV-Vis absorption spectra. As shown in Figure 4a, the absorption edge of
CQDs/Cu2O shows an obvious shift in the visible region compared to Cu2O. In addition,
CQDs/Cu2O can absorb more light in the 600–800 nm range, indicating the possibility
of photocatalytic design of the complexes in the NIR region. The CQDs/Cu2O displays
observably increased light-harvesting capabilities in the visible-light range, which may
be attributed to the upconversion photoluminescence of CQDs on the Cu2O particles;
this result is in agreement with the FT-IR and SEM observations. Figure 4d shows two
absorption peaks of CQDs in the range of 233 nm and 270–400 nm [37]. The weak band
at 233 nm corresponds to the π–π* electron excitation of the C=C bond, while the typical
broad absorption region at 270–400 nm belongs to the n–π* electron transition of the C=O
bond [38]. Based on the Kubelka–Munk function obtained from the conversion of the DRS
results (Figure 4b), the optical bandgap value of CQDs/Cu2O amounts to 2.99 eV, which
is the same as pristine Cu2O [39]. The Mott–Schottky plots (Figure 4c) show a positive
slope that reflects that Cu2O belongs to the n-type semiconductor. Based on the intercept of
the x-axis, the flat band (Efb) position was deduced to be about −0.36 eV. Therefore, the
CB and VB positions of Cu2O are at −0.16 V and 1.82 V, respectively. The fluorescence
emission characteristics of the CQDs are shown in Figure 4e–f, which shows a broader
luminescence peak at about 455 nm upon excitation at 375 nm. A solution of the CQDs at
365 nm UV lamp shows yellow-green fluorescence. According to previous reports, the up-
conversion photoluminescence property of carbon quantum dots also plays a considerable
role in the reaction [28]. It absorbs long-wavelength light and then emits short-wavelength
light through upconversion, and also excites Cu2O to form electron–hole pairs, which is
conducive to an enhancement in the photocatalytic oxidation activity of benzyl alcohol
using the CQDs/Cu2O complex [35,40,41].
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The photoelectrochemical activity of the synthesized sample was investigated using
linear scanning voltammetry (LSV) test. From the obtained LSV curves (Figure 5a), it can
be seen that the Cu2O loaded with CQDs has a lower onset potential and significantly
improves the electrical response as compared to the pristine Cu2O, suggesting that the
CQDs/Cu2O catalytic reaction is more likely to occur. The current density of CQDs/Cu2O
reached 4.11 mA·cm−2, which was almost 8.3 times higher than that of pristine Cu2O, at
0.9 V vs. Ag/AgCl. This is mainly due to the addition of CQDs, which has effectively
increased the charge transfer rate. The charge transfer behavior in the composites is investi-
gated by measuring the transient photocurrent response (Figure 5b) and electrochemical
impedance spectroscopy (EIS) (Figure 5c). The composite material shows a better photo-
electric response in visible light compared to pristine Cu2O, which indicates more efficient
separation and transfer of photogenerated charges [42]. This can be attributed to the in-
troduction of CQDs, resulting in photogenerated electrons with sufficient energy to be
captured by Cu2O. In the electrochemical impedance plot, the arc radius of CDs/Cu2O
is smaller, indicating lower resistance and faster interfacial charge transfer [43]. These
results fully reflect the fast interfacial charge transfer in the composites, which improves
the catalytic performance of the CQDs/Cu2O.
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Figure 6 illustrates the thermogravimetric analysis of the CQDs/Cu2O sample. The
first stage of mass loss (0.7%) occurs in the range of 25–125 ◦C, corresponding to the
evaporation of adsorbed water molecules in the sample [44]. The weight gain (10.5%)
observed in the temperature range of 125–460 ◦C is attributed to the gradual oxidation of
Cu2O to black CuO in the presence of O2 under elevated temperatures, with the maximum
reaction rate occurring at 422 ◦C. The stage between 230 and 400 ◦C corresponds to the
decomposition of oxygen-functional groups in CQDs [45,46]. Through calculations, the
estimated content of CQDs and Cu2O in the composite material is approximately 5.4% and
93.9%, respectively. This aligns closely with the results obtained from SEM testing. These
results indicate the high thermal stability of CQDs/Cu2O composite for catalytic purposes
and especially for the oxidation of benzyl alcohol at the desired temperature.

Based on the above experimental results and published reports, a possible catalytic
mechanism for CQDs/Cu2O has been proposed (Figure 7). Firstly, CQDs/Cu2O generate
photogenerated electron–hole pairs under light stimulation, and the rapid charge transfer
at the interface of the two components due to the heterogeneous structure formed between
CQDs and Cu2O alleviates the problem of carrier recombination [47]. Meanwhile, the
upconversion fluorescence property of CQDs and the protruding nanostructures of Cu2O
particles with excellent light-reflecting ability enable the composite to serve as an efficient
and stable visible-light-sensitive photocatalyst. Then, the mild oxidizing agent H2O2
combines with photogenerated holes (h+) to react and decompose to generate hydroxyl
radicals (·OH), an active species with strong oxidizing properties [17]. Next, the free radical
of ·OH causes the dehydrogenation of benzyl alcohol adsorbed on the catalyst to produce
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the ·C intermediate, and this intermediate is subsequently further oxidized by ·OH to
produce benzaldehyde. Notably, in the case of light irradiation, CQDs can act as powerful
electron donors for the first step of benzyl alcohol oxidation (benzaldehyde) protected by
photo-induced electron transfer, and the product is prevented from being over-oxidized
by the reducing environment provided by the photogenerated electrons (e−), and thus the
reaction can obtain a high benzaldehyde selectivity (90%).
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Figure 7. (a,b) Schematic mechanism for the catalytic oxidation of benzyl alcohol by CQDs/Cu2O.

4. Conclusions

In summary, CQDs/Cu2O composites were synthesized using a simple one-step
sonication method for the light-stimulated selective oxidation of benzyl alcohol at room
temperature. CQDs were uniformly distributed on the surface of Cu2O and formed a
heterojunction structure, which improved the charge carrier separation efficiency and
provided more sites for benzyl alcohol adsorption. In addition, the protruding structure
of Cu2O and the upconversion fluorescence of the CQDs allowed for multiple reflections
of light and improved the efficiency of the composite material in utilizing sunlight energy.
Photogenerated vacancies play a major role in benzyl alcohol oxidation, and h+ allows
the decomposition of H2O2 to generate hydroxyl radicals with strong oxidative poten-
tial. Meanwhile, CQDs act as electron donors and provide a reduced environment for



Nanomaterials 2024, 14, 212 10 of 12

the protection of benzaldehyde from over-oxidation. Finally, it was illustrated that the
incorporation of carbon quantum dots has broadened the light-absorbing properties of the
materials, which has considerable positive effects on the activity, selectivity, and stability of
the benzyl alcohol oxidation process. This work has achieved significant positive results
in the effective design of photocatalysts and in solving the environmental pollution and
energy consumption problems faced by traditional organic production.
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