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Abstract: In the field of CO2 capture utilization and storage (CCUS), recent advancements in active-
source monitoring have significantly enhanced the capabilities of time-lapse acoustical imaging,
facilitating continuous capture of detailed physical parameter images from acoustic signals. Central to
these advancements is time-lapse full waveform inversion (TLFWI), which is increasingly recognized
for its ability to extract high-resolution images from active-source datasets. However, conventional
TLFWI methodologies, which are reliant on gradient optimization, face a significant challenge due to
the need for complex, explicit formulation of the physical model gradient relative to the misfit function
between observed and predicted data over time. Addressing this limitation, our study introduces
automatic differentiation (AD) into the TLFWI process, utilizing deep learning frameworks such as
PyTorch to automate gradient calculation using the chain rule. This novel approach, AD-TLFWI,
not only streamlines the inversion of time-lapse images for CO2 monitoring but also tackles the
issue of local minima commonly encountered in deep learning optimizers. The effectiveness of AD-
TLFWI was validated using a realistic model from the Frio-II CO2 injection site, where it successfully
produced high-resolution images that demonstrate significant changes in velocity due to CO2 injection.
This advancement in TLFWI methodology, underpinned by the integration of AD, represents a pivotal
development in active-source monitoring systems, enhancing information extraction capabilities and
providing potential solutions to complex multiphysics monitoring challenges.

Keywords: automatic differentiation; CO2 capture utilization and storage; time-lapse monitoring;
full waveform inversion; deep learning tool

1. Introduction

Geological CO2 storage stands as an indispensable strategy in addressing the urgent
imperative to reduce CO2 emissions [1]. Within this domain, CO2 capture utilization and
storage (CCUS) is a crucial tool, where monitoring the subsurface distribution of CO2 is critical;
such monitoring serves as a vital tool for refining subsurface physical flow models and ensuring
environmental safety by monitoring potential CO2 leakages [2–4]. Demonstrating its efficacy,
time-lapse acoustic monitoring has been identified as a cost-effective technique for subsurface
examination, particularly in enhancing oil recovery and sequestration [4–6]. For instance, the
application of time-lapse traveltime tomography and finite frequency tomography methods
in laboratory CO2 injection monitoring is notable [7–9]. Specifically, time-lapse crosshole
traveltime tomography of the Frio CO2 plume revealed acoustic velocity decreases of up to
500 m/s, attributable to CO2 injection into the brine reservoir [6]. While providing valuable
insights, time-lapse traveltime tomography offers limited spatial resolution compared to
time-lapse full waveform inversion (TLFWI) [9,10]. Traditional TLFWI, reliant on adjoint
gradient methodology, necessitates a precise and often complex gradient formulation. To
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bypass these complexities, automatic differentiation has been innovatively incorporated
into the full waveform inversion workflow [11–13].

Compared to traveltime tomography, TLFWI has the capability to refine high-resolution
physical images from time-lapse datasets by fully utilizing the physical information em-
bedded in waveform data [14]. The fundamental goal of traditional TLFWI is to reduce
the discrepancy between the observed data and their predicted counterpart; typically, this
objective is attained via optimization techniques that are gradient-based. Such methods
require calculating the gradient of the misfit function in relation to the physical parameters
of interest [15,16], a process frequently facilitated by the use of the adjoint-state method. Yet,
its derivation and implementation can present challenges across different physical systems
or equations [17–19]. Presently, there is a lack of generalized frameworks for TLFWI in
CCUS applications that can estimate physical parameters without the need for specific
gradient derivation in each case. Notably, the monitoring systems in CCUS applications are
evolving into multiphysics processes, such as geothermal monitoring, necessitating the use
of diverse equations for time-lapse inversion. Therefore, a general framework that obviates
the need for case-specific gradient derivation and implementation is highly desirable [12].
This general framework can be applied to seismic inversion problems.

Automatic differentiation (AD), capable of autonomously generating gradients from
the computational graph of forward modeling [20], presents a viable alternative to the
conventional method. In this process, the computational graph meticulously records the
dependencies of arithmetic operations within the forward model and subsequently com-
putes gradients via the chain rule [12]. With the remarkable progress in deep learning, AD
has been effectively incorporated into the toolsets of several prominent deep learning com-
putation frameworks, such as PyTorch and TensorFlow [5]. Utilizing the potential of AD,
its integration into full waveform inversion (FWI) was recently actualized, fostering a more
adaptable and multifaceted approach to waveform inversion [12]. However, the adoption of
AD in TLFWI specifically for CO2 monitoring workflows remains an underexplored area.

In this research, TLFWI was implemented using AD for applications in CCUS, specif-
ically focusing on CO2 monitoring within the Frio-II model framework. Our findings
indicate that AD provides results comparable to those obtained through the adjoint-state
method. One notable benefit of our methodology is the incorporation of TLFWI into the
PyTorch framework. This integration stands in contrast to the traditional reliance on the
adjoint-state method, which necessitates the derivation and implementation of distinct
gradients for every equation or misfit function. This methodology allows for the adaptation
to different inverse problems with minimal alterations in the gradient generation process,
potentially enhancing the efficiency and applicability of TLFWI in geophysical studies.

2. Methods
2.1. Time-Lapse Full Waveform Inverison

The wave equation’s finite difference solution can effectively simulate the waveform
propagation in acoustic media [10] given by

∂2 p
∂t2 = ∇·

(
c2∇p

)
+ f , (1)

where p is acoustic displacement, f is the Ricker wavelet source term, and c is the velocity
of the computational domain. The interested inversion parameter is c. Recording the
dataset from the simulated wavefield p at the receiver location, the predicted data d can
be obtained. In the conventional FWI, the l2 norm objective function [12] is employed to
measure the distance between the observed and predicted dataset, which can be given as

E =
1
2
|d − p(m)|2, (2)

where m is the model parameter needs to be reconstructed. In this article, acoustic velocity
is considered.
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Traditionally, the adjoint-state method is employed to compute the gradient concerning
velocity parameters. This approach often includes utilizing an optimizer to ascertain the
search direction and step lengths, facilitating the retrieval of model parameters. In contrast,
our study adopts AD in PyTorch for gradient computation. This approach circumvents the
need for deriving gradients on a case-by-case basis.

Once the gradient is obtained via AD, an optimizer is essential to minimize the misfit
function. Instead of opting for commonly used optimizers in deep learning contexts
like Adam (Adaptive Moment Estimation) within PyTorch, our approach integrates the
preconditioned L-BFGS-B (PLBFGSB) algorithm into our TLFWI. With an initial model
parameter set, the PLBFGSB algorithm iteratively searches for gradients, providing a robust
mathematical framework [12] to effectively address the challenges in FWI, written as

mi+1 = mi + αigi, (3)

where αi represents the step length, and gi signifies the gradient of the misfit function
as outlined in Equation (2). This gradient, related to the velocity parameter, is efficiently
calculated through the computational graph of automatic differentiation. Utilizing this
framework, FWI iteratively updates the model parameter as per Equation (3), continuing
this process until it reaches the convergence minimum.

The main goal of TLFWI is to monitor variations in velocity over a period. This proce-
dure usually entails performing several FWIs on the baseline and subsequent monitoring
datasets. Time-lapse images are then produced through TLFWI by deducting the baseline
velocity model from the inverted results of the monitoring FWIs. These images provide a
dynamic representation of the changes occurring within the velocity parameters over the
observed period.

2.2. Automatic Differentiation

AD represents an advanced computational mechanism that calculates derivatives
through a structured computational graph. This approach is particularly instrumental
in deep learning, where it plays a crucial role in training neural networks, primarily by
facilitating the backpropagation of loss. AD ensures accurate derivative computations,
effectively circumventing the numerical truncation errors often encountered in traditional
methods like finite difference calculations. It efficiently manages gradient computations
in intricate functions and systems by employing the chain rule, creating a computational
graph of elementary differential operators.

Within the scope of employing AD for waveform inversion, the objective function
in FWI aligns closely with the loss function typically utilized in deep learning method-
ologies. This parallel is illustrated in Figure 1. In such a scenario, the velocity model
is conceptualized as an array of adjustable parameters aimed at reducing the disparity
between observed and simulated acoustic data. The forward modeling process, which
utilizes the wave equation, resembles the operation of a neural network through its sequen-
tial application of both linear and nonlinear transformations. Our methodology involves
specifying parameters like velocity and the positions of sources and receivers to predict
acoustic data. The differences in these parameters are automatically computed to derive
gradients, which are then employed by a gradient-searching optimizer in a manner akin to
training a neural network.

In the application of AD for waveform inversion, a key component is the sophisticated
calculation of gradients. The process begins with the specification of parameters such as
velocity, source, and receiver locations in the forward modeling phase. This phase involves
simulating wave propagation through the subsurface using the wave equation, which
yields predicted acoustic data.

Upon generating these predicted data, the core functionality of AD comes into play.
AD works by constructing a computational graph where each node represents an oper-
ation and each edge represents a dependency between these operations. In the context



Nanomaterials 2024, 14, 138 4 of 10

of FWI, these operations include the various transformations applied during forward
modeling—both linear and nonlinear.
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Figure 1. Workflow of AD-TLFWI with AD framework.

The gradient calculation with AD proceeds in two main stages: (1) Forward pass: In
this stage, the computational graph is evaluated from the input parameters (like velocity)
to the output (predicted data). This step is akin to the propagation of waves in the physical
model and is used to compute the discrepancy between the observed and the predicted data.
(2) Backward pass (backpropagation): This is where the actual computation of gradients
occurs. Starting from the output (the discrepancy between observed and predicted data),
AD applies the chain rule of calculus in reverse order through the computational graph. At
each node, the partial derivative of the node’s operation is computed with respect to its
inputs. This process accumulates the gradients of each parameter with respect to the final
discrepancy measure.

The resulting gradients represent how much each parameter needs to change to reduce
the discrepancy between the observed and predicted data. This precise gradient calculation
is pivotal in AD, as it avoids the truncation errors commonly found in finite difference
methods and provides a more accurate direction for updating the parameters.

Finally, these computed gradients are utilized by a gradient-searching optimizer.
The optimizer uses these gradients to update the parameters following an optimization
process similar to that in neural network training. Through iterative adjustments to the
velocity model and other related parameters, this approach seeks to diminish the dis-
crepancy between observed and predicted data, ultimately refining the precision of the
waveform inversion.

3. Results
3.1. Frio-II CO2 Storage Model
Site Background

The Frio-II CO2 pilot project, a landmark in the field of geological CO2 sequestration,
involves the injection of supercritical CO2 into the Blue Sand reservoir. This highly perme-
able formation is situated at a depth of 1650 m in southern Texas. Our research developed
a comprehensive 2D baseline reference velocity model, incorporating intricate local struc-
tures identified from borehole logs and gamma ray correlations within the Frio injection
borehole (refer to Figure 2a). Within this reservoir, seismic velocities were observed to
vary between 2650 m/s and 2675 m/s, in contrast to a uniform velocity of 2700 m/s in the
surrounding strata. Figure 2b demonstrates the modeled decrease in seismic velocity, a
result of five days of CO2 injection at the site, a phenomenon accurately predicted by rock
physics models that integrate seismic velocity with saturation levels from a 3D multiphase
flow model. A series of 41 time-lapse seismic models, charted at three-hour intervals, was
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developed. Figure 3a–c depict three representative models, illustrating the P-wave velocity
changes at 3, 60, and 120 h postinjection.
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A total of 41 time-lapse seismic monitoring datasets were generated through a finely
tuned crosshole observation system, meticulously aligned with corresponding time-lapse
models. In this detailed arrangement, 32 Ricker sources were strategically placed in the in-
jection borehole and 140 receivers in the observation borehole. This setup was deliberately
crafted to enhance the capture and visualization of CO2 plume movements in the subsur-
face. The selection of Ricker wavelets, characterized by a dominant frequency of 120 Hz,
was intentional for their efficacy in penetrating geological layers and yielding distinct
seismic signals crucial for CO2 plume tracking. During each simulation, 32 shots of moni-
tored acoustic data were numerically modeled. The numerical modeling involved solving
Equation (1), a process integral to accurately representing the subsurface wave propagation
dynamics. This step was crucial in ensuring that the simulated data closely mimicked
real-world scenarios, thus enhancing the reliability of the AD-TLFWI method in practical
applications. Following these simulations, AD-TLFWI was applied to these datasets, yield-
ing time-lapse images that dynamically delineate the evolution of CO2 plumes. The ability
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of AD-TLFWI to capture these dynamic changes over time is a testament to its sensitivity
and accuracy in detecting even subtle variations in subsurface properties. Three exemplary
time-lapse velocity results from these models, as illustrated in Figure 4a–c, showcase the
detailed evolution of CO2 plumes. These images are not just visual representations but
carry significant geophysical data that can be analyzed to understand CO2 behavior in
subsurface environments.
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The analysis comparing time-lapse seismic data, as presented in Figures 3 and 4,
particularly focusing on the high-resolution imaging post-CO2 injection, underscores the
proficiency of the AD-TLFWI method in discerning velocity variations accurately. The
alignment of these detected changes with the actual ground truth data affirms the method’s
precision in mirroring key velocity alterations occurring during the injection phase. This
precision is further evidenced by the resolution’s close correlation with real subsurface
shifts. The results, depicting the spatiotemporal fluctuations within the injected CO2, pro-
vide crucial insights into the dynamics governing CO2 behavior in subterranean settings.
The oscillations observed in the inverted results point to the inherent challenges in TLFWI.
One such challenge is the intrinsic nonlinearity of the FWI process, which can introduce
complexities in accurately interpreting seismic data. These nonlinearities are often exacer-
bated by limitations in the number of iterations conducted during the inversion process.
While increasing the number of iterations could theoretically enhance the fidelity and
resolution of the time-lapse images, it is crucial to consider the computational trade-offs.
Higher iteration counts typically lead to increased computational demands, which can
affect the efficiency and practicality of the monitoring project. This is particularly relevant
in large-scale or continuous monitoring scenarios where computational resources and time
are limiting factors. In advancing AD-TLFWI methodologies, striking an optimal balance
between image quality and computational efficiency becomes paramount. The ability of the
method to deliver high-resolution images is undeniably valuable for understanding sub-
surface phenomena, but the computational intensity required to achieve these results must
be sustainable. Future advancements in AD-TLFWI could focus on optimizing algorithmic
efficiency, perhaps through more sophisticated inversion strategies or leveraging advances
in computational hardware, to maintain high-quality imaging while minimizing resource
demands. This balance is not only a technical consideration but also impacts the broader
applicability and scalability of AD-TLFWI in various geophysical monitoring scenarios,
including those beyond CO2 sequestration. As such, ongoing research and development
in this field is essential to fully harness the potential of AD-TLFWI in environmental
monitoring and other geophysical applications.

Figure 5, a culmination of 41 time-lapse seismic studies, effectively showcases the
dynamic imaging capabilities of AD-TLFWI in monitoring supercritical CO2 movement
through the Blue Sand reservoir following injection. These visualizations detail the CO2
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plume’s dispersion and velocity shifts within the reservoir, initially concentrated around
the injection point and gradually expanding and intensifying in response to the reservoir’s
varied properties. Notably, the velocity shifts observed, ranging from 0 to a decrease of up
to 500 m per second, provide valuable insights into the CO2 storage efficiency and contain-
ment security. This slowdown in wave propagation, influenced by factors like reservoir
heterogeneity and CO2 saturation levels, highlights the plume’s interaction with the subsur-
face environment. The effectiveness of AD-TLFWI, demonstrated here, lies in its enhanced
resolution and clarity of time-lapse images, which contributes to a deeper understanding of
CO2 behavior and facilitates a balance between image clarity and computational resource
requirements. This advancement not only optimizes resource allocation in seismic studies
but also signals a significant leap in environmental safety measures for CO2 sequestration
strategies, marking an important development in geophysical monitoring technologies.
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Figure 6 showcases the efficacy of the AD-TLFWI approach in correlating the time-
lapse seismic data with the simulated models, evident through the concurrence of wave
patterns. The comparison in Figure 6d reveals a notable difference in the seismic signatures
pre- and post-CO2 injection (Figure 6a,b, respectively), which provides a clear visualization
of the significant impact of CO2 on seismic waveform propagation. The postinjection
data demonstrate a noticeable alteration in seismic waves, likely due to changes in the
acoustic properties of the subsurface environment influenced by CO2 saturation. Figure 6c
vividly illustrates the significant correlation in wave propagation patterns between the
synthetic and actual observed time-lapse data, underscoring the precision of the AD-TLFWI
method. The discrepancies observed in Figure 6f further suggest that the AD-TLFWI is
not only replicating but also precisely capturing the temporal and spatial changes in
monitoring the subsurface. This comparison is critical to demonstrating the reliability of
the predictions and interpretations in CO2 sequestration and monitoring. The ability of
AD-TLFWI to track these changes is indicative of its robustness in monitoring the geological
phenomena. The precision of the proposed method is particularly relevant in detecting
subtle changes over elapsed time, which is critical in monitoring the efficiency and safety of
CO2 storage. The seismic response transformation of post-CO2 injection could be indicative
of various subsurface changes, including alterations in pore fluid pressure, changes in
fluid saturation, or even subtle shifts in rock properties. Integrating these observations
with the previous analysis of AD-TLFWI inversion at the Frio-II CO2 injection site, it
becomes evident that AD-TLFWI is not just a tool for creating high-resolution images but is
also instrumental in accurately interpreting the dynamic behavior of CO2 in subsurface
reservoirs. The use of this method goes beyond simple imaging; it provides a holistic
approach for observing, examining, and forecasting the movements of CO2 plumes across
diverse geological environments.
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The results depicted in Figure 6, combined with the comprehensive insights gained
throughout this research, highlight the exceptional capability of the AD-TLFWI method as
a pioneering instrument in geophysical monitoring. This technique marks a notable leap
forward in our understanding and management of CO2 sequestration processes, making
a significant contribution to environmental geophysics. It stands out as a key tool in the
ongoing quest for sustainable and secure CO2 storage solutions, offering a new level of
precision and efficiency in monitoring techniques. This advancement not only enhances
our understanding of subterranean CO2 dynamics but also aligns with global efforts to
develop environmentally responsible and effective strategies for carbon management.

4. Conclusions

The imperative to enhance monitoring techniques for CO2 sequestration and storage,
pivotal for climate change mitigation, forms the foundation of this study. Recognizing the
need for more precise and dynamic methods to track large-scale CO2 storage behavior in
subsurface environments, our research introduces the integration of AD with TLFWI to
refine the distribution and migration of CO2.

Methodologically, this research marks a departure from conventional seismic mon-
itoring techniques. By harnessing deep learning frameworks, the AD-TLFWI approach
optimizes the gradient computation essential in CO2 monitoring, thereby improving the
accuracy and adaptability of subsurface imaging in various geophysical settings. The appli-
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cation of this method at the Frio-II CO2 injection site has been instrumental in producing
high-resolution time-lapse images, crucial for monitoring the subsurface migration and
distribution of CO2 plumes.

In the application of AD-TLFWI at the Frio-II site, the key point lies in its ability to
eliminate the need for deriving gradient formulas traditionally required in FWI by lever-
aging automatic differentiation for gradient computation. This significant advancement
streamlines the inversion process, enhancing both efficiency and precision. Furthermore,
AD-TLFWI has proven highly effective in imaging the location, distribution, and migration
of CO2 within subsurface storage, marking it as a tool for large-scale, long-term monitoring
of CO2 sequestration. These findings are crucial for confirming the effectiveness and safety
of CO2 sequestration strategies, offering insights for optimizing sequestration methods.
However, this study also acknowledges limitations, particularly the AD-TLFWI’s sensitivity
to environmental noise and proposed method is to invert the single physical parameter,
which may affect the accuracy of the inversion results. Addressing these challenges in
future research will be key to enhancing the misfit function and multiparameter inversion
strategy of AD-TLFWI.

Looking forward, the research aims to refine the robustness of the AD-TLFWI frame-
work, especially in challenging geophysical environments. The potential broadening of its
application across different areas of geophysical monitoring, including renewable energy ex-
ploration and environmental protection, opens new avenues for research and development.
This study lays a solid foundation for future advancements in geophysical monitoring
methodologies, contributing significantly to the field of CCUS and aligning with global
efforts towards sustainable energy and environmental stewardship.
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