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Abstract: In this work, the nanostructure of oxide dispersion-strengthened steels was studied by
small-angle neutron scattering (SANS), transmission electron microscopy (TEM), and atom probe
tomography (APT). The steels under study have different alloying systems differing in their contents
of Cr, V, Ti, Al, and Zr. The methods of local analysis of TEM and APT revealed a significant number
of nanosized oxide particles and clusters. Their sizes, number densities, and compositions were
determined. A calculation of hardness from SANS data collected without an external magnetic
field, or under a 1.1 T field, showed good agreement with the microhardness of the materials. The
importance of taking into account two types of inclusions (oxides and clusters) and both nuclear and
magnetic scattering was shown by the analysis of the scattering data.

Keywords: oxide dispersion-strengthened steel; ODS steel; small angle neutron scattering; SANS;
transmission electron microscopy; TEM; atom probe tomography; APT; oxide particle; cluster

1. Introduction

Oxide dispersion-strengthened (ODS) alloys are the most well-known nanostruc-
tured structural materials. ODS steels are reinforced by a significant number of uni-
formly distributed nano-oxides and have considerably higher heat resistance than conven-
tional alloys [1]. That is why ODS alloys are widely used for heat-resisting applications
(e.g., turbine components [2], etc.). Stable oxide inclusions dispersed in metallic matrices
improve both creep resistance at high temperatures and radiation resistance [3–5]. There-
fore, these materials are also developed for nuclear engineering, for example, structural
materials of advanced nuclear power plants as fast neutron reactors, future fusion reactors,
and for other Generation IV reactors [6–13].

Enhanced properties of ODS alloys greatly depend on their nanostructure char-
acteristics: the chemical composition, size, and spatial distribution of disperse inclu-
sions. The nanostructure of ODS alloys consists of stoichiometric oxide particles de-
tected by TEM [14–19] and nanoclusters detected by APT (see, e.g., articles [20–22] and
reviews [23–26].
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It is generally accepted that oxides increase the heat resistance and radiation resistance
of steels, but the role of clusters is not so obvious. Moreover, in nano-oxide-strengthened
steels, it is almost impossible to separate nano-oxides from clusters, and it is assumed that,
in these steels, TEM and APT can detect the same objects [25,27]. An important role of
nanoclusters was shown in [28,29] in irradiated ODS steels, where irradiation led to the
growth of clusters and transformed them into fine oxides. Thus, nanoclusters can affect the
stability of the nanostructure of ODS steels.

Clusters and oxides can be detected simultaneously by small-angle X-ray [30,31] and
neutron scattering [32–36] (SAXS and SANS, respectively). Moreover, SAXS and SANS can
study substantially larger volumes of material in comparison with TEM and APT. Therefore,
these scattering methods provide more correct average characteristics, such as average
size or number density of inclusions. It is assumed that the composition of nanoclusters
in ODS steels differs from that of stoichiometric oxides and the clusters can contain more
than 50% Fe and Cr. This difference in the contrast between the matrix and precipitates
strongly affects the scattering intensities. Due to the magnetic properties of nanosized
clusters (since they contain large amount of Fe and Cr), they can be separated from oxide
particles, which are known to be non-magnetic, by applying a magnetic field during the
SANS measurement. Moreover, ODS ferritic/martensitic steels are ferromagnetic materials,
and the saturating magnetic field used in a SANS experiment makes it possible to correctly
take into account the magnetic properties of these steels [17–20].

The steels chosen for the present study were Eurofer ODS, 13.5Cr-Fe3Y ODS, and KP-4
ODS. These steels have different allowing systems (Cr, V, Al and Zr content) and, therefore,
different proportions of oxides, cluster densities, and size distributions of nanoinclusions.
A combination of different microscopic techniques (TEM and APT) allowed us to obtain
the characteristics of inclusions (scatterers of neutrons) in the ODS steels for the analysis
of SANS data. Furthermore, we evaluated the contributions of clusters and oxides to the
hardness in comparison with the experimentally measured case.

2. Materials and Methods

The study investigated three oxide dispersion-strengthened (ODS) ferritic/martensitic
steels: Eurofer ODS, 13.5Cr-Fe3Y ODS, and KP-4 ODS (ODS 9Cr-V-W-Mn, ODS 13.5Cr-W,
and ODS 15Cr-W-Al-Zr, respectively). The Eurofer ODS is a type of European steel pro-
duced by Plansee (the “EU batch”); the 13.5Cr-Fe3Y ODS steel was developed at the
Karlsruhe Institute of Technology; and the KP-4 ODS steel was developed in Japan by
Kyoto University. These ODS steels were produced by mechanical alloying. Table 1 shows
the composition of the studied materials.

Table 1. Chemical compositions of studied ODS steels, at. % (balance in Fe).

Steel Al Ni Zr Mn Cr W Y O V C N Si

Eurofer ODS - 0.02 - 0.39 9.8 0.34 0.13 0.34 0.22 0.40 0.21 0.06
KP-4 ODS 7.56 - 0.19 - 15.9 0.58 0.16 0.57 - - - -

13.5Cr-Fe3Y ODS - - - - 14.6 0.6 0.3 - - - -

It is important to note that the studied ODS steels were ferritic martensitic steels
and ferromagnetic materials. The production differences in the studied steels are shown
in Table 2.

Specimens of the ODS steels were studied via small-angle neutron scattering (SANS)
diffractometers with unpolarized neutrons at the BNC reactor (“Yellow Submarine” diffrac-
tometer, YS-SANS, https://www.bnc.hu/ys-sans (accessed on 8 December 2023)) [37] and
at the China Spallation Neutron Source (CSNS-SANS diffractometer, http://english.ihep.
cas.cn/csns/ (accessed on 8 December 2023)) [38,39]. For SANS analysis, 17 × 17 × 2 mm3

samples were prepared from the initial materials. The YS-SANS experiment was carried
out without a magnetic field. Measurements were carried out on this diffractometer at two

https://www.bnc.hu/ys-sans
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neutron wavelengths, λ = 0.42 and 1.01 nm, ∆λ/λ = 18%, with two sample–detector dis-
tances, 1.3 and 5.6 m. The measurements at CSNS-SANS were performed under an external
magnetic field (1.1 T and 5 mT), perpendicular to the incident neutron beam. The sample
size was 7 × 7 mm2 (Figure 1). Notably, the 5 mT magnetic field had basically no effect on
the measurement and should be considered as having no field present. For CSNS-SANS,
neutrons with wavelength ranges 1~10 Å were used, with a sample-to-detector distance
of 4 m. The geometry used for the experiments provided accessible scattering vector
ranges: 0.06 < Q < 4.5 nm−1 at YS-SANS and 0.05 < Q < 7.0 nm−1 at CSNS-SANS.

Table 2. Production details of studied ODS steels.

Steel Alloying Type Thermomechanical Treatment

Eurofer ODS Mechanical alloying of metal and Y2O3 powders
Normalized at 1100 ◦C for 30 min with water
quenching, followed by tempering at 750 ◦C for
2 h with air cooling

KP-4 ODS Mechanical alloying of metal and Y2O3 powders Encapsulated in a soft steel capsule and
degassed in vacuum at 400 ◦C for 3 h

13.5Cr-Fe3Y ODS
Yttrium was introduced through the Fe3Y
intermetallic powder, and oxygen was introduced
through the oxidized powder of the matrix steel

Degassed for 4 h at 400 ◦C, then subjected to hot
isostatic pressing at 1150 ◦C for 2 h at 100 MPa
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Figure 1. Schematic of the SANS experiment setup.

The raw data were corrected for background scattering, detector efficiency, and sample
transmission. The measured scattering intensity was set to absolute scale by normalizing
to the incident flux.

Analysis of the phase composition of ODS steels was carried out using TEM, electron
diffraction, and scanning transmission electron microscopy. A Titan 80–300 S/TEM micro-
scope (Thermo Fisher Scientific, Waltham, MA, USA) with an accelerating voltage of 300 kV
was utilized. A ring high-angle dark-field detector (HAADF, Fischione) was used to obtain
microphotographs in Z-contrast mode. The characteristic grain sizes and sizes of inclusions
of different types were determined. More than 2000 detected objects were collected to
obtain inclusion size distributions. The acquired size distributions of the inclusions al-
lowed for the calculation of their average sizes, number densities, and respective standard
deviations. To calculate the uncertainty of these values, the studied layer thickness, the
resolution of the microscope, and the value deviation were taken into account.

Samples for the TEM study were prepared with a focused ion beam (FIB) with Ga+ ions
using a dual-beam scanning electron microscope, HELIOS NanoLab 600 (FEI, Eindhoven,
Holland), at an accelerating voltage of 5–30 kV. Considering that this process created a
damaged layer due to interaction with the ion beam, finalizing thinning was performed at
an accelerating voltage of 2 kV. Thin cross-section samples were prepared for TEM studies
in this way.
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Local chemical composition ODS steels at the nanometer scale were investigated by the
femtosecond laser evaporation tomographic atom probe APPLE-3D, created at the Institute
of Theoretical and Experimental Physics (Moscow, Russia) [39]. Data were collected at a
reference sample temperature of 40–50 K in the laser evaporation mode with a wavelength
of 515 nm, a laser pulse duration of 300 fs, a frequency of 25 kHz, and a pulse energy of
0.1–1.2 µJ [40]. The pressure in the research chamber was (5 ÷ 7) × 10−10 Torr.

Atom probe tomography samples were firstly prepared with volumes of 300 × 300 ×
10,000 µm3 by means of electroerosion cutting in water. The next step was carried out
through standard methods of electrochemical anodic electropolishing to form the tips of
the samples, with rounding radii of 15–50 nm. The obtained needle-samples were checked
with a JEOL 1200 EX transmission electron microscope before the APT study.

For each material, no fewer than two 30 × 30 × 300 nm3 volumes were acquired
during the APT study. APT data analysis included mass spectrum interpretation and
characterization of three-dimensional distributions of chemical elements in the studied
volumes. The general Bass reconstruction method was used to reconstruct 3-D atom maps,
in which the back projection of each detected ion was calculated using the radius of the
sample tip and the distance between the sample and the detector [41].

3. Results
3.1. APT and TEM Results

The investigated steels consisted of ferritic grains with sizes ranging from 300 nm to
2 µm in Eurofer ODS steel, from 300 nm to 3 µm in KP-4 ODS steel, and from 250 nm to
2 µm in 13.5Cr-Fe3Y ODS steel.

Small (5–6 nm) oxide particles were detected in the studied steels using transmission
electron microscopy (TEM). A small number of larger (44–55 nm) oxide particles were also
present, and in Eurofer ODS steel, large carbides of the M23C6 type were also detected.
Chemical analysis of Eurofer ODS was conducted in an earlier work [27], while new
bright-field images are presented in Figure 2. Images of oxide particles in KP-4 ODS and
13.5Cr-Fe3Y ODS steels, acquired using high-angle annular dark-field (HAADF) mode, are
presented, as well as their chemical mapping, in Figures 3 and 4. To analyze the number
density of the inclusions, the local thicknesses of the TEM specimens were measured by
electron energy loss spectroscopy (EELS) using the zero-loss peak. For each sample, at
least six thickness measurements were performed at different positions. For Eurofer ODS,
the average value was ~60 nm, while in KP-4 ODS and 13.5Cr-Fe3Y ODS, it was ~65 nm.
The average size of the small oxide particles was 6 ± 2 nm in Eurofer ODS, 5 ± 2 nm
in KP-4 ODS, and 6 ± 1 nm in 13.5Cr-Fe3Y ODS, with number densities of 4 ± 1 × 1022,
2 ± 1 × 1022, and 0.8 ± 0.2 × 1022 m−3 for Eurofer ODS, KP- 4 ODS, and 13.5Cr-Fe3Y ODS,
respectively. Figure 5 presents size distributions for these oxide particles.
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Based on chemical analysis, using EDX mapping, the most probable types of oxides
were identified with the consideration of ODS steels in previous works. Eurofer ODS
is the European steel for fusion program. TEM analysis of large oxides was carried out
carefully in multiple works [42,43], and 13.5 Cr ODS alloys were designed in Karlsruhe
Institute of Technology to increase the corrosion resistance ODS steels for fusion [44–46].
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ODS steels based on FeCrAl matrix metal were widely designed in Japan [47,48]. Overall,
the stoichiometry of the oxides in Eurofer ODS and 13.5Cr-Fe3Y ODS steels was Y2O3,
while in KP-4 ODS steel, it was Y4Zr3O12.

Atom probe tomography revealed the high number density of the nanoclusters.
Figures 6–8 show atom maps of the studied materials. The average cluster size varied
from 2 to 3 nm, and the number density ranged from 1 × 1023 m−3 to 3 × 1023 m−3. Cluster
size distributions are shown in Figure 9. The values for number density and average size
are given in Table 3.
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Table 3. Relevant TEM and APT results for studied materials.

Material Phase Chemical
Composition/Formula Average Size Number Density,

1022 m−3
∆ρ2 (SLD)

Nuclear, 1021
∆ρ2 (SLD)

Magnetic, 1021 A

Eurofer ODS

Matrix Fe89 Cr10 Mn0.4 V0.2
N0.1 O0.1 W0.3 Y0.1 - - - - -

Grains - 0.5 ± 0.2 µm - - - -
Oxides Y2O3 6 ± 2 nm 4 ± 1 0.98 2.3 3.3

Clusters Fe46 Cr20 V9 O11 Y10
W0.3 Mn0.5 N0.1 2 ± 1 nm 32 ± 5 0.43 0.24 1.6

13.5Cr-Fe3Y
ODS

Matrix
Fe85 Cr13 Mn0.7 O0.2

V0.1 Y0.4 Ni0.2
Si0.1 W0.4

- - - - -

Grains - 0.8 ± 0.4 µm - - - -
Oxides Y2O3 6 ± 1 nm 0.8 ± 0.2 0.9 2.2 3.4

Clusters Fe50 Cr14 Mn0.5 O6
Y11 Ni0.6 Si0.2 W0.11 2 ± 1 nm 32 ± 4 0.5 0.27 1.5

KP-4 ODS

Matrix Fe76 Cr16 O0,4 Y0,1
Al7 Zr0,2 W0,6 - - - - -

Grains - 0.6 ±0.4 µm - - - -
Oxides Y4Zr3O12 5 ± 2 nm 2 ± 1 0.9 2.2 3.4

Clusters Fe49 Cr12 O19 Y12
Al5 Zr3 3 ± 1 nm 10 ± 2 0.5 0.27 1.5

Figure 10 demonstrates cluster enrichments ordered by their numbers from the largest
to smallest (number one being the largest, etc. Where there were more than 50 clusters,
only every 2nd or 3rd cluster is shown). Element concentrations in the matrix, as well as
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cluster average values (determined with APT), are shown in Table 3. Clusters in KP-4 ODS
and 13.5Cr-Fe3Y ODS were significantly enriched in Y and O, while KP-4 ODS (which had
a high concertation of Al in the initial state) had an Al deficiency in the clusters.
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It must be also noted that, in 13.5Cr-Fe3Y ODS, APT showed the presence of a
number of elements (Mn, V, Al, Ni, Si, and P) which were not declared in the initial
material specification.

3.2. SANS Results

An example of SANS intensities on a 2D detector is shown in Figure 11. The scattered
intensity without a magnetic field was practically direction-independent. Under the applied
field, the scattered intensity was anisotropic due to the magnetic scattering. This allowed
for the separation of the magnetic and non-magnetic contributions.
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magnetic field applied horizontally; (b) without magnetic field.

A comparison of radially averaged intensities with and without a magnetic field is
shown in Figures 12 and 13 for CSNS-SANS and YS-SANS, respectively. In the high Q
range beyond 0.02 Å−1, all the curves were nearly field-independent. Therefore, the hump
appearing at the 0.09 Å−1 position indicates the chemical heterogeneity, with a size of
around 7 nm. In comparison, the second hump at 0.008 Å−1, observed in samples without
magnetic fields, disappeared under 1.1 T, indicating its magnetic nature. It was inferred
that the strong field-dependent scattering features may have resulted from the magnetic
domains with sizes of ~80–100 nm, which can be eliminated by applying a field like 1.1 T in
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this study. The iron–chromium matrix of the studied steels was ferromagnetic, and it is pos-
sible that the domains mentioned above were magnetic domains of the ferritic/martensitic
steels or magnetically ordered regions near grain boundaries or large inclusions.
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ODS and KP-4 ODS.

Under a 1.1 T magnetic field, the intensities for the two directions were integrated
within a 20 degree sector in each direction (⊥ and || to H). The resulting intensities are
shown in Figure 14.
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To quantitatively analyze the nanostructures of the three steels, the SANS data were
fitted using the combined models provided in the Irena SANS package for the Igor
Pro 9.0 software [49].

In the calculation model, two types of particles were assumed, and the contrast values,
∆ρox for oxides and ∆ρcl for clusters, were calculated. The scattering intensity in function
of the momentum transfer was approximated by the following formula:

I(Q) = C exp(−Q2R2
g

3 ) + ((∆ρox
nucl)

2
+

(∆ρox
mag)

2sin2α)
∫ ∞

0 nox(R)Vox
(

R)2 F(Q, R)2dR + ((∆ρ cl
nucl)

2
+

(∆ρ cl
mag)

2
sin2α)

∫ ∞
0 ncl(R)Vcl

(
R)2 F(Q, R)2dR + B(1)

(1)

Here, Q is a scattering vector, defined as Q = (4π sin θ)/λ, where λ is the wavelength
and 2θ is the scattering angle. B is the incoherent background. The first term is the Guinier
scattering at small Q from large, coarse precipitates [49,50]. The second term is the in-
tensity scattered by a distribution of precipitates [36,51,52]. ∆ρnucl, mag is the magnetic
(mag) and nuclear (nucl) scattering length density (SLD) difference (contrast) between the
matrix and the precipitate; α is the angle with respect to the magnetic field direction. R
is the radius of a spherical precipitate, V(R) = 4

3 πR3 is the volume of an individual pre-

cipitate, n(R) = N
Rσ

√
2π

exp
(
− (ln(R)−µ)2

2σ2

)
is the lognormal size distribution of precipitates,∫ ∞

0 n(R)dR = N is the total number of precipitates, and F(Q, R) = 3 sin(QR)−QRcos(QR)
(QR)3 is

their form factor. Equation (1) was used to calculate the size distributions of precipitates,
their average sizes, and their number densities.

The results of previous TEM and APT analyses were used to constrain the size values for
the oxide particles and the clusters, respectively. Equation (1) was used to analyze the SANS
data obtained without and with a magnetic field. The scattering intensity in measurements
without magnetic fields was fitted with contrast values ∆ρ2 = ∆ρ2

nucl + 2/3 ∆ρ2
mag [53,54],

whereas for the measurements in 1.1 T, the two intensities (⊥ and || to H) (Figure 13) were
fitted with ∆ρ2 = ∆ρ2

nucl + ∆ρ2
mag in the case of the direction ⊥ to H and with ∆ρ2 = ∆ρ2

nucl
for the direction || to H.

For an accurate analysis of the SANS data, complementary information on the chemical
compositions of the clusters and the matrix was needed. An overview of the data obtained
by TEM and APT and used for the SANS analyses is provided in Table 3. The ∆ρnucl,mag val-
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ues were also calculated from these data using the method described in [36]. Table 3 shows
also the A-factor values for different inclusions calculated with the following formula:

A(Q) = 1 +
∆ρ2

mag

∆ρ2
nucl

(2)

The fitting procedure was carried out through multiple iterations: while keeping the
model’s particle size close to the ones gathered from TEM and APT, a best possible fit was
attempted with the modeling within the Irena SANS package for the Igor Pro software. If
the values during the fit deviated too much from the ones seen by TEM and APT, another
fitting iteration was attempted with different starting parameter values. To calculate the
magnetic contribution, the 2D scattering patterns were integrated within a 20◦ angle along
both the horizontal and vertical directions.

The results of SANS analysis are collected in Tables 4 and 5. Table 4 shows the results
derived from the Guinier term of the model compared to the average sizes of large particles
estimated from TEM images. The sizes of the larger oxides were estimated from a small
number of objects on the TEM images and should be considered only as estimates. Despite
some differences, the data of TEM and SANS were in a good agreement, considering
that estimation of large oxide inclusions was difficult using TEM methods due to the low
number density. In this respect, the analysis of the scattering curves in the region of small
Q allowed us to determine the average sizes of such inclusions with better accuracy.

Table 4. SANS and TEM results for large-sized particles.

Steel TEM Oxide Size, nm 2Rg (No Field) 1/2*, nm 2Rg (1.1 T Field) 2*, nm

Eurofer ODS ~40 46/35
(||H) 39

(⊥H) 37

13.5Cr-Fe3Y ODS ~50 50/40
(||H) 45

(⊥H) 43

KP-4 ODS ~50 54/46
(||H) 46

(⊥H) 43

* 1—YS-SANS, 2—CSNS-SANS.

Table 5. Comparison of SANS results obtained with different magnetic fields to TEM and APT.

Steel

TEM APT SANS (No Field) 1/2* SANS (1.1 T Field) 2*

d, nm N,
1022 m−3 d, nm N,

1022 m−3
Object
Type d, nm N,

1022 m−3
Azimuthal

Angle d, nm N,
1022 m−3

Eurofer
ODS

6 ± 2 4 ± 1 2 ± 1 30 ± 5

Oxide 4/6 5/1.7
(||H)

6
3.3

(⊥H) 1.2

Cluster 2/3 40/25
(||H)

2
42

(⊥H) 35

13.5Cr-Fe3Y
ODS

6 ± 1 0.8 ± 0.2 2 ± 1 32 ± 4

Oxide 5/7 3.5/0.5
(||H)

6
3.2

(⊥H) 1.1

Cluster 2/2 29/27
(||H)

2
37

(⊥H) 28

KP-4 ODS 5 ± 2 2 ± 1 3 ± 1 9 ± 2

Oxide 7/7 2/1.6
(||H)

6
1.2

(⊥H) 0.8

Cluster 3/3 6/4.6
(||H)

2
11.3

(⊥H) 6.2

* 1—YS-SANS, 2—CSNS-SANS.
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Comparison of various results of fitting the SANS data showed that the number
densities of inclusions (both oxides and clusters) were usually higher when using data
obtained in the direction of scattering along the applied magnetic field (when only nuclear
contrast is taken into account). The use of scattering data in the direction perpendicular to
the magnetic field, or for scattering without a magnetic field (when the magnetic domains
in a ferromagnetic material are oriented randomly), allowed for slightly improvements to
the result. Notably, since the stoichiometry of oxides was determined only by chemical
analysis of large particles, it can be assumed that the chemical composition of small oxides
(and their corresponding SLD) could differ from that of larger oxides. This point requires
additional clarification and may lead to differences in the calculated number densities of
the inclusions. In general, the data obtained by local TEM and APT methods agree fairly
well with the results of the SANS analysis.

Table 5 presents the results of the fitting of SANS data compared to TEM and APT.

3.3. Analysis of Hardening

Data obtained from complex analysis of the morphology of the ODS steels allowed us
to estimate the contributions of the different inclusions to the hardening. The dispersed bar-
rier hardening model (DBH model) was used to estimate the yield strength (see, e.g., [55]).
In this model, each barrier type contributes to hardening according to the Orowan formula:

∆σi = MTαiµb
√

Nidi (3)

where αi is the barrier strength; MT is the Taylor factor; µ is the shear module; b is the Burg-
ers vector modulus; and Ni and di are the number density and average size of the barrier.

Barrier values αi are different for oxide inclusions and clusters. According to data in
the literature, the coefficients chosen for the calculations were αc = 0.1 for clusters [56] and
αo = 0.63 for oxide inclusions [57].

In addition to small particles, grain boundaries and the matrix contributed to the total
hardening. The strengthening from grain boundaries was determined by the well-known
Hall–Petch relation:

σgb = kD−1/2, (4)

where D is the grain size and k = 338 MPa/µm.
Solid-phase hardening was considered for ferritic–martensitic steels: σm = 0.255 GPa [58].

Total hardening from all barrier types was calculated using the following formula (see,
e.g., [59]):

σy =
√

σc2 + σo2 + σm + σgb, (5)

where σc, σo, and σgb represent the hardening from clusters, from oxide particles, and from
grain boundaries, respectively, and σm is the solid-phase hardening.

Hardening-to-hardness conversion was performed using the formula Hv = 3 ∗ σy [59].
The results of the hardness calculations are given in Table 6.

Table 6. Comparison of calculated hardness for TEM&APT and SANS data.

Steel TEM and APT,
GPa

SANS
(No Field) 1/2*, GPa

SANS
(1.1 T, ||H) 2*, GPa

SANS
(1.1 T, ⊥H) 2*, GPa

Microindentation,
Hv, GPa

Eurofer ODS 4.2 ± 0.2 4.1 ± 0.2/3.6 ± 0.2 4.1 ± 0.2 3.3 ± 0.2 3.8 ± 0.2
13.5Cr-Fe3Y ODS 2.9 ± 0.2 3.6 ± 0.2/2.7 ± 0.3 3.7 ± 0.2 3.0 ± 0.3 3.0 ± 0.2

KP-4 ODS 3.3 ± 0.2 3.5 ± 0.2/3.4 ± 0.2 3.1 ± 0.3 2.9 ± 0.3 3.2 ± 0.3

* 1—YS-SANS, 2—CSNS-SANS.

4. Discussion

To identify the features of various material models in the analysis of SANS curves,
the calculated hardness values were compared with the data on the micro-indentation of
Eurofer ODS, 13.5Cr-Fe3Y ODS, and KP-4 ODS steels (see Figure 15). The worst results



Nanomaterials 2024, 14, 194 13 of 16

were demonstrated by models that took into account only one type of inclusion (oxides
or clusters). The model which took into account only oxides and nuclear scattering gave
significantly inflated values. Taking into account magnetic scattering somewhat improved
the results. The model which took into account only clusters resulted in clearly underes-
timated hardness values. The closest values of hardness to the experimental data were
demonstrated by a model with two types of inclusions for all considered scattering cases:
along the external magnetic field (where there is a contribution of only nuclear scattering),
perpendicular to the external magnetic field, and without an external field (where in addi-
tion to nuclear contrast there is a contribution of magnetic scattering). For all three steels,
the best result for the calculated hardness was demonstrated by a model with two types of
inclusions, using SANS data without an external magnetic field. One of the reasons for this
may be that the applied field did not allow us to achieve the saturated magnetization of the
steels. Note that, in a number of works, a significantly larger magnetic field (up to 1.5 T)
was applied for the purpose of reaching saturation (e.g., [32]).
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5. Conclusions

Three ODS steels developed in Europe and Japan were studied by TEM and APT, as
well as two SANS setups, YS-SANS and CSNS-SANS, using magnetic and non-magnetic
small angle scattering. The number densities and sizes of the nanoscale oxide inclusions
and clusters in these steels were analyzed. According to TEM and APT, the average size of
oxide inclusions in these steels was about 5–6 nm, and the number density was between
0.8 × 1022 m−3 and 4 × 1022 m−3. The average size of the clusters in these steels was about
2–3 nm, and the number densities varied from 1 × 1023 m−3 to 3.2 × 1023 m−3. TEM
and APT data allowed us to evaluate the chemical compositions of the oxides, clusters,
and matrix. These data were used to calculate the nuclear and magnetic contrasts and
the estimated size ranges of oxides and clusters, and were used further in the analysis of
SANS data.

From the SANS experiments, multiple sets of data were obtained, either with no
external magnetic field or with a field of 1.1 T. The number densities and the sizes of the
particles in the studied materials were obtained by model fitting. The same scattering
curves were fitted with an assumption that only one type of inclusion was present, as
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well as that both clusters and oxides were present. The studied steels were ferromagnetic
materials, and the role of magnetic scattering was evaluated in the analysis of SANS data.

The data obtained by different techniques and experiments were compared using
the DBH model as well as microhardness measurements. It was shown that modeling
the SANS data with both oxides and clusters was necessary to obtain a good agreement
between the calculated hardness and the experimentally determined microhardness. It was
also shown that the modeling of SANS measurement data, when performed without an
external magnetic field or averaged in a sector perpendicular to the field direction, showed
better agreement with the microhardness values, which suggests that both nuclear and
magnetic contrasts of particles should be evaluated for the modeling of intensity curves.

Overall, the present study demonstrated that using SANS in a combination of TEM and
APT leads to a better agreement between the hardness calculated based on the morphology
obtained in the scattering experiments and the experimental hardness values.
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