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Abstract: Organic light-emitting diodes (OLEDs) are widely recognized as the forefront technology
for displays and lighting technology. Now, the global OLED market is nearly mature, driven by the
rising demand for superior displays in smartphones. In recent years, numerous strategies have been
introduced and demonstrated to optimize the hole injection layer to further enhance the efficiency
of OLEDs. In this paper, different methods of optimizing the hole injection layer were elucidated,
including using a suitable hole injection material to minimize the hole injection barrier and match the
energy level with the emission layer, exploring new preparation methods to optimize the structure
of hole injection layer, and so on. Meanwhile, this article can help people to understand the current
research progress and the challenges still faced in relation to the hole injection layer in OLEDs,
providing future research directions to enhance the properties of OLEDs.

Keywords: organic light-emitting diodes; hole injection layers; hole mobility; energy level matching;
post-treatment methods

1. Introduction

Since the significant discovery that Eastman Kodak launched commercial organic
light-emitting diodes (OLEDs) with a two-layer structure in 1987, the exploration of OLEDs
has begun and increased. In recent years, OLEDs have become the most popular future
display and lighting technology due to their superior characteristics, such as higher visual
experiences, lower power consumption, design flexibility, and so on [1]. Driven by the
rising demand for superior displays in smartphones, the global OLED market is nearly
mature now. However, OLEDs have also faced various challenges, such as shorter lifetime,
lower efficiency with severe efficiency roll-off, etc. The development of outdoor lighting
with OLEDs was impeded by the device degradation from exposure to ultraviolet light and
excessive moisture.

In order to enhance the performance of OLEDs, various techniques have been devel-
oped. One of the most effective strategies is the incorporation of hole injection layers (HILs)
between the hole transport layer (HTL) and electrodes. The HIL promotes the charge injec-
tion from the electrode to the emissive layer (EML), while preventing excitons from being
quenched by the electrodes at the same time. The typical device configuration that has
been widely reported includes indium tin oxide (ITO) (anode)/HIL/HTL/EML/electron
transport layer (ETL)/electron injection layer (EIL)/aluminum (Al) (cathode) (Figure 1).
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Figure 1. Device structure of a typical OLED.

This paper focuses on the latest progress in improving OLED performance by modify-
ing HIL, mainly in terms of materials, structure, preparation methods, and the influence of
post-treatment. We mainly reviewed the critical material strategies that were implemented
to achieve high-performance OLEDs using organic or inorganic hole injection materials.
Subsequently, the recently reported OLEDs based on different structures of preparation and
the effect of post-treatment methods on OLEDs were summarized. Finally, it concluded
with a discussion of perspectives and remaining issues for the future. The highlights are
summarized in Figure 2.
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2. Hole Injection Layer Materials

With the development of materials design and synthesis, new-type HILs with different
structures and functional groups appeared. An effective hole injection material must be
of relatively high glass transition temperature, good hole mobility for high conductivity,
and high triplet energy to block triplet exciton. In the quest to avoid charge traps or
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carrier recombination, energy level alignments and the presence of low interface states
are valuable [2,3]. Different materials provide different work functions, hole mobility, and
hole injection capabilities. Then, the selection of HIL materials significantly impacts the
performance of OLEDs.

To date, a wide range of HIL materials have been developed and extensively employed
to enhance the OLED performance. Here, we explored the HIL materials from various
categories, including organic materials and inorganic materials.

2.1. Organic Materials

Conductive polymers and organic small molecules are often used as HILs in OLEDs.
The requirements for HILs include excellent optical and electrical characteristics, such as
high conductivity, transparency, as well as low surface roughness [4–6]. In order to optimize
the HILs to enhance the OLED performance, the diffusion properties, morphological
stability, and environment friendliness of HILs are often considered. Figure 3 presents the
structures of organic materials used as HILs.
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To reduce the manufacturing cost, solution-processed organic HILs have been imple-
mented to enhance device performance [7–9]. Conducting polymers represent a highly
promising class of organic semiconductors due to their unique optical and electrical proper-
ties. For example, PEDOT:PSS, considered as one of the mostly widespread substances for
the preparation of hole injection/transport layers (HITLs) in solution-processed OLEDs, is
characterized by suitable energy levels, favorable hole mobility, and an easy ability to form
smooth films [10,11]. Amare Benor et al. also proved that carrier injection can be enhanced
by adjusting the work function (WF) of PEDOT:PSS, thereby improving the device power
efficiency (PE) [10].

However, PEDOT:PSS tends to corrode indium tin oxide (ITO) due to hygroscopicity
and strong acidity, which limits the durability and reliability of the devices. Moreover, it has
the potential to induce instability and profound deterioration in thin-film optoelectronic
devices [2]. Based on the above, Sha Wu et al. introduced a PH-neutral PEDOT:PSS to form
double-layer HILs with acidic PEDOT:PSS, which improved the OLED performance [12].
Mingguang Li et al. reduced the acidity of PEDOT:PSS HILs and constructed continuous
hole transport channels by using a thermal imprinting and vapor annealing method. Finally,
OLEDs with current efficiency (CE) of 36.62 cd A−1, PE of 27.60 lm W−1, and external
quantum efficiency (EQE) of 18.80% were obtained [13].
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More materials are also proposed to substitute PEDOT:PSS. For instance,
polythienothiophene:poly(perfluoroethylene-perfluoroethersulfonic acid) (PTT:PFFSA),
which was used as an HIL in OLEDs, can suppress the accumulation of charges at the
anode/HIL interface [14]. Compared to OLEDs featuring PEDOT:PSS as the HIL, the device
utilizing PTT:PFFSA as an HIL displays enhanced efficiency, slower luminance decay, and
slower increases in operating voltage.

The diffusion properties of the HIL materials will change the properties of HTLs and
should be considered. For instance, the tetrafluorotetracyanoquinodimethane (F4-TCNQ)
used as an HIL with different thicknesses diffuses into the HTL with different lengths and
depths and leads to the F4-TCNQ ionization and the p-type doping of F4-TCNQ with the
hole transporting material. The application of an electric field has been found to increase
both the diffusion depth and length of F4-TCNQ to the HTL. It was found that the diffusion
of a 1 nm thickness F4-TCNQ layer induced exciton dissociation within the EML and led to
a decrease in the stability of OLEDs [15,16].

Moreover, F4-TCNQ has electron affinity and morphological stability [17]. When
it is doped into other HILs, it can increase the HOMO level. Xiao-Lan Huang et al.
reported the use of a simple small-molecule organic HIL known as N,N,N′,N′-tetra(4-
methoxyphenyl)[2,2′-binaphthalene]-6,6′-diamine for OLEDs. When the material doped
with F4-TCNQ, the HOMO level increased from 4.68 eV to 5.27 eV, enhancing the hole
conductivity up to 2.64 × 10−4 S m−1 compared to the neat film of 1.68 × 10−4 S m−1 [18].

Biological materials are non-toxic and environmentally friendly, which was explored
as HILs in OLEDs. The nucleic acid bases (nucleobases) present in the DNA biopolymer,
which possess a diverse range of energy levels, can be easily thermally evaporated and
can be used as HILs without additional modification. The intrinsic physical and chemical
affinity between the thin-layer adenine and the gold electrode enhances hole injection,
leading to a significant increase in CE and luminance [19]. In 2012, Chih-Chia Cheng et al.
found that the physically cross-linked low-regioregular nucleobase functionalized poly(3-
thiophene)s (P3HTs) incorporating overhanging uracil groups (LR-PU) could significantly
smooth the surface and enhance solvent resistance, thermal stability, hole injection, and
electron-blocking ability of films. The prepared OLEDs had a maximum luminance of
6310 cd m−2 and a luminescence efficiency of 1.24 cd A−1, outperforming the OLEDs
with LR-P3HT and HR-P3HT as a mono HIL [20]. In 2015, PTC-U, a DNA-mimetic π-
conjugated poly(triphenylamine-carbazole) with pendent uracil groups, was employed as
an HIL. After that, Chih-Chia Cheng et al. prepared new poly(triphenylamine-carbazole)-
based adenine (PTC-A) as an HIL, which possessed high self-complementarity in both
solution and solid states due to the formation of adenine–adenine (A–A) pairs resulting
from induced hierarchical self-assembly. And the device performance based on PTC-A
had the highest efficiency compared with those utilizing PTC-U and PEDOT:PSS [21,22].
The structures of OLEDs with biomaterial HILs are shown in Figure 4, and the optical
properties of the devices with biomaterial HILs are shown in Table 1.
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Table 1. The optical properties of the devices with biomaterial HILs.

Commercial Symbol Work
Function [eV]

CE
[cd A−1] PE [lm W−1] EQE [%] Turn-On Voltage [V]

Maximum
Brightness
[cd m−2]

Ref.

LR-PU - - 1.24 0.37 3.7 6310 [20]
DNA - - - - 4.25 45,000 [19]
PTC-U - - 3.8 2.3 3.5 43,652 [21]
PTC-A - - 4.6 2.4 3 47,226 [21]

2.2. Inorganic Materials

Even though organic materials reduced the preparation cost, the improvement in
OLED efficiency is still limited. Transition metal oxides (TMOs) and two-dimensional (2D)
materials are often used inorganic HIL materials. Transition metal oxides (TMOs), like
molybde-num trioxide (MoO3), tungsten trioxide (WO3), and vanadium pentoxide (V2O5),
and metal sulfides like tungsten sisulfides (WS2), have been increasingly employed as HILs
due to their high technological compatibility, appropriate electronic characterization, and
low light absorption in the visible spectrum [23,24].

TMOs have been identified as promising candidates for replacing PEDOT:PSS as HILs
for OLEDs [25–28]. In 1996, Tokito et al. first used vanadium, molybdenum, and ruthenium
oxide films to modify the anode, which increased the hole injection and significantly
improved the OLED performance [29]. Matsushima et al. implemented 0.75 nm thick
MoO3 as HILs for OLEDs, and the ohmic hole injection effect formed by the ultrathin
MoO3 HIL significantly reduced the driving voltage [30]. You et al. reported efficient green
fluorescent OLEDs with lower turn-on voltage and excellent stability of over 50,000 h by
using the MoO3 layer as HILs [31]. Rui Liu et al. prepared a wavelength-tunable multicolor
microcavity (µC) OLED device only by controlling the thickness of the MoO3 hole injection
layer, and maximal brightness of 140,000 cd m−2 was obtained [32].

The thermally evaporated MoO3 has high conductivity and is beneficial to energy
alignment because of the oxygen vacancies, which can also be fabricated through a solution
method [32,33]. Xiaowen Zhang et al. used solution-processable MoOx HILs to increase
the luminous efficiency of OLEDs. It was found that the tailored surface of WF and proper
hole injection arose by the oxygen vacancies, optimizing the carrier balance in OLED and
leading to enhanced performance [33].

At the same time, the transmittance and conductivity of TMO also affect the perfor-
mance of devices. For example, although V2O5 has the highest WF compared with WO3
and MoO3, the device performance based on V2O5 HIL is inferior to the latter due to its
high resistance and low transmittance [34]. The structures of OLEDs with transition metal
oxide HILs are shown in Figure 5, and the optoelectric properties of OLEDs based on
transition metal oxide hole injection materials are shown in Table 2.

Two-dimensional (2D) materials such as transition metal dichalcogenides (TMDs) and
graphene have garnered significant attention. TMDs, such as MoS2, WS2, TaS2, and TiS2,
have been used in field-effect transistors, solar cells, and catalysis, due to their excellent
carrier transport properties [35]. WSx and MoSx nanodots were synthesized and used as
hole injection layers by Quyet Van Le et al. [36]. The synthesized MoS2 nanosheets were
composed of two layers with suitable surface WF and superior film morphology [37]. In the
research of Quyet Van Le et al., the introduction of 250 ◦C annealed (NH4)2WS4 between ITO
and NPB led to a reduction in Φh at the ITO/NPB interface from 1.3 V to 0.7 eV, surpassing
the PEDOT:PSS/NPB interface by 0.1 eV. Detailed representations of energy level alignment
diagrams are depicted in Figure 6a–c, and Figure 7 shows the characteristics of OLEDs
compared with the results. The lower Φh does not cause the higher OLED performance.
From the J–V characteristics shown in Figure 7d, at the same applied voltage, the hole
injection current density based on 250 ◦C annealed (NH4)2WS4 is found to be higher
compared to that based on PEDOT:PSS. The higher hole injection may lead to a carrier



Nanomaterials 2024, 14, 161 6 of 19

balance as well as balanced electron hole pairs and well-matched energy levels, resulting in
better performance of OLEDs based on 250 ◦C annealed (NH4)2WS4 layers [38].
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Table 2. The optical properties of OLEDs based on transition metal oxide hole injection materials.

Commercial Symbol Work
Function [eV]

CE
[cd A−1]

PE
[lm W−1] EQE [%] Turn-On Voltage [V]

Maximum
Brightness
[cd m−2]

Ref.

MoO3 - - - - 2.4 140,000 [32]
V2O5 5.6 65 35 - 5.8 153,600 [23]
WO3 5.6 12.7 - - [34]
MoO3 5.67 32.6 25.1 13.7 - - [34]
V2O5 5.8 - - 11 - - [34]
MoOx - - 5 - 5.2 - [33]
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injection barrier, HOMO: highest occupied molecular orbital). Reproduced with permission [38].
Copyright 2015, Elsevier B.V.
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Phosphomolybdic acid (PMA), a heteropoly acid containing MoO3 units, was also
used as an HIL for OLEDs due to its physical and optical properties. Compared with
PEDOT:PSS-based devices, lower driving voltage was demonstrated. It is worth mentioning
that the annealing temperature and atmosphere will have a significant impact on the
WF of PMA films, thus affecting the hole injection ability, resulting in different OLED
performances [39,40].

Graphene oxide (GO), because of its high WF and surface coverage, was synthesized
by a tip ultrasonic-assisted liquid-phase exfoliation method with a size distribution of
200–400 nm and used as an HIL for OLEDs [35]. The small-sized GO can introduce more
oxygen-containing functional groups due to increasing total edge, leading to a higher WF.
When used as an HIL in OLEDs, the carrier injection can be balanced by adjusting the
thickness of the GO HIL, thus improving the device performance [41]. Reduced graphene
oxide (RGO) HIL can be obtained through chemical and thermal treatment to GO, which
exhibits high mechanical strength, high thermal conductivity, electrical performance, and
electrochemical activity [42–45].

Perovskites, often used as active materials for LEDs and solar cells, have been used
as HILs due to their electronic properties. As we know, if the contact/adhesion between
interfaces is poor, the effective migration of holes from the ITO anode to the adjacent
organic layer will be hindered [46]. Thus, the better contacts of perovskite at the ITO/HIL
and HIL/HTL interfaces are beneficial for hole injection and transmission. A series of
different-thickness CH3NH3PbI3 films was prepared on ITO substrates by spin-coating.
Maximum brightness of 19,110 cd m−2 and EL efficiency of 3.242 cd A−1 were obtained for
the device with a 22 nm thick HIL. At the same time, the operation stability of OLEDs has
been significantly improved. All these improvements can be ascribed to a better balance
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of charge recombination in the OLED light-emitting zone and probably due to the non-
aqueous treatment of the HILs, which increases the chemical stability of the contact surfaces
of ITO and CH3NH3PbI3 [2].

Inorganic materials have shown great prospects in optoelectronic devices due to
favorable thermal stability, high charge carrier mobility, and suitable energy levels. It is
unfortunate that a relatively high temperature is needed to anneal the precursor film to
fabricate the inorganic HILs, which is detrimental in flexible optoelectronics devices [2]. The
structures of OLEDs with inorganic HILs are shown in Figure 8, and the optical properties
of OLEDs based on inorganic hole injection materials are shown in Table 3.
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Table 3. The optical properties of OLEDs based on inorganic hole injection materials.

Commercial Symbol Work
Function (eV)

CE
(cd A−1)

PE
(lm W−1) EQE (%) Turn-On Voltage (V)

Maximum
Brightness
(cd m−2)

Ref.

1-PNA-BPBPOX 4.86 - 2.8 - 5.7 - [47]
PTT: PFFSA - - - - - - [14]
MeSx 5.1 - - - 4 23,300 [36]
CH3NH3PbI3 - - 3.210 - 2.5 19,110 [2]
CuSCN - 17.6 5.6 9.2 5.6 26,424 [48]
CuSCN - 53.7 40.3 13.9 4.2 15,180 [49]
TAT-4C - - 39.2 11 2.7 - [50]
GO 5.16 73.14 53.95 20.63 3 131,600 [41]

3. Doped Hole Injection Layer

To overcome the obstacles like limited charge carrier concentration or insufficient
charge balance in the device due to large hole injection barriers, doping HILs is a proven
technique [51]. Doped materials can be roughly classified into three categories: polymer
materials, transition metal oxide materials, metal and metal compound materials.

3.1. Polymer Materials

In order to enhance the hole injection, electron blocking, and reduce the massive exci-
ton quenching that arises by using PEDOT:PSS as HILs, different materials are doped with
PEDOT:PSS [52–54]. By adjusting the proportion of PEDOT and poly(3-hexylthiophene)
(P3ht) monomer polymerization, Keon-Soo Jang et al. obtained a composite film with
controllable band gap and used it as an HIL in OLEDs [55]. Changyeon Lee et al. prepared
HILs with corrugated structures by doping PEDOT:PSS with a polystyrene nanosphere
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(PS NS). The enhancement of light extraction caused by the corrugated structure may be
the main factor improving the efficiency of the devices [56]. Tae-Hee Han et al. doped a
tetrafluoroethylene-perfluoro-3,6-dioxa-4-methyl-7octene-sulfonic acid copolymer (PFI) to
PEDOT:PSS and used it as an HIL (called GraHIL). The self-organized GraHIL has excel-
lent hole injection/electron-blocking capability because of the gradient WF constructed
by the self-organization of PFI, which hindered the exciton quenching at the HIL/EML
interface. The self-assembled monolayers can also increase the surface contact angle,
decrease root-mean-square (RMS) surface roughness, and improve WF [57]. Similarly,
Cheng-Chieh Lo et al. enhanced the performance of OLEDs with acetone and deionized
water-modified PEDOT:PSS as HILs. The former exhibited a 34% reduction in surface
hydrophobicity and a 200% increase in conductivity. Moreover, the modified HIL showed
high transmittances and low refractive indices [58].

Except for the PEDOT:PSS polymer, there are some other polymers, which can be
used as HILs. WenFen Su et al. balanced the charge injection using a poly (fluorene-co-
triphenylamine) (PFO-TPA) crosslinked HIL, and the maximum brightness efficiency of
the device was six-times higher than without the PFO-TPA layer [59]. Afsoon Fallahi et al.
used Go-doped Poly[(2,5-bis(2-(N,N-diethylammonium bromide)ethoxy)-1,4phenylene)-
alt-1,4-phenylene] (PPPNEt2.HBr) as an HIL to reduce the hole injection barrier between
ITO and HTL, thereby reducing the driving voltage of OLEDs [60].

As indicated in previous studies, surface roughness plays a significant role in device
efficiency [61,62]. In 2011, Anna De Girolamo Del Mauro et al. used pure polyaniline
(PANI)-poly(styrene sulfonate) (PSS) and dimethyl sulfoxide (DMSO)-doped PANI-PSS as
HILs for OLEDs, respectively. The former exhibited a smoother film and, thus, affected the
performance of corresponding OLEDs [63]. Mi-Ri Choi et al. mentioned that the doping
of a perfluorinated ionomer (PFI) in conductive polymer compositions could enhance the
hydrophobicity and WF. Therefore, a solution-processable HIL with a high WF composed
of PANI:PSS and PFI (PANI: PSS/PFI) was introduced, which improved the hole injection
efficiency and current efficiency of OLEDs. The results showed that high concentrations
of PFI play a decisive role in the increase in WF. In addition, when perfluorinated ionic
polymers were preferentially located at a film surface, they significantly increased the
surface ionization potential [64].

3.2. Transition Metal Oxide Materials

As mentioned above, the advantages of transition metal oxides can not only be used
as hole injection layer alone but also be co-doped with other materials. However, due to the
poor solubility of MPcs and transition metal oxides, the fabrication of a thin film typically
requires high-vacuum machining and complex operations, resulting in higher production
costs [2]. Metal phthalocyanines (MPcs), one of the well-recognized HIL materials in
OLEDs, have excellent thermal/chemical stabilities and electronic properties [65]. In 2012,
Linsen Li et al. reported a green OLED with MoO3-doped phthalocyanine (CuPc) as an
HIL, because of the complex of electrical charge transfer between MoO3 and CuPc, and
the devices showed a turn-on voltage of 4.4 V and PE of 4.3 lm W−1 at a brightness of
100 cd m−2. The issue of CuPc raising the device turn-on voltage is solved by the doping of
MoO3 [66]. Different concentrations of transition metal oxides doped with PEDOT:PSS as
HILs will affect the OLED performance due to the changed WF [67].

Tungsten oxide nanocrystals (WO3NCs) were introduced into PANI:PSS by a solution-
processed method and used as a hybrid HIL in OLEDs. The existence of PANI:PSS reduced
the surface defects and enhanced the film formation of WO3NCs efficiently without im-
pacting the conductivity of the OLED. WO3NCs improved the WF of the HIL, so that the
energy level matched well between the HIL and the anode [68].

In 2018, Weiwei Deng et al. reported an OLED with solution-processed WO3-P2O5,
which showed a lower driving voltage for 2.6 V and maximum brightness for 13,553 cd m−2,
respectively [62]. In 2019, Mangey Ram Nagar et al. reported that a solution-processed
OLED with MoO3:WO3 showed a PE of 22.9 lm W−1 at 1000 cd m−2, which was ascribed
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to the robust hole transporting ability, balanced charge carrier, and non-acidic nature of
transition metal oxide HILs [69].

3.3. Metal and Metal Compound Materials

Active metal materials with low ionization energy are a natural n-type dopant. They
are often used as an electron transport material to improve the electron transport capability
of devices. However, recent studies have found that the hole injection layer can be doped
with metal materials to improve the hole injection capacity.

For example, NiOx has attracted more and more interest in OLEDs due to its good
stability, deep valence band, and large band gap. However, the conductivity of a single
NiOx film is relatively low, and the energy level mismatch between the ITO and HTL
interface hinders the hole injection in OLEDs [70,71]. The doping process is an efficient
method to improve the conductivity and carrier mobility of NiOx [72,73]. Cu, Ag, and Li
have been used as dopants for NiOx films. This has shown that Cu and Ag can improve
the conductivity of NiOx films, and the synergistic effect can enhance the hole injection and
improve the efficiency of Li:NiOx-based OLEDs [9,74,75].

Meiling Shan et al. proved that in CuI-doped m-MTDATA layers, the free carriers
generated by charge transfer between CuI and m-MTDATA molecules lead to increased
conductivity and form ohmic contact at the ITO/HIL interface [76].

Metal nanoparticles (MNPs) developed localized surface-plasmon resonance (LSPR)
effects at the metal–dielectric interface and formed a bi-electrical layer on the anode, which
can optimize the Fermi level and improve the hole injection effectively [54,77,78]. The
introduction of MNPs, nanorods, nanowire arrays, and nanoclusters as HILs improved
the performance of OLEDs [79–83]. In 2018, Jayaraman Jayabharathi et al. used the size-
controlled Au-Ag NPs-PEDOT:PSS as an HIL, which has high IQE and light out-coupling
efficiency, synergistically enhancing OLED performances. Compared with PEDOT:PSS-
based devices, the PE, CE, and EQE of Au-Ag NPs co-doped green OLEDs were increased
by 67.3%, 96.1%, and 96.0%, respectively [84]. Similarly, the improved photoelectric perfor-
mance of GO/Au NP-based OLEDs can be attributed to the LSPR excited by the Au NPs,
which cause an enhanced emission intensity and effective energy transfer [85]. GO not only
helped to balance the hole and electron injection but optimized the energy level structure
of the device, further enhancing the OLED performance [86].

Hong Lian et al. prepared 0.5 wt% Fe3O4@Au, 0.5 wt% Fe3O4@G, or 0.25 wt%
Fe3O4@SiO2 NPs in mixed solutions. By introducing Au into Fe3O4 NPs, some emerging
synergistic effects as well as magnetic effects can be obtained. The combination of light scat-
tering, LSPR, and magnetism effects improved the electroluminescence efficiency of OLEDs.
Compared with PEDOT:PSS-based devices, OLEDs with optimal Fe3O4@Au/PEDOT:PSS
and Fe3O4@G/PEDOT:PSS composite HILs achieved enhancements of 35% in CE and with
Fe3O4@SiO2, NP-PEDOT:PSS HIL obtained a 26.8% increase in CE [87]. Dandan Zhang et al.
also mentioned that the Au coating can efficiently stabilize high-moment magnetic NPs. By
utilizing the Fe3O4@Au NPs (FOA NPs), the CE of Alq3-based fluorescent OLEDs obtained
a 90% increase compared with that without NPs. Additionally, when an external magnetic
field (EMF) of 0.5 T was applied, CE can be further increased by approximately 20% due to
increased singlet exciton induced by the spin-injected holes via FOA NPs. However, the
CE of Ir(ppy)2(acac)-based OLEDs decreased mildly. It indicated that the magnetic field
effects depend on the system and mechanism of emitting material [88].

4. Composite Hole Injection Layer Structure

Apart from the type of material, different device structures also affect the OLED
performance. So-called composite HIL refers to two or more layers of film acting as HILs
together. The performance of OLED devices is improved through the synergistic action
between the layers. And the energy level barrier between different layers is small, which
is convenient for carrier injection and, thus, improves device efficiency. The advantages
of composite hole injection layers are obvious. The composite HIL favors a continuous
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power function gradient as well as the formation of ohmic contacts to decrease the injection
barrier, thus increasing the hole injection capability and device performance.

These structures can intuitively display the above theories, such as the devices with
hole injection layers of Ag2O/MoOx, MoO3/NPB/MoO3/CBP, as even the concentration
gradient provided a stepped energy level, which greatly facilitated hole injection and,
hence, enhanced the injection current [89–91]. It has been reported that the presence of
charge transfer between MoO3 and NPB is also conductive to hole injection [92,93].

Yoon Ho Huh et al. proved that GO/MoO3/PEDOT:PSS three-layer stacked HIL has
better hole injection characteristics than pure PEDOT:PSS [94]. Ling Chen et al. prepared
WO3/PEDOT:PSS double-layer HILs. The double-layer structure provides a stepped energy
level arrangement and smoother surface. The prepared device has an EQE of 12.47%,
and a lifetime of 12,551 h was obtained without decreasing efficiency [95]. Lin Lu et al.
demonstrated that OLEDs based on F4-TCNQ doping 4,4′4′′-Tris(N-(2-naphthyl)-N-phenyl-
amino)-triphenylamine(2T-NATA)/2T-NATA composite HILs had lower operating voltages
and longer device lifetimes than single-layer devices [96].

Xiaowen Zhang et al. used a PEDOT:PSS/MoOx bilayer as an HIL for an ultravi-
olet OLED. The device based on a bilayer HIL exhibited a maximum EQE of 4.6% at
7.28 mA cm−2, an improvement of 59% and 31%, compared to single HILs of MoOx or
PEDOT:PSS devices, respectively. This can be ascribed to the variation in HIL WF. The
schematic inserted in Figure 9 displays an energy level diagram drawn from the measure-
ments of the UPS. The stepped energy level arrangement makes hole injection easier and,
correspondingly, promotes the EQE of devices [97].
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Figure 9. UPS spectra cut-off regions of ITO, ITO/MoOx, ITO/PEDOT: PSS and ITO/PEDOT:
PSS/MoOx. Inset: energy level diagram of UV OLED with PEDOT: PSS/MoOx bilayer HIL. Repro-
duced with permission [97]. Copyright 2017, American Institute of Physics.

Except for using a double-hole injection layer, the synergy between the hole injection
layer and other layers can also be used. For example, although the roles of HILs and hole
blocking layers were opposite, maximum luminance efficiency and PE could be obtained
when their thicknesses were in a specific combination [98].

5. Preparation Methods

At present, the most commonly used methods for preparing hole injection layers are
spin-coating and vacuum deposition. Spin-coating has been widely implemented in the
fabrication of polymer-based OLEDs due to its cost-effective and easy-to-manufacture
nature, but it suffers from low material utilization and difficulties in large-scale industrial
production [23,99]. The HIL prepared by vacuum evaporation has the advantages of high
purity and density, unique structure, and properties in the film. However, vacuum pro-
cessing is costly and requires complicated manufacturing equipment [23]. As alternatives,
some methods have been developed, like spray-coating, roll-to-roll coating, screen-printing,
blade-coating, slot-die coating, Langmuir–Blodgett (LB) deposition technique, nozzle print-



Nanomaterials 2024, 14, 161 12 of 19

ing technology, and brush coating [99]. Figure 10 shows a schematic diagram of different
preparation methods.
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duced under terms of the CC-BY license [100–102]. Copyright 2018, The Authors, published by
Elsevier Ltd.; Copyright 2019, The Authors, published by MDPI and Copyright 2018, The Authors,
published by MDPI. Reproduced with permission [103]. Copyright 2020, American Chemical Society.

LB technology can control the film arrangement and thickness evenly, and the prepa-
ration process does not require high temperature and pressure. The arrangement features
of carbon sheets lead to significant changes in electrical ability, which greatly influences the
performance of OLED devices. The LB deposition technique is superior in inhibiting the
wrinkling and folding of GO sheets substantially. The higher surface pressure makes the
reduced graphene oxide (RGO) sheets’ arrangement more compact and continuous, form-
ing compact and uniform conductive paths for efficient carrier transport. Yajie Yang et al.
used LB technology to incorporate orderly and controllable-thickness RGO flakes between
the ITO and HIL, which served to planarize the anode surface. The maximum brightness
of the device was about 6232 cd m−2, which was more than the spin-coating RGO de-
vices [104]. However, LB technology is limited in terms of expensive equipment and scarce
available materials.

Aqueous polymer-based HILs are usually made by large-area slot-die coating
due to the low material waste. Large-area OLEDs for illumination were fabricated
by Kwang-Jun Choi using slot-die coating. The performance of OLEDs with optimized
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slot-die-coated multiple layers is comparable to the performance of OLEDs with spin-
coated HIL or vacuum-evaporated HTL [105]. Moreover, Amruth C et al. obtained uniform
PEDOT:PSS films by modifying the parameters of slot-die processing, such as the speed of
coating, ink flow rate, and substrate temperature [101]. This method can also be used to
prepare flexible devices [106]. However, it is tedious to explore suitable parameters in the
slot-die technique for different materials, which is more suitable for large-scale production.

For fear of the influence of the high surface tension of water, a PEDOT:PSS solution
mixed with various concentrations of ethanol (EtOH) was employed as HILs by using the
nozzle printing technique. The CE of the device containing 90% ethanol solution reached
27 cd A−1 [102]. In 2021, Kwon-Yong Shin et al. successfully deposited PEDOT:PSS solution
diluted 90 vol% with EtOH as HIL by employing a micro-multi-nozzle spray-coating
method [107]. Despite the fact that the HIL preparation based on printing technology
has numerous benefits, like simple preparation, low cost, and suitability for large-area
processing, the uniformity of the prepared films is still a critical issue.

The brush-coating technique has a material utilization rate close to 100% and has no
material constraints. In 2021, red, green, blue (RGB), and white phosphorescent OLEDs
were manufactured by sequential brush coating on smooth HILs. The CE of the brush-
coated white OLED device was comparable to that of the spin-coated device, which was
about 29.3 cd A−1. Furthermore, the peak current efficiencies of the brush-coated red, green,
and blue phosphorescent OLEDs were 16.7, 30.4, and 20.9 cd A−1, respectively [99].

It is requisite to select appropriate film preparation methods according to the materials
of the functional layer and substrate.

6. Different Treatment Methods

The prepared hole injection layer will be affected by atmosphere, temperature, humidity,
and even solar radiation, thus affecting the device performance [84]. Therefore, people
try to use different post-treatment methods for hole injection layer to improve the device
performance.

Ultraviolet/ozone (UVO) treatment is proved to be an efficient method for HILs to
increase the WF, smooth the defects of films, and improve the hole injection [57,108,109]. WSx
and MoSx nanodots were synthesized and used as hole injection layers by Quyet Van Le et al.
After the UVO treatment, the WF of the nanodots was raised from 4.3–4.4 to 5.0–5.1 eV. The
maximum luminance efficiency of the UVO-MoSx based OLED was 14.7 cd A−1, while that
of PEDOT:PSS-based devices was 13.1 cd A−1. Moreover, the use of UVO-treated MoSx or
WSx nanodots as HILs could prolong the stability of OLEDs in air [36].

HILs prepared on a substrate with plasma treatment such as CF4 and Ar can also
improve device performance [110,111]. In a report by Joo Hyung Kim et al., the optimized
Ar plasma treatment can improve the physical characteristics of WO3 HIL and, thus,
enhance the device performance [111].

The influence of temperature and atmosphere on the preparation of the hole injection
layer cannot be ignored. Sul A. Choi et al. discovered that the interfacial morphology as
well as the phase state were altered by the substrate temperature, which had an impact
on the copper phthalocyanine (CuPc) OLED performance. As the substrate temperature
elevated from room temperature to 300 ◦C, the crystal structure of CuPc films changed
from an orthorhombic crystal α-phase to a monoclinic crystal β-phase. The α-phase favors
hole transport, and the β-phase increases the surface roughness. Consequently, 10 nm of
β-phase CuPc was added on top of the α-phase CuPc layer, which was used as an HIL.
This enhanced both the CuPc carrier migration and the device brightness in comparison
to the pure β-phase CuPc-based OLEDs [112]. Also, the structure and conductivity of GO
were altered by thermal treatment, thus forming RGO with better conductivity [104].

Furthermore, optimizing the carrier injection could employ the polar solvent vapor
annealing (PSVA) method, resulting in a significant reduction in charge accumulation at
the OLED interface. After the double-layer PSVA treatment, the efficiency roll-off of OLEDs
dropped from 33.3% to 26.6% [113].
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Light treatment of materials before preparing hole injection layers will also change the
performance of devices. Janardan Dagar et al. demonstrated that the device properties with
2D MoO3 nano-flakes as the HIL are closely related to the irradiation time. This is attributed
to the transformation of 2D MoO3 nano-flakes from a semiconductor phase to a metal phase
after increasing the irradiation time [114]. Hsi-Kang Shih et al. used PTC-U irradiated
with UV for 1 h as the hole injection layer, and hole injection, hole transport, and solvent
resistance properties of PTC-U photo-crosslinked for 1 h showed a great improvement, as
compared with the PTC-U without UV irradiation [22].

7. Conclusions and Outlook

Though OLED televisions and panels are marketized now, there is still room for
growth. The relatively lower efficiency of blue OLEDs and the severe efficiency roll-off
need to be perfected. The introduction of optimized HILs between electrodes and HTL is a
promising solution to facilitate charge injections into EML and prevent the excitons from
being quenched by electrodes at the same time.

In this review, we described the materials from 2010 to 2022 that can be used as hole
injection layers and classified them into organic materials and inorganic materials. It is clear
that organic materials reduce the cost of preparation, but improvements in the efficiency
of OLEDs are not as good as for inorganic materials. Moreover, a method of improving
device performance by doping two or more materials is described. The roughness and WF
of the device surface can be changed by doping. Certain materials can form self-organizing
surfaces to reduce exciton quenching. The LSPR effects of mental nanoparticles and the
applied magnetic field can also improve the device performance. In addition, the methods
used to prepare the hole injection layer are described, such as spin-coating, brush coating,
LB deposition, slot-die coating, nozzle printing, evaporation, etc. The comparison of
various methods is also pointed out in this paper. Finally, we described the influence of the
external environment such as temperature and sunlight on the hole injection layer film.

In short, the performance of OLEDs was enhanced by introducing appropriate HILs.
The optimized HIL can provide better energy level matching, reducing the negative in-
fluence between adjacent layers, balancing the injection of carriers, and leading to the
enhanced optoelectronic properties of OLEDs. However, there are still many pending
problems. Different types of composite hole injection layers are waiting to be excavated,
as well as whether there are other mechanisms to choose, except forming ladder potential
barriers. In addition to the existing hole injection layer preparation methods, there is a
demand for the development of more energy-saving, cost-saving, and simpler methods.
The implementation of low-cost, large-scale manufacturing will certainly be accelerated
because of further awareness and developments.
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