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Abstract: This work presents the effect of CeO2 nanoparticles (CeO2–NPs) on Cu–50Ni–5Al alloys
on morphological, microstructural, degradation, and electrochemical behavior at high temperatures.
The samples obtained by mechanical alloying and spark plasma sintering were exposed to a molten
eutectic mixture of Li2CO3–K2CO3 for 504 h. The degradation of the materials was analyzed using
gravimetry measurements and electrochemical impedance spectroscopy. Different characterization
techniques, such as X-ray diffraction and scanning electron microscopy, were used to investigate
the phase composition, parameter lattice, and microstructure of Cu–Ni–Al alloys reinforced with
CeO2–NPs. The hardness of the composite was also examined using the Vickers hardness test.
Gravimetry measurements revealed that the sample with 1 wt.% CeO2–NPs presented the best
response to degradation with a less drastic mass variation. Impedance analysis also revealed that by
adding 1 wt.% CeO2–NPs, the impedance modulus increased, which is related to a lower porosity of
the oxide film or a thicker oxide layer. The microhardness also significantly increased, incorporating
1 wt.% CeO2–NPs, which reduced with higher CeO2–NPs content, which is possibly associated
with a more uniform distribution using 1 wt.% CeO2–NPs in the Cu–Ni–Al matrix that avoided the
aggregation phenomenon.

Keywords: Cu–Ni–Al; CeO2–NPs; high temperatures; microhardness; impedance; gravimetry
measurements

1. Introduction

Fuel cells (FC) are considered a promising technology for being an alternative source
of electric power [1]. These devices convert chemical energy into electricity [2,3] and can
be classified according to the work temperature [4]. For example, a molten carbonate fuel
cell (MCFC), the operational temperature of which is 650 ◦C, is one of the most efficient
FCs, and is contemplated as a carbon capture and storage (CSS) technology because it can
capture and convert CO2 [5]. The high-temperature fuel cell (600–1000 ◦C) uses nickel or
other non–precious catalytic materials to decrease the electrode cost [6]. The electrode used
as the cathode is a porous nickel oxide, where O2 and CO2 are injected, and on the anode
side, nickel aluminum alloy is employed, generally Ni5Al, and supplies H2. According to
the report by Lee et al. [7], a charge transfer process controls the electrochemical reactions in
a slow reaction system and a mass transfer process in a rapid reaction system. Even though
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the MCFC has been working for decades, there are still problems to resolve due to the high
operational temperature. It is essential to consider that the corrosion of the electrodes and
equipment that operate at high temperatures can decrease the FC’s service life, as Hacker
and Mitsushima proposed [8]. More specifically, few works have focused on the corrosion
phenomenon on the anode of MCFC. In this context, Accardo et al. [9] studied the addition
of copper [10,11] and cerium oxide nanoparticles (CeO2–NPs) to improve the mechanical
and electrochemical behavior of the Ni5–Al commercial anode. In this sense, as copper has
good electrical and thermal conductivity and mechanical resistance [11,12], the Cu–Ni–Al
alloy can be an option for the MCFC anode. On the other hand, some authors reported
that incorporating CeO2–NPs in the Cu–Ni alloy increased the catalyst performance on the
anode for the H2 oxidation reaction [13], and incorporating it in the Ni–5Al alloy reduced
the creep strain because it can keep the pore structure stable [9]. However, no available data
evaluate the micro–macrostructural and corrosion behavior of a Cu–Ni–Al alloy reinforced
with CeO2 nanoparticles used for the anodes in MCFC.

Therefore, the effect of nanoparticle addition on the degradation of Cu–50Ni–5Al in
the electrolyte Li2CO3–K2CO3 (62–38 mol.%) is analyzed in this paper. The microstructural
and morphological changes during this process provide valuable insights into the potential
use of nanoparticles in the anode.

2. Materials and Methods
2.1. Sample Obtention

Mechanical alloying was performed using pure powders: Nickel (<10 µm, 99+, Merck,
Darmstadt, Germany), Copper (<63 µm, >99%, Sigma-Aldrich, Darmstadt, Germany), and
Aluminum (<60 µm, 99.9%, Good Fellow, Hamburg, Germany), which were mechanically
alloyed (MA) in a Planetary mill PQ4 Across International, obtaining powder compositions
of Cu–50Ni–5Al (wt.%). The milling conditions included a ball–a–powder ratio (BPR)
of 10:1 and 2 wt.% stearic acid as a control agent under an inert Ar atmosphere. The
milling time used was 100 h effective and there was an on/off cycle of 30/15 min at a
speed of 350 r.p.m. Subsequently, 1, 3, and 5 wt.% of the nanoparticles CeO2 (CeO2–NPs)
(<25 nm, >99.9%, Sigma-Aldrich, Hamburg, Germany) were added to the alloy using Mixer
Y–type Astecma for 1 h. Table 1 shows the chemical composition of Cu–50Ni–5Al + xCeO2
(wt.%) alloys.

Table 1. Chemical composition of the Cu–50Ni–5Al + xCeO2 (wt.%) alloys.

Sample Cu Ni Al CeO2

0 wt.% CeO2–NPs Bal. 50 5 0
1 wt.% CeO2–NPs Bal. 50 5 1
3 wt.% CeO2–NPs Bal. 50 5 3
5 wt.% CeO2–NPs Bal. 50 5 5

Cu–50Ni–5Al without and with the CeO2–NPs samples were consolidated by Spark
Plasma Sintering (SPS) using a Fuji Electronic Industrial Co model DR. SINTER® SPS1050.
The disks were 10 mm in diameter and 7 mm in thickness, and were produced using a
high–density graphite die. The samples were heated from room temperature to 800 ◦C at a
heating rate of 100 ◦C min−1, applying a pressure of 50 MPa simultaneously during the
heating and holding time of 5 min at the sintering temperature. The entire SPS process
was kept under a vacuum of approximately 20 Pa. Finally, the samples were free–cooled
to room temperature at a cooling rate of roughly 10 ◦C s−1 in the SPS chamber. Figure 1
shows the sample preparation (powders) diagram by mechanical alloying and mechanical
mixing and a schematic representation of the consolidation process by the SPS system.
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Figure 1. Sample preparation (powder mixture) and schematic representation of the SPS
system (consolidation).

The metal samples were polished using sandpaper from #800 to #4000 and then with
colloidal silica suspension to reveal their microstructure. The polished samples were rinsed
with ethanol for 10 min in a bath cleaning sonicator. Afterward, the samples were cleaned
with distilled water and dried at room temperature.

2.2. Gravimetric Measurements

The Cu–50Ni–5Al samples were immersed in molten eutectic Li2CO3–K2CO3
(62–38 mol.%) [14,15] for 504 h (21 days) in an aerated atmosphere or not–controlled
medium at 550 ± 5 ◦C. The gravimetric measurements of samples were carried out as
described previously by Arcos et al. [16]. The samples were removed and cleaned to
eliminate the deposits and corrosion products on the surface. The bulk samples were
submerged in hot distilled water (~100 ◦C) in a sonicator bath (Elma D–78224 Singen/Htw)
for 30 min. Subsequently, the samples were dried with hot air and weighed until they
reached a constant value, as reported by the ASTM G1–03 [17]. The average mass (%) was
calculated using Equation (1).

mi − mf
mi

× 100 (1)

where mi and mf are the initial and final sample masses at different exposure times.

2.3. Morphological and Chemical Characterization

The porosity was determined through Archimedes’ method, according to the Standard
Test ASTM C373–88 [18]. To reveal the microstructure, an etching was employed: 5 g of
Fe3Cl, 10 mL of HCl, and 100 mL of distilled water for 8 s. A field–emission scanning
electron microscope (FE-SEM), QUANTA FEG 250, was used to obtain the samples’ images.

X-ray diffraction (XRD) was implemented using Bruker D2 PHASER with Cu–Kα

radiation to characterize the material’s structure. The diffraction patterns were recorded
from 2θ between 40◦ and 100◦ with a 0.02◦ step and counting time of 1 s/step.

2.4. Mechanical Characterization

The microhardness of the samples was calculated by a micro–Vickers durometer,
Wilson® VH1150 Macro Vickers Hardness Tester, under 0.3 kgf of force before the gravimet-
ric measurements.

2.5. Electrochemical Measurements

The electrochemical behavior of the Cu–50Ni–5Al samples was studied using open
circuit potential and electrochemical impedance spectroscopy (EIS) measurements in the
molten Li2CO3–K2CO3 (62:38 mol.%) as an electrolyte at 550 ± 5 ◦C under an aerated
atmosphere. The electric contact for the working electrode, the Cu–50Ni–5Al samples, was
performed using conductive silver printing ink (resistivity 5–6 µΩ cm) around the sample
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and copper wire of 25 cm in length. In addition, a Pt wire that was 25 cm in length was
used as a counter electrode, and an Ag wire that was 25 cm in length and placed inside a
quartz glass tube with a porous plug in the tip was used as the reference electrode. The
electrochemical measurements were carried out with a Potentiostat Solartron Analytical.

3. Results and Discussion
3.1. Gravimetric Measurements

Figure 2 shows the effect of CeO2–NPs on the weight gain of the Cu–50Ni–5Al sam-
ples after exposure to molten carbonates, revealing a reduction in the weight by adding
CeO2–NPs. In addition, Figure 2 shows that during the initial stage, the weight increased
rapidly for all the Cu–50Ni–5Al samples, which was lower for Cu–50Ni–5Al + 1 wt.%
CeO2–NPs, reaching a maximum weight gain of only 1.2% at 504 h of exposure. For a
longer exposure time, the weight gain reaches a stationary state associated with a passive
oxide layer [16] formed after 80 h for Cu–50Ni–5Al + 3 wt.% CeO2–NPs, and after 160 h
for Cu–50Ni–5Al + 0 wt.% CeO2–NPs. It should be noted that with 5 wt.% CeO2–NPs, the
weight gain did not reach a plateau of up to 504 h of exposure, like the sample with 3 wt.%
CeO2–NPs. Therefore, the sample that suffered the least degradation at high temperatures
was 1 wt.% CeO2–NPs, which could be attributed to the homogeneous distribution of the
CeO2–NPs.
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3.2. Microstructural and Chemical Characterization

Figure 3 shows the morphology of the samples before and after 504 h of exposure to
molten carbonate (Li2CO3–K2CO3 62–38 mol.%) in the aerated atmosphere. Before expo-
sure, porosity can be observed for all the samples, agreeing with the analysis performed. For
example, Cu–50Ni–5Al had 16 ± 0.8% porosity, which reduced the addition of CeO2–NPs.
The Cu–50Ni–5Al + 1 wt.% CeO2–NPs samples had 1.0 ± 0.3% porosity, Cu–50Ni–5Al +
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3 wt.% CeO2–NPs had 2.0 ± 0.2% porosity, presenting some spots more lightly over the
surface, and Cu–50Ni–5Al + 5 wt.% CeO2–NPs had 1.0 ± 0.1% porosity. One reason for this
phenomenon is that nanoparticles can easily remain in the pores and voids of the nanocom-
posite matrix due to their small size [19]. After exposure, a strong surface modification was
observed for all the samples, possibly due to the corrosion product formation, which could
be a passive film, as suggested by the gravimetric measurements. Ren et al. [20] studied a
Cu–35Ni–10Al alloy in molten carbonate (Li2CO3–K2CO3 62–38 mol.%) for 48 h in an aer-
ated atmosphere, reporting the formation of porous corrosion products composed mainly
of Al2O3 and Ni–Al oxides, which is in agreement with the SEM images of Cu–50Ni–5Al
(see Figure 3a), which present a porous surface after exposure.
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Figure 4 presents the EDS results before and after exposure to analyze the chemical
composition of the sample’s surface. Before exposure, the alloy’s surface is very similar
for all the samples, revealing a homogeneous distribution of all the elements (Cu, Ni, Al,
and O). However, Cu–50Ni–5Al has some Al spots, and Cu–50Ni–5Al + 3 wt.% CeO2–NPs
have some zones not identified by the mapping, which could be Li because it has deficient
energy and is difficult to detect. Cu–50Ni–5Al+ 5 wt.% CeO2–NPs present some nanoparti-
cles agglomeration (CeO2) corresponding to the element Ce. Frattini et al. [21] observed
the same effect when adding small amounts of ZrO2–NPs in the Ni–Al alloy, although,
with the increase in the amount to 10% ZrO2–NPs, the distribution of the NPs becomes
homogeneous. After exposure, the quantity of oxygen (O) increased significantly for all the
samples, which can be attributed to the oxide formation on the surface, as proposed above.
Nevertheless, potassium (K) was also found on the surface, a component of the molten
carbonates (Li2CO3–K2CO3), revealing the possible formation of a deposit. According
to Gonzalez–Rodriguez et al. [22], the Ni–50Al alloy was immersed in Li2CO3–K2CO3
(62:38 mol%) for 100 h in static air at 650 ◦C. They reported that the main corrosion prod-
ucts were Ni, Al, and K, such as NiO, Al2O3, LiAlO2, and LiKCO2. Also, Ren et al. [20]
described mainly Al2O3 and Cu2O as the corrosion products of Cu–35Ni–10Al exposure to
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Li2CO3–K2CO3 (62:38 mol%) during 1 h in air at 650 ◦C. Accardo et al. [9] also proposed
that CeO2–NPs could migrate from the alloy to the electrolyte. EDS analysis revealed a
slight decrease in the Ce content for the Cu–50Ni–5Al + 5 wt.% CeO2–NPs sample. For the
other samples, the Ce content increases, which can be associated with diffusion from the
bulk to the surface of the molten carbonates.
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Figure 5 compares the XRD patterns recorded before and after exposure to Li2CO3–K2CO3
(62:38 mol%). Before exposure, the reflections were identified as corresponding to typical
fcc structures (Fm-3m). No peaks were associated with Ni or Al, indicating that the
solid solution Cu–Ni–Al obtained by mechanical alloying is maintained post–sintering
by SPS. The samples reinforced with CeO2–NPs show low-intensity reflections associated
with CeO2 (Fm-3m; JCPDS 010750076). The lattice parameter of the Cu-Ni–Al alloys
without CeO2–NPs is 0.358 nm, which remains constant when incorporating the different
CeO2–NPs. This indicates that the CeO2–NPs do not react with the Cu–Ni–Al matrix in the
consolidation process because the SPS technique is a fast method for sintering [23]. After
21 days of exposure to the Li2CO3–K2CO3, peaks associated with NiO (Fm-3m; JCPDS
010731519), Cu2O (Pn-3m; JCPDS 010751531), and Al2O3 (R-3c; JCPDS 010772135) can
be seen in all the samples. In addition, the intensities of the reflections associated with
CeO2–NPs can be seen, which can be attributed to the fact that the CeO2–NPs migrate to
the surface, as reported by Accardo et al. [9]. Note that the increase in the intensity of the
reflections associated with CeO2 is much lower for the sample with 5 wt.% of CeO2–NPs
than in the samples with 1 wt.% and 3 wt.% of CeO2–NPs, possibly because the Ce content
decreased on the sample surface, confirming what was previously mentioned in Figure 4.
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3.3. Mechanical Properties

Figure 6 shows the hardness of the Cu–50Ni–5Al + x wt.% CeO2–NPs samples before
exposure. The results indicate that the sample with 0% CeO2–NPs presents the lowest
hardness value, corresponding to 205 ± 21 HV0.3. This can be attributed to the higher poros-
ity of the sample, which reaches 16%, by incorporating different amounts of CeO2–NPs
in the sample. Cu–50Ni–5Al +1 wt.% CeO2–NPs perform better due to the CeO2–NPs
allowing a decrease in the porosity and a homogenous distribution of CeO2–NPs in the
matrix, as mentioned above. However, if the concentration of CeO2–NPs exceeds 1 wt.%,
they agglomerate at grain boundaries, reducing the hardness value, as seen in Figure 4.
Zawrah et al. [24] concluded that adding Al2O3–NPs to pure Cu improves hardness due
to their uniform distribution. The improved hardness can be attributed to the relative
contribution of the Orowan strengthening effect, mainly when the reinforcement size is
less than 100 nm [25]. The CeO2–NPs are very small and hard, impeding the movement
of dislocations in the Cu–50Ni–5Al matrix, leading to an improvement in the hardness of
the microstructure.

3.4. Electrochemical Measurements

Figure 7 shows the effect of the addition of 1 wt.% CeO2–NPs to the open circuit
potential (EOC) of Cu–50Ni–5Al after exposure to Li2CO3–K2CO3 at 550 ◦C and an aerated
atmosphere. After a shorter exposure time, the EOC was shifted to more negative values
by incorporating CeO2–NPs, suggesting an activation of the corrosion phenomena. How-
ever, for a longer exposure time, the EOC reached similar values to the sample without
CeO2–NPs, which can be associated with a stable oxide layer formed on the metal surface.
Meléndez-Ceballos et al. [26] studied a Ni porous sample coated by CeO2–NPs using the
atomic layer deposition in Li2CO3–K2CO3 at 650 ◦C in a CO2/air 30/70 vol.% atmosphere.
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The authors determined an initial potential close to -0.76 V vs. Ag/Ag+; the reference elec-
trode is a silver wire submerged in Ag2SO4 (10−1 mol kg−1) saturated in Li2CO3–K2CO3,
which was shifted to more positive values as a function of exposure time, attributed to a
delay in the Ni oxidation process due to the presence of CeO2–NPs film.
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Figure 8 shows the Nyquist diagrams of Cu–50Ni–5Al after 1 h of exposure to
Li2CO3–K2CO3 in an aerated atmosphere at E = EOC and 550 ◦C, revealing a significant
increase in the impedance modulus due to the incorporation of 1 wt.% CeO2–NPs, which
could be related to the formation of a passive oxide layer on the alloy, as previously men-
tioned. As can be seen at E = EOC, the impedance responses reveal two time constants at
high and low frequency ranges (HF and LF), which can be associated with the cathodic
current, not only involving the capacitance of the electric double layer (Cdl) and the oxygen
reduction reaction, but also the formation of an oxide layer due to the alloy dissolution.
Different equivalent circuits have been proposed to represent the physical model, which
can be composed of capacitors, resistances, and constant phase elements (CPE) related to
the heterogeneity of the surface [27].
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Figure 9 shows the Bode plots of Cu–50Ni–5Al + 1 wt.% CeO2–NPs after 1 h of expo-
sure to Li2CO3–K2CO3 in an aerated atmosphere at E = EOC and 550 ◦C, as a representative
example of the study system. Figure 9 reveals a capacitive response with two or three time
constants at all frequency ranges, possibly associated with the formation of an oxide film
and oxygen reduction reaction. Additionally, the Bode plots revealed a higher impedance
modulus at the LF range when CeO2–NPs were added, which can be related to the polar-
ization resistance of the system, suggesting an enhancement of the corrosion resistance
due to the incorporation of the CeO2–NPs to the Cu–50Ni–5Al matrix [27–29]. Moreover,
Figure 9 shows the non–corrected (
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Figure 9c shows the variation of the imaginary part of the impedance of Cu–50Ni–5Al
+ 1 wt.% CeO2–NPs as a function of frequency after 1 h of exposure to Li2CO3–K2CO3 in
an aerated atmosphere at E = EOC and 550 ◦C, revealing a constant phase element (CPE)
behavior in the MF range, with a negative slope (α) that varied between −0.33 ± 0.01 for
Cu–50Ni–5Al and −0.65 ± 0.004 for Cu–50Ni–5Al + 1% wt.% CeO2–NPs, which can be
related to the oxide film formed on the metal surface and described by the following relation,
as reported by Orazem and Tribollet [30], Tribollet et al. [31], and Hirschorm et al. [32].

Zoxide =
∫ δ

0

ρ(γ)

1 + jωρ(γ)ε(γ)ε0
dγ (2)

The authors proposed the power-law model (PLM) to analyze the film properties
using Equation (3):

Z(ω) = g
δρ1−α

δ(
ρ−1

0 + jωεε0

)α (3)

In this case, α is the slope in the Log ZImag vs. Log f plots, ε represents the dielectric
constant of the oxide layer formed on the metal alloy, ε0 is the vacuum permittivity that is
equal to 8.85 × 10−14 F·cm−1, and g is a numerical coefficient close to 1 when α is 1, which
can be estimated using the following equation:

g = 1 + 2.88 (1 − a)2.375 (4)

In addition, ρ0 and ρδ represent the lower and upper limits in the frequency range
where CPE behavior is observed. The Q value corresponds to a CPE parameter that can be
determined using the following equation:

Q =
(εε0)

α

gδρ1−α
δ

(5)

The graphical method of the impedance data allowed us to estimate the CPE parame-
ters for the Cu–50Ni–5Al Q coefficient of 1.62 × 10−3 F·cm−2·s–(1−α) and |α| value of 0.60,
and for the Cu–50Ni–5Al + 1% wt.% CeO2–NPs, the Q coefficient of 6.95 × 10−3 F·cm−2·s–(1−α)

and |α| value of 0.67. Furthermore, electrolyte resistance (Re) was determined by the
graphical method, finding values close to 2.7 Ω cm2 for Cu–50Ni–5Al and 0.84 Ω cm2 for
the Cu–50Ni–5Al + 1% wt.% CeO2–NPs samples. Those parameters reveal that the addition
of CeO2–NPs to Cu–50Ni–5Al improves the corrosion resistance, possibly due to a lower
porosity of the oxide film or a thicker oxide layer.

4. Conclusions

The Cu–50Ni–5Al alloys were obtained by mechanical alloying and the SPS process,
which allowed the addition of CeO2–NPs into the metal matrix. The samples were exposed
to molten carbonate (Li2CO3–K2CO3), consequently forming corrosion products over the
surface, which were analyzed by SEM-EDS and corroborated by X-ray diffraction. The
addition of CeO2–NPs in the Cu–50Ni–5Al matrix reduced the mass variation over time,
mainly using 1% wt. CeO2, reaching a maximum weight gain of only 1.2% at 504 h of
exposure. The corrosion products were composed of nickel oxide, aluminum oxide, and
copper oxide in all the alloys, regardless of the amount of NPs incorporated.

Moreover, the microhardness significantly increased for the alloy containing 1 wt.% of
CeO2–NPs, reaching a hardness value of 340 HV0.3. Furthermore, the impedance analysis
revealed that the samples with 1 wt.% of CeO2–NPs in the molten carbonates in an aerated
atmosphere had a higher impedance modulus, possibly due to the lower porosity of the
oxide film or a thicker oxide layer.
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Therefore, the alloys that showed better mechanical behavior and higher corrosion
resistance were Cu–50Ni–5Al + 1 wt.% CeO2–NPs, which have a promissory use at
high temperatures.
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