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Abstract: We show—to our own surprise—that total electronic energies for a family of m × n
rectangular graphene flakes can be very accurately represented by a simple function of the structural
parameters m and n with errors not exceeding 1 kcal/mol. The energies of these flakes, usually
referred to as multiple zigzag chains Z(m,n), are computed for m, n < 21 at their optimized geometries
using the DFTB3 methodology. We have discovered that the structural parameters m and n (and
their simple algebraic functions) provide a much better basis for the energy decomposition scheme
than the various topological invariants usually used in this context. Most terms appearing in our
energy decomposition scheme seem to have simple chemical interpretations. Our observation goes
against the well-established knowledge stating that many-body energies are complicated functions of
molecular parameters. Our observations might have far-reaching consequences for building accurate
machine learning models.

Keywords: graphene flakes; energy decomposition; DFTB; multiple zigzag chains

1. Introduction

Quantum mechanical studies of large graphene flakes are obstructed to a large degree
by the prohibitive cost of their calculations [1,2]. In principle, the total electronic energy of
a rectangular graphene flake at its equilibrium geometry is a unique function of two param-
eters, m and n, corresponding, respectively, to the width and the height of the flake. Taking
into account the complicated nature of this quantity and quite involved process associated
with its determination—the diagonalization of the molecular Hamiltonian built from vari-
ous integrals computed on an atomic basis followed by subsequent geometry optimization
using gradients associated with such a non-additive many-body-like Hamiltonian—it has
always been assumed that the energy function must be fairly complicated and cannot be
determined in a close form as a simple function of the parameters of the model. On the other
hand, in the limit m, n → ∞, a rectangular graphene flake converges toward an infinite
graphene sheet, the physics of which is relatively simple, being sufficiently well described
with a unit cell containing just two carbon atoms. Recent progress in the exploration of
the chemical space using machine learning (ML) approaches [3–10] suggests that finding
an energy function E = E(m, n) can be, in fact, possible; after all, the intrinsic success of
machine learning algorithms is based on the implicit existence of such a function encoded
in the structure of the ML model. The explicit extraction of the quantum mechanical energy
of such a system from the ML model and expressing it in a closed form as a function of
the parameters m and n could be advantageous for understanding the system better and
possibly for finding new important descriptors pertinent to such a formulation.

In the current study, we attempt to construct such an energy function, E(m, n), restrict-
ing our attention to a single family of rectangular, hydrogen-terminated graphene flakes:
multiple zigzag chains Z(m, n). (See Chapter 9 of [11,12]; for a graphical definition of these
structures, see Figure 1). It is straightforward to establish that for a hydrogen-terminated
multiple zigzag chain Z(m, n) of width m and height n, the number of carbon atoms is
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equal to 2mn + 2m + 2n, the number of hydrogen atoms is equal to 2m + 2n + 2, and the
total number N of electrons is equal to 12mn + 14m + 14n. Taking into account that most
quantum chemical methods require a diagonalization step [13], which scales according
to N3 with the number of electrons (see, for example, p. 191 of [1]), we can estimate that
for large m and n, the cost of quantum chemical calculations for Z(m, n) is proportional to
m3n3. It is therefore natural to ask whether the quantum chemical energy of a graphene
flake and the corresponding equilibrium molecular geometry can be obtained by some
simpler means. In the current paper, we demonstrate that indeed, for multiple zigzag
chains Z(m, n), such a shortcut can be designed, and the energy function E(m, n) of fully
optimized multiple zigzag chains Z(m, n) can be determined without quantum chemical
calculations to a surprisingly high level of accuracy. We believe that a similar approach
could also be designed for other carbon nanostructures, including graphene flakes [14,15]
of other shapes, carbon nanotubes [16], and fullerenes [17,18].

Figure 1. Two examples of multiple zigzag chains Z(m, n). The index m represents the length of the
zigzag edge of these rectangular flakes, while the index n corresponds to the length of the armchair
edge. The shape and the symmetry of the flake are slightly different for even and odd values of n.

2. Previous Studies

The past two decades witnessed several computational attempts to correlate wide
ranges of electronic, physical, and chemical properties of molecular systems with their
sizes. Schwerdtfeger and co-workers, for instance, discovered that the cohesive energies
of gold [19], tin [20], and cesium clusters [21] depend on the inverse cube of the cluster
size. The extrapolation of these theoretical models yielded cohesive energies with accuracy
ranging from 0.05 to 0.67 eV, depending on the metal species. The total electronic and
atomization energies of polyacenes (consisting of 1–8 benzene rings) were shown to change
linearly with the number of benzene units and with the number of electrons [22]. The
harmonic frequencies (and consequently the positions of the associated Raman lines) for
acoustic-like vibrational modes in octahedral and tetrahedral nanodiamonds were shown
to have inverse linear scaling with respect to the number of carbon atoms [23], allowing the
determination of the size of the nanodiamonds directly from the Raman spectra. Another
typical example concerns the correlation between the maximum emission wavelength of
quantum dots and their sizes; it is interesting that the color of a quantum dot is determined
primarily by its diameter [24–26], while its chemical identity plays only a lesser role. Yet
another—somewhat extreme—example is constituted by the recent discovery of a simple
Rydberg-like formula based on the classical theory of atoms, which is capable of predicting
qualitatively the distribution and energetics of the first 10–15 atomic excited states for a wide
collection of atoms [27]. These diversified examples suggest that, in many cases, simple
models can provide an accuracy comparable with that of an exact quantum treatment. It
is important to understand and develop such models and to analyze their strengths and
limitations as in many cases their somewhat surprising and seemingly accidental numerical
robustness can be explained by elementary scientific principles, some of which are yet to
be discovered [28–32].

To the best of our knowledge, the only work on graphene flakes relevant to our inves-
tigations was performed by Gutman and his collaborators, who found that the topological
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resonance energies, total π-electron energies, and Dewar resonance energies of 118 cata-
condensed isomers of heptacene with the formula C30H18 can be represented as simple
functions of either the corresponding total number of Clar covers C or the Kekulé number
K [33]. In each case, a simple, few-parameter formula was found, which was capable of pre-
dicting resonance energies of all the isomers with errors no larger than 0.5%. This work was
further extended to the topological resonance energies of 132 isomers of C22H14, C24H14,
C26H14, C26H16, and C28H16, for which the maximal error was found to be smaller than
1.2% [34]. It is important to stress here that the fitting parameters in the energy formulas
were distinct for different numbers of carbon and hydrogen atoms.

The original reason to start working on the current project was to correlate various
graph-theoretical and topological descriptors of graphene flakes Z(m, n), including the Clar
number Cl, the Clar count C, the Kekulé count K, and the Zhang–Zhang polynomial [35–43],
with the total electronic energies E(m, n) of these structures. Over the last decade, we have
been involved in constructing a coherent mathematical theory of such invariants [44–47],
so it was important for us to establish whether these topological invariants could be useful
for the practical determination of the physicochemical properties of graphene flakes. In
Appendix A, we show that no positive correlation exists between these quantities, suggest-
ing that the Kekulé count K, the Clar count C, and the Clar number Cl do not constitute
useful descriptors for reproducing the total electronic energies of rectangular graphene
flakes Z(m, n) of various sizes. However, in the process of verifying this hypothesis, we
have accidentally discovered that the total energies E(m, n) of the graphene flakes Z(m, n)
can be expressed as a surprisingly simple function of the structural parameters m and n,
with most of the terms appearing in this formulation having simple chemical interpreta-
tions. In the first steps of the verification process, these simple functions of the structural
parameters m and n were added to the topological fitness function in order to improve the
correlation. We immediately noticed that they constitute a much better fitness function
than the topological descriptors; moreover, it soon turned out that removing the topolog-
ical descriptors from the fitness function does not really lower the quality of the fit. A
detailed explanation of the process of constructing an optimal set of structural descriptors
is discussed in the next two Sections.

3. Computational Methodology and Data Analysis

The molecular structures of the here-analyzed multiple zigzag chains Z(m, n) with m,
n = 1, . . . , 20 were optimized using the third-order density-functional tight-binding (DFTB3)
method [48] in conjunction with the 3OB parameter sets [49] using the DFTB+ 1.2 software [50].
The DFTB charge convergence criterion was selected as 10−12 a.u. Most of the studied
systems displayed small or negligible HOMO-LUMO gaps. Consequently, their electronic
temperature was set to either 0 K (for 153 structures corresponding to smaller values of m
and n) or to 0.0001 K (for 247 quasi-metallic structures corresponding to higher values of
m and n). Each optimization was performed by alternating between the steepest descent
and conjugate gradient procedures in order to accelerate the calculations and to ensure con-
vergence to a global minimum. The force convergence criterion (10−7 a.u.) corresponded
to a very tight optimization. The resulting equilibrium geometries of the optimized flakes
were planar.

It is possible that some graphene flakes may be subject to Jahn–Teller distortions,
resulting in their non-planar geometry. This effect is probably strongest for flakes without
hydrogen termination, where the deficiencies in chemical saturation of carbon atoms give
rise to quite complicated electronic structures and, consequently, to open-shell characters
and considerable degeneracies in the one-particle energy spectrum. Non-planarity de-
formations, allowing us to lift this degeneracy and to increase the percentage of doubly
occupied levels, might be an important factor in lowering the total energy during the energy
optimization process. We suspect that for the class of the hydrogen-teminated graphene
flakes studied in our paper, this effect might be somewhat less pronounced owing to the
well-defined, chemically saturated electronic nature of each of the flakes. An obvious way
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to verify whether a given flake is planar or non-planar is an inspection of the harmonic
vibrational modes. Performing such a task for all the here-studied flakes is formidable
due to its computational complexity. However, to answer one of the referee’s comments,
we have performed DFTB+ harmonic frequency calculations for two medium-size flakes,
Z(10, 10) and Z(15, 15). All the harmonic frequencies of Z(10, 10) and Z(15, 15) turned out
to be positive, showing that both these flakes are in fact planar, despite the fact that their
electronic structure is metallic with 4 electrons distributed among 3 quasi-degenerate MOs
with the occupation pattern 1.6:1.3:1.1 for Z(10, 10) and with 2 electrons distributed among
4 quasi-degenerate MOs with the occupation pattern 1.1:0.4:0.3:0.2 for Z(15, 15). These two
sets of calculations do not provide a proof that all the flakes studied by us are planar, but
we feel that they provide quite a strong argument supporting this idea.

The set of total DFTB3 energies {E(m, n) : m, n = 1, . . . , 20} of the fully optimized struc-
tures of Z(m, n) was analyzed as follows. First, we selected a family of J bivariate functions
A1(m, n), A2(m, n), . . . , AJ(m, n) in order to construct an energy approximation Ẽ(m, n)

Ẽ(m, n) = c1 A1(m, n) + c2 A2(m, n) + · · ·+ cJ AJ(m, n) (1)

where {ck} was the set of fitting coefficients to be determined via the least-square fitting
procedure. In principle, the coefficients {ck} in Equation (1) could be determined using
all the available energies E(m, n) in the fitting process. However, such a solution is to
be avoided if one also aims at an expression applicable to larger values of m and n than
those included in the fitting set. As described later in Section 4, the structures Z(m, n)
with low values of m and n do not closely follow the trends observed for the larger
structures. Therefore, to avoid outliers in the fitting process, we decided to discard the
smallest structures from our analysis. Our detailed reasoning showing how to decide which
structures should be avoided in the fitting process is presented in the next section; here, we
merely mention that the smallest value of m retained in our analysis is denoted by M, and
the smallest value of n, by N.

The coefficients ck are found by minimizing the following 2-norm of the residual vector∣∣∣∣∣∣E − Ẽ
∣∣∣∣∣∣

2
=

√√√√√ 20

∑
m=M
n=N

(E(m, n)− Ẽ(m, n))2 (2)

The minimization leads to the least-square problem, which can be expressed as

min
{ck}

(||E − Ac||2) (3)

where c =
[
c1, c2, . . . , cJ

]T is the vector of the fitting coefficients,

E = [E(M, N), E(M, N + 1), . . . , E(20, 20)]T (4)

is the vector of energies used in the fitting process, and A is a (21 − M)(21 − N)× J matrix
with the elements

A(m−M)(20−N+1)+n−N+1,k = Ak(m, n) (5)

The least-square problem in Equation (3) was solved via the singular value decomposition
(SVD) [51,52] of the matrix A

A = UΣVT (6)

which allowed us to write c as
c = VΣ+UTE (7)

where Σ is the diagonal matrix containing the singular values of σi and Σ+ is a diagonal
matrix comprising inverses of non-vanishing singular values, 1/σi, and zeros otherwise. It
was found that all the singular values σi in Σ were always non-zero, so the inverse Σ+ in
Equation (7) could be computed with the full rank.
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The analysis of the fitting residues is based on the vector ∆ϵ = E − Ẽ = E − Ac. The
structure of the residual energy vector is as follows:

∆ϵ = [∆ϵ(M, N), ∆ϵ(M, N + 1), . . . , ∆ϵ(20, 20)]T (8)

where ∆ϵ(i, j) = E(i, j)− Ẽ(i, j). At times, to highlight the distinct behavior of E(m, n) for
small values of m and n, we extend this definition to

∆ϵ = [∆ϵ(1, 1), . . . , ∆ϵ(20, 20)]T (9)

even if the coefficients {ck} are optimized only for m ∈ M, . . . , 20 and n ∈ N, . . . , 20.

4. Construction of the Fit

As the main purpose of this research paper is to study the behavior of the energies
E(m, n) of the graphene flakes Z(m, n) as a function of the structural parameters m and n,
we start our investigation by presenting in Figure 2 a plot of E(m, n) as a function of m and
n. The computed energies, depicted with solid black circles, are arranged in equidistant
vertical columns, each corresponding to the same value of m. Interestingly and surprisingly,
the circles corresponding to the same value of n arrange themselves on straight (diagonal)
lines, which for the convenience of the reader are depicted using thin black lines in Figure 2.
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Figure 2. The energies E(m, n) of the optimized graphene flakes Z(m, n) can be arranged in the shape
of a trapezoid, in which the vertical lines correspond to constant values of m and the diagonal lines
correspond to a constant values of n.

The highly structured form of the computed energies shown in Figure 2, resembling a
trapezoidal lattice of diagonal and vertical lines, strongly suggests that the computed ener-
gies can be represented to a high level of accuracy by some analytical formula depending
linearly on the parameters m and n. Therefore, in the first attempt, we chose three functions,
A1(m, n) = 1, A2(m, n) = m + n, and A3(m, n) = mn, as a basis for constructing Ẽ(m, n).
The motivation behind this choice came from structural considerations. As mentioned previ-
ously, the number of carbon atoms is equal to 2mn+ 2(m + n), and the number of hydrogen
atoms is equal to 2(m + n) + 2. The number of the C–H bonds is equal to 2(m + n) + 2,
and the number of the C–C bonds is equal to 3mn + 2(m + n)− 1, while the number of
benzene rings in the graphene flake Z(m, n) is equal to mn. All these contributions can be
expressed using the three functions A1(m, n), A2(m, n), and A3(m, n) specified above. This
signifies that the selected functions should be capable of capturing all the energy effects
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associated with atomic contributions and with contributions corresponding to the localized
C–H and C–C bonds and delocalized aromatic bonds. One might alternatively treat the
graphene flake Z(m, n) as a macroscopic system. In this interpretation, A2(m, n) = m + n
corresponds to the perimeter of the flake, A3(m, n) = mn corresponds to the area of the
flake, and the choice of A1(m, n) = 1 is motivated by the finiteness aspect of each flake
containing 4 corners and 4 edges, regardless of its size.

As anticipated, the energy expression Ẽ(m, n) constructed using the set {1, m + n, mn}
allows us to capture most of the energy contributions, leaving out only relatively small
residuals ∆ϵ(m, n), whose distribution is presented graphically in Figure 3. The fit coeffi-
cients are c1 = 0.776231, c2 = 4.156603, and c3 = 3.436241; all values are given in hartrees
(Eh). Even though the obtained residuals ∆ϵ(m, n) constitute only a tiny portion of the
total energies E(m, n), for all practical purposes, the energy expression Ẽ(m, n) constructed
using the set {1, m + n, mn} is useless because the residuals are too large and they tend to
increase with increasing values of m and n. For m, n ≤ 20, the maximal absolute residue is
about 90 kcal/mol, a value considerably larger than the 1 kcal/mol anticipated for accu-
rate methods of quantum chemistry. On the other hand, a highly structured form of the
residuals distribution shown in Figure 3 suggests that an inclusion of further fit functions
in Ẽ(m, n) can considerably improve the quality of the fit. The shape of the distribution
shown in Figure 3 suggests that an appropriate fit function to be included in Ẽ(m, n) can
be expressed as A4(m, n) = m − n. Such a fitting function describes well the kite-shaped
pattern of the distribution shown in Figure 3 and carries the information about the m-n
asymmetry associated with the energy penalty corresponding to the departure of the flake
from the ideal square shape.
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Figure 3. Energy residual ∆ϵ(m, n) corresponding to the fit obtained with a set {1, m + n, mn}. Points
depicted in identical colors have identical values of m, and points depicted with identical symbols
have identical values of n. For the convenience of the reader, the energy residuum scale is given in
hartree (left axis) and in kcal/mol (right axis).

The energy expression Ẽ(m, n) constructed using the set {1, m + n, mn, m − n} repro-
duces the set of energies with much better fidelity. The resulting residuals ∆ϵ(m, n) are pre-
sented graphically in Figure 4. The maximal positive residue is reduced from 90 kcal/mol
to about 45 kcal/mol, while the maximal negative residue is reduced from −75 kcal/mol to
about −15 kcal/mol. Despite the fact that the residues have been substantially reduced by
the additional basis function, their magnitudes are still too large to construct a practically
useful expression for Ẽ(m, n). Before proceeding to finding an improved expression, let us
briefly discuss the important information inferred from the analysis of data in Figure 4.

(i) The fit coefficients are c1 = 0.776231, c2 = 4.156603, c3 = 3.436241, and c4 = −0.006627 Eh.
The first three coefficients are identical to the coefficients obtained with the set
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{1, m + n, mn}. Such a pronounced fit stability suggests that all the employed basis
functions represent some physical contributions to the energy.

(ii) The energy residuals grow with increasing values of m and n. This signifies that
the fitting formula cannot be extrapolated to large values of m and n without
substantial loss of accuracy.

(iii) The residues corresponding to m = 1 – 4 and n = 1 – 3 show distinct behavior
compared with the rest of residues corresponding to higher values of m and/or n.

(iv) The residues corresponding to 5 ≤ m ≤ 9 and to 4 ≤ n ≤ 6 show somewhat
distinct behavior compared with the residues corresponding to higher values of m
and n.
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Figure 4. Energy residuals ∆ϵ(m, n) corresponding to the fit obtained with a set {1, m + n, mn, m − n}.
Points depicted in identical colors have identical values of m, and points depicted with identical
symbols have identical values of n. For the convenience of the reader, the energy residuum scale is
given in hartree (left axis) and in kcal/mol (right axis).

The most important observation from the analysis given above concerns the difficulty
of constructing an energy expression Ẽ(m, n) valid at the same time for small and large
values of m and n: the finite small width (height) of graphene flakes Z(m, n) with m ≤ 4
(n ≤ 3) makes these structures dissimilar to a general graphene flake Z(m, n) with large
values of m and n. (This effect has been partially discussed in the literature; a discovery
that the ground state of linear polyacenes, i.e., the flakes Z(m, 1), is an open shell singlet
caused considerable stir in the chemical community at the beginning of the 2000s [53–56]).
Consequently, these structures need to be studied separately and cannot be used to construct
a general expression for Ẽ(m, n). The next several small values of m and n belong to the
transitional realm, in which the finite-size effects are still partially discernible. Therefore,
it is advantageous from our point of view to use in the fitting process only the energies
E(m, n) of the graphene flakes Z(m, n) with n ≥ N and m ≥ M, where the limiting values
of M and N remain yet to be determined. Motivated by this observation, we present
in Figure 5 the residuals ∆ϵ(m, n) obtained by using the fitting set {1, m + n, mn, m − n}
with N = M = 7 (left panel) and N = M = 10 (right panel). As expected, removing the
lower portion of data with small values of m and n makes the ∆ϵ(m, n) magnitudes almost
10 times smaller and opens further vistas for constructing a chemically useful expression
for Ẽ(m, n). Clearly, the results obtained with N = M = 10 are more accurate with all the
residuals ∆ϵ(m, n) with m ≥ 6 and n ≥ 9 falling within the window of ±2 kcal/mol of
chemical accuracy.



Nanomaterials 2024, 14, 181 8 of 18

- 
e
n
e
rg

y
 r

e
s
id

u
e
 �
�
�
[h

a
rt

re
e
]

-6

-4

-2

0

2

4

6

8

0 500 1000 1500

-0.010

-0.005

0.000

0.005

0.010

0.015

n =
 7

n
 =

 6

n
 =

 5n
 =

 4n
 =

 3

n
 =

 2

m
 =

 2

m
 =

 1

n
 =

 1

-6

-4

-2

0

2

4

6

8

0 500 1000 1500

-0.010

-0.005

0.000

0.005

0.010

0.015

n =
 7

n
 =

 6

n
 =

 5

n
 =

 4

n
 =

 3
n

 =
 2

m
 =

 2

m
 =

 1
n

 =
 1

Figure 5. Further improvement of energy residuals obtained using the fitting set {1, m+ n, mn, m− n}
and M = 7, N = 7 (left) and M = 10, N = 10 (right). For the meaning of M and N, see text. The
yellow background depicts region of ±2 kcal/mol corresponding to chemical accuracy.

The usefulness of the resulting energy expression

Ẽ(m, n) = 0.780851 + 4.154860 (m + n) + 3.436457 m n − 0.007869 (m − n) (10)

obtained with M = N = 10 was tested for its ability to predict the DFTB energies E(m, n)
of larger flakes Z(m, n). For this purpose, we chose 9 flakes with 25 ≤ m, n ≤ 35; for
detailed definitions, see Table 1. A graphical representation of all the residuals ∆ϵ(m, n)
computed using the energy expression Ẽ(m, n) given by Equation (10) is displayed in
Figure 6. The residuals ∆ϵ(m, n) of the 9 new flakes (marked with red triangles in the
left panel of Figure 6) are consistently too large to fall within the chemical accuracy limit.
Fortunately, the computed departure from the desired behavior is regular and suggests
how to improve the optimal energy expression Ẽ(m, n).
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Figure 6. (Left): The residuals for the 9 new larger flakes with 25 ≤ m, n ≤ 35, marked here with red
triangles, show a rather large systematic departure from the chemical accuracy limit and suggest that
the energy expression Ẽ(m, n) constructed using the fitting function set B = {1, m + n, mn, m − n}
and 121 DFTB energy values E(m, n) of smaller flakes with 10 ≤ m, n ≤ 20 cannot be easily ex-
trapolated to larger structures. (Right): Various means to solve this problem are discussed in text.
Here, we show that extending the fitting function set to H = {1, m + n, mn, m − n, m2, n2, n/m, m/n}
can substantially reduce the residuals for these 9 new larger flakes, making all of them smaller
than ±2 kcal/mol. The yellow background depicts region of ±2 kcal/mol corresponding to
chemical accuracy.

In principle, there are two obvious ways to reduce the energy residuals further. The
first one is based on an expansion of the fitting set by adding to it new functions of the
structural parameters m and n. Since the structure of the flakes Z(m, n) does not offer any
further obvious insights here, we have considered—somewhat ad hoc —the following four
additional functions: m2, n2, m/n, and n/m. Various expansions (labeled as C, D, E, F, G,
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and H) of the fitting set have been performed; their definitions and the resulting list of the
fitting coefficients is given in Table 2.

Table 1. Energy residuals |∆ϵ(m, n)| for larger graphene flakes calculated using the energy expression
Ẽ(m, n) and constructed for various fitting function sets with M = N = 10. Definitions of the fitting
sets (B – H) are given in Table 2.

m n
|∆ϵ(m, n)| (kcal/mol)

B C D E F G H

25 25 2.3 3.0 0.35 0.39 0.32 0.43 0.36
30 30 3.0 4.8 0.23 1.54 0.92 1.04 0.42
35 35 4.8 5.7 1.51 0.59 0.30 0.24 0.65
26 30 5.4 7.2 0.92 0.85 0.83 0.86 0.84
30 26 4.0 7.2 0.05 3.26 1.92 1.64 0.30
27 35 7.8 8.9 3.66 2.55 0.35 1.80 1.09
35 27 6.8 10.0 0.44 2.77 1.75 1.94 0.92
31 35 8.8 10.8 2.68 0.65 0.84 0.08 1.41
35 31 9.7 12.9 1.72 1.49 1.57 1.45 1.53

MAE 5.8 7.8 1.28 1.57 0.98 1.05 0.84

Table 2. The values of the coefficients ck (in Eh) calculated using various fit protocols. The last row
gives a decimal multiplier for each type of coefficient.

Set M, N
Ak(m, n)

1 m + n mn m − n m2 n2 m/n n/m

A 1 7.7623 4.1566 3.4362 . . . . . . . . . . . . . . .
B 1 7.7623 4.1566 3.4362 −6.6270 . . . . . . . . . . . .
B 7 7.8123 4.1550 3.4364 −7.7102 . . . . . . . . . . . .
B 10 7.8085 4.1549 3.4365 −7.8689 . . . . . . . . . . . .
B∗ 10 7.8835 4.1543 3.4365 −7.8967 . . . . . . . . . . . .
C 10 7.7803 4.1551 3.4365 −7.6720 −1.3128 . . . . . . . . .
D 10 7.9091 4.1542 3.4365 −7.1670 . . . 4.6793 . . . . . .
E 10 7.8809 4.1544 3.4365 −6.9701 −1.3128 4.6793 . . . . . .
F 10 7.7718 4.1544 3.4365 −8.4538 −1.3128 −0.3942 1.0152 . . .
G 10 7.9420 4.1543 3.4364 −7.8008 1.5278 4.6793 . . . −5.6842
H 10 7.8329 4.1544 3.4365 −9.2846 1.5278 −0.3942 1.0152 −5.6842
H∗ 10 7.8201 4.1543 3.4365 −9.0557 0.7103 −0.3812 1.0613 −3.7572

(×10−1) (×10 0) (×10 0) (×10−3) (×10−5) (×10−5) (×10−2) (×10−3)

As expected, the inclusion of more variables in the fitting function Ẽ(m, n) leads to
a considerable reduction in the magnitudes of the energy residuals. (See Table 1 for the
detailed values.) Again, not surprisingly, the smallest magnitudes of the energy residuals
for the new 9 larger flakes were obtained with the largest here-tested fitting set H (for a
graphical representation, see the right panel of Figure 6); slightly larger values of the mean
absolute error (MAE) were obtained with the fitting sets D, F, and G. The similarity of these
magnitudes and small values of fitting coefficients for some of the fit variables (particularly
for m2 and n2) allows the identification of m/n as the most important new component of
the fit. The variable m/n, similarly to m − n, quantifies the departure of the flake from
squareness. Its intrinsic meaning in the energy decomposition of rectangular graphene
flakes and its distinction from the m − n variable remains to be understood.

The second way to reduce the energy residuals further is to include the energies of
some of these larger flakes in the fitting procedure. For the needs of the current anal-
ysis, we decided to include all 9 DFTB energies E(m, n) of the larger flakes listed in
Table 1 in the fitting set together with the previously used 121 DFTB energies E(m, n) with
10 ≤ m, n ≤ 20. This new fitting set was used together with the B = {1, m + n, mn, m − n}
and H = {1, m + n, mn, m − n, m2, n2, m/n, n/m} fitting functions sets; the resulting fitting
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protocols were abbreviated as B∗ and H∗, respectively. The list of the fitting coefficients for
B∗ and H∗ is given in Table 2. The performance of these protocols is summarized in Figure 7;
the left panel of this figure shows the residuals obtained with the B∗ protocol, and the right
panel shows the residuals obtained with the H∗ protocol. For B∗, including the 9 energies
of the larger flakes allowed us to reduce the energy residuals to less than ±2 kcal/mol.
The performance of H∗ is particularly stunning: all the energies E(m, n) with 10 ≤ m, n are
reproduced with practically vanishing residuals. Since all the previously used test points
were included in the fitting set, to test the quality of these two new protocols, we decided
to include two new large flakes, Z(25, 35) and Z(40, 35), in our analysis. (Note that for the
11 large rectangular flakes employed here for tests, the DFTB optimizations were performed
less rigorously, with the force convergence criterion being, at most, 3 × 10−5 a.u.) Figure 7
shows that both protocols perform well for these two new flakes, but the performance of
H∗ is outstanding. We feel that it is worth explicitly stating the accurate energy expression
Ẽ(m, n) constructed using the protocol H∗,

Ẽ(m, n) = 0.78201249 + 4.15429213 (m + n) + 3.43649230 m n

− 0.00905570 (m − n) + 0.00000710 m2 − 0.00000381 n2

+ 0.01061307 m/n − 0.00375723 n/m (11)
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Figure 7. Further improvement of energy residuals obtained using the set B∗ = {1, m + n, mn, m − n}
(left panel) and H∗ = {1, m + n, mn, m − n, m2, n2, n/m, m/n} (right panel). The star signifies that
121 DFTB energies E(m, n) with 10 ≤ m, n ≤ 20 are used for the fitting process along with the
9 additional DFTB energies of the flakes listed in Table 1. The residuals for the additional points are
marked with red triangles. Two new flakes, Z(25, 35) (with a residue marked with a blue triangle)
and Z(40, 35) (with a residue marked with a green triangle), are used to assess the quality of the
constructed energy expressions Ẽ(m, n). The yellow background depicts region of ±2 kcal/mol
corresponding to chemical accuracy.

5. Results and Discussion

Several interesting aspects of our work are worth highlighting:

(i) Figure 6 and the left panel of Figure 7 clearly show that the accuracy of the con-
structed energy expression Ẽ(m, n) deteriorates when one extrapolates it outside
of the fitting set. A similar effect is also expected for the best-constructed energy
expression Ẽ(m, n) in Equation (11) when used for very large flakes with m, n ≥ 60.
However, as the current study shows, such a problem can be easily circumvented
by adding a few new very large flakes Z(m, n) with relevant values of m and n to
the fitting set. For researchers interested in such extensions, we have included all
the DFTB input files in the Supplementary Materials Section of this manuscript.
The DFTB geometry optimization for the largest flake considered here, Z(40, 35)
with the molecular formula C2950H152, took approximately several weeks on a
100-core computer. The reader should be aware that the optimization of a larger
flake might take a considerably longer time. An interesting alternative here could
be a theoretical analysis of the contributions to the total energy from the finite
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edge effects and possibly quantifying such an influence using non-obvious, new
(m, n)-dependent basis functions. Such a development is expected to improve the
description of small flakes and to permit the extrapolation of the energy formula
to really large values of m and n that presently escape the possibility of direct
quantum chemical calculations.

(ii) Small rectangular graphene flakes are known for their various interesting chemical
deviations from the typical behavior of polycyclic hydrocarbons, including their
open-shell ground state [53–56] and pronounced radical character [57–63]. Our
work shows that larger flakes are more uniform, suggesting that the transition
from finite, pyrene-like, small flakes to infinite, graphene-like, large flakes happens
in the regime of m, n ≈ 10. To investigate this issue in more detail, we have
analyzed the distribution of the CC bond lengths and CCC bond angles in the
transition from small to large flakes. Before discussing the results, let us only
briefly comment that in the transition from small to large flakes, one would expect
that the bond lengths and bond angles would become more uniform, approaching
the values corresponding to an infinite graphene sheet, i.e., CC bond lengths of
1.42–1.43 Å obtained from the DFT calculations [64–67] and of 1.42 Å obtained
from experiment and an angle of 120◦ corresponding to a hexagonal geometry. The
results for square flakes defined by the formula Z(k, k) for k = 2–20 are presented
in Figure 8.
These results show that the convergence to the graphene-like values is fast. In
principle, the flakes Z(6, 6) already show distributions similar to Z(20, 20). In
addition to square-shaped flakes, it is interesting to check for similar convergence
properties for rectangular flakes. In Figure 9, we show analogous distributions
of CC bond lengths and CCC bond angles for two families of rectangular flakes,
Z(20, k) and Z(k, 20), with values of k = 2–20. In both cases, the convergence
toward the graphene-like regime is obtained faster than for the square flakes; this
effect is particularly fast for the polyacene-like flakes Z(20, k). Despite the fast
convergence to the graphene-like regime, the finite edge effects are clearly visible
in all the distributions, suggesting that the hydrogen termination and edge effects
constitute important local perturbations.

(iii) The parameters of the fit tabulated in Table 2 show surprisingly large inertias with
respect to the extension of the function set with new variables. This behavior
suggests that the energy decomposition has physical meaning, and its coefficients
can be interpreted as sums of various energy contributions. For a flake Z(m, n), the
contributions can be easily identified:

• The energy ϵH of a hydrogen atom with multiplicity 2(m + n) + 2;
• The energy ϵC of a carbon atom with multiplicity 2mn + 2(m + n);
• The energy ϵO of an aromatic ring with multiplicity mn;
• The energy ϵCC of a C–C bond with multiplicity 3mn + 2(m + n)− 1;
• The energy ϵCH of a C–H bond with multiplicity 2(m + n) + 2.

Unfortunately, all these contributions involve only 3 fitting functions ({1, m+n, and
mn}), showing that a unique determination of the five parameters ϵH, ϵC, ϵO, ϵCC, and
ϵCH from the three coefficients c1, c2, and c3 is not possible from our analysis. In the
future studies, we plan to extend our analysis to other structured graphene flakes,
including prolate rectangles Pr(k, m, n) [11,68], oblate rectangles Ob(m, n) [11,69],
and hexagons O(k, m, n) [11,46]. We expect that the distinct dependence of the
total energy on the structural parameters for these structures will help to uniquely
determine the five parameters ϵH, ϵC, ϵO, ϵCC, and ϵCH defined above.

(iv) The energies used to construct the energy expression given by Equation (11) in
addition to the usual size and shape dependence encoded by the parameters m
and n also include contributions related to the geometry relaxation effects. In our
study, all these components are treated collectively. It would be very interesting to
consider the relaxation effects individually, for example, by starting the geometry
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optimization from a rectangular patch of an idealized infinite graphene sheet with
uniform hydrogen terminations. The relaxation effects can be divided into three
types of contributions: (1) those corresponding to the relaxation of the carbon
sublattice, (2) those corresponding to the relaxation of the hydrogen sublattice, and
(3) those corresponding to the synergic relaxation of both lattices simultaneously.
Such an analysis is beyond the scope of the current study.

(v) Numerous studies tried to correlate various topological invariants with the ener-
getic stability of polycyclic aromatic hydrocarbons. The vast efforts of the graph-
theoretically oriented chemists over the last few decades have created substantial
literature on this topic. (Probably the best existing account describing the body
of results on the Kekulé count K is the monography of Cyvin and Gutman [11];
the results on other invariants are scattered throughout the literature.) Our study
may show that such an effort might be somewhat superfluous as similar effects
can be achieved more readily by correlating the energetics with appropriate struc-
tural parameters (and their simple algebraic functions) of the whole family of
analyzed structures.
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Figure 8. Distributions of the CC bond lengths (left) and CCC bond angles (right) in square flakes
Z(k, k) suggest that the graphene regime is already achieved for quite small flakes.
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Figure 9. Distributions of the CC bond lengths (left panels) and CCC bond angles (right panels) in
rectangular flakes Z(20, k) (upper panels) and Z(k, 20) (lower panels) suggest that the transition to
graphene-like regime is achieved faster than for square flakes.

6. Conclusions

We have computed the DFTB energies E(m, n) of rectangular graphene flakes Z(m, n)
with 1 ≤ m, n ≤ 20 at their optimized geometries. The resulting set of energies has been
used to construct an approximate energy expression Ẽ(m, n) for E(m, n) in a form of a
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linear combination of various simple functions of the structural parameters m and n. In
order to construct an accurate energy expression Ẽ(m, n), several important factors have
been explicitly considered in our work:

(i) It has been recognized that small graphene flakes Z(m, n) with 1 ≤ m, n ≤ 9 are
structurally dissimilar to larger flakes due to their finite-size effects. Those struc-
tures have been excluded from the fitting set, which finally comprised 121 energies
of flakes Z(m, n) with 10 ≤ m, n ≤ 20.

(ii) It has been noted that in order to be able to extrapolate the energy expression
Ẽ(m, n) outside of the fitting region, we need to include in the fitting set several
larger structures Z(m, n) with 20 ≤ m, n.

(iii) The set of fitting functions resulting from structural considerations and comprising
physically meaningful variables {1, m + n, mn, m − n} needs to be expanded to
{1, m + n, mn, m − n, m2, n2, n/m, m/n}. The physical interpretation of these new
variables remains to be understood.

(iv) Performance tests of the energy expression Ẽ(m, n) have been performed using
two additional graphene flakes, Z(25, 35) and Z(40, 35).

The best approximation to E(m, n) was produced using a fitting protocol abbreviated
as H∗ (for details, see Table 2); the explicit form of the resulting Ẽ(m, n) is given by
Equation (11). This expression is very accurate and falls withing the requirement of
chemical accuracy (i.e., the energy residuals ∆ϵ(m, n) are smaller than ±2 kcal/mol) for
all graphene flakes Z(m, n) with 10 ≤ m, n ≤ 20 used in the current study; in fact, all the
relevant residuals are almost negligible (for details, see the right panel of Figure 7).

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/nano14020181/s1, The list of 411 rectangular graphene
flakes together with their optimized DFTB energies is given in file DFTB_energies.txt. Molecular
structures of these flakes are given in the zipped directory DFTB_geometries. DFTB input files are
given in the zipped directory DFTB_input.
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Abbreviations
The following abbreviations are used in this manuscript:

ML Machine learning
DFTB3 Third-order density-functional tight-binding
HOMO Highest occupied molecular orbital
LUMO Lowest unoccupied molecular orbital
SVD Singular value decomposition

Appendix A. Correlations between Topological Invariants and Total Electronic Energies

The Kekulé count K and Clar count C of a multiple zigzag chain graphene flake
Z(m, n) can be computed directly from the Zhang–Zhang polynomial ZZ(Z(m, n), x) of
Z(m, n). (See Equation (21) of [70] and Equations (7) and (8) of [71].) We have

K ≡ K(m, n) = ZZ(Z(m, n), 0) (A1)

C ≡ C(m, n) = ZZ(Z(m, n), 1) (A2)

For an even number of zigzag chains, the ZZ polynomial of Z(m, 2n) is given by the
following determinantal expression [46]

ZZ(Z(m, 2n), x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

w0 w1 w2 · · · wn−1

w−1 w0
. . . . . .

...

0
. . . . . . . . . w2

...
. . . . . . . . . w1

0 · · · 0 w−1 w0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(A3)

where

wl ≡ wl(x) =
2

∑
j=0

(
2
j

)(
m + l
2l + j

)
(1 + x)l+j (A4)

An analogous expression for the ZZ polynomial of Z(m, 2n + 1) can be found in [46]. (See
Equation (39) of [46] for the determinantal expression and Equations (28) and (29) of [46]
for the matrix elements. Note that the meaning of the indices m and n in the current work
and in [46] is reversed.) Note also that the determinantal expressions for the Kekulé count
K of Z(m, 2n) and Z(m, 2n + 1) first appeared as Equations (14.34) and (14.35), respectively,
in the monography of Cyvin and Gutman [11].

In contrast to the quite involved determinantal expressions for K and C, the value of
the Clar number Cl of Z(m, n) is very simple:

Cl ≡ Cl(m, n) = n (A5)

This fact follows directly from the interface theory of benzenoids developed by
Langner and Witek [72]. (A detailed discussion on how to determine the Clar number
using the interface theory of benzenoids is given in Section 5.3 of [73].) In particular, the
multiple zigzag chains Z(m, n) belong to the family of regular n-tier benzenoids, and for
every regular n-tier benzenoid, the Clar number Cl is equal to the number of vertices in
the Hasse diagram associated with a given n-tier benzenoid. For multiple zigzag chains
Z(m, n), this particular poset is a fence (or a zigzag poset) with n elements (see the right
bottom corner of Figure 8 of [74]), so consequently, Cl = n.

Appendix A.1. Energies E(m, n) as Functions of lnK and ln C
A distribution of the DFTB energies E(m, n) and their correlation with the Kekulé count

K and Clar count C is presented in Figure A1. Both distributions are more complicated
than the almost doubly linear relationship with m and n shown previously in Figure 2.
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For fixed m, E(m, n) depends approximately linearly on lnK(m, n), while for fixed n, this
dependence is approximately cubic. Similar relationships also hold for C(m, n).
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Figure A1. The energies E(m, n) of the optimized graphene flakes Z(m, n) with 1 ≤ m, n ≤ 20 plotted
against the natural logarithm of the corresponding Kekulé count K ≡ K(m, n) (left) and Clar count
C ≡ C(m, n) (right). The shapes of the resulting distributions show more complexity than the similar
dependence on m and n plotted in Figure 2. For a fixed value of m, the energies E(m, n) change
linearly with the values of K(m, n) and C(m, n). For a fixed value of n, the energies E(m, n) exhibit
an approximate cubic dependence on the values of K(m, n) and C(m, n).

Appendix A.2. Energy Residuals for Various Fitting Sets Involving Only Topological Invariants

Figure A1 suggests that the DFTB energies E(m, n) depend logarithmically on the
topological invariants K(m, n) and C(m, n). It is to be expected that no valuable relations
can be obtained by a direct fit of E(m, n) to K(m, n) and C(m, n). Indeed, Figure A2 confirms
these expectations, showing that K(m, n) and C(m, n) cannot be used directly to construct
a useful energy approximation Ẽ(m, n).

Figure A2. Fitting the DFTB energies E(m, n) directly to the Kekulé count K and the Clar count C
produces very large energy residuals. The fitting sets are {1,K} for the (left) panel, {1, C} for the
(middle) panel, and {1,K, C} for the (right) panel.

As expected, the correlation of the DFTB energies E(m, n) with lnK and ln C is
much better. The energy residuals from fitting E(m, n) to the sets {1, lnK}, {1, ln C}, and
{1, lnK, ln C} are shown in Figure A3. The residuals show a large degree of structure, but
their numerical values are approximately 1000 times larger than the residuals obtained by
a fit to a set {1, m + n, mn} of simple structural parameters. Motivated by this observation,
we discontinued working with the topological parameters K and C in this study, focusing
entirely on fitting sets comprising simple algebraic functions of the structural parameters
m and n. Note that the Clar number Cl being equal to n is effectively accounted for in the
development presented in the main body of this paper.
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Figure A3. Fitting the DFTB energies E(m, n) to the natural logarithm of the Kekulé count K and
the Clar count C produces a much better fit than the direct fit to K and C shown in Figure A2.
Nevertheless, the resulting energy residuals are still huge (approximately 1000 times larger) in
comparison to a fit constructed using the structural parameters m and n and their simple algebraic
functions. The fitting sets are {1, lnK} for the (left) panel, {1, ln C} for the (middle) panel, and
{1, lnK, ln C} for the (right) panel.
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