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Abstract: Pharmaceuticals are widely used and often discharged without metabolism into the aquatic
systems. The photocatalytic degradation of pharmaceutical compounds propranolol, mebeverine,
and carbamazepine was studied using different titanium dioxide nanostructures suspended in water
under UV and UV-visible irradiation. Among three different photocatalysts, the degradation was
most effective by using Degussa P25 TiO2, followed by Hombikat UV100 and Aldrich TiO2. The
photocatalytic performance was dependent on photocatalyst dosage, with an optimum concentration
of 150 mg L−1. The natural aquatic colloids were shown to enhance the extent of photocatalysis,
and the effect was correlated with their aromatic carbon content. In addition, the photocatalysis of
pharmaceuticals was enhanced by the presence of nitrate, but inhibited by the presence of 2-propanol,
indicating the importance of hydroxyl radicals. Under optimum conditions, the pharmaceuticals were
rapidly degraded, with a half-life of 1.9 min, 2.1 min, and 3.2 min for propranolol, mebeverine, and
carbamazepine, respectively. In treating sewage effluent samples, the photocatalytic rate constants
for propranolol (0.28 min−1), mebeverine (0.21 min−1), and carbamazepine (0.15 min−1) were similar
to those in water samples, demonstrating the potential of photocatalysis as a clean technology for the
effective removal of pharmaceuticals from sewage effluent.

Keywords: colloids; pharmaceuticals; photocatalysis; sewage effluent; titanium dioxide

1. Introduction

Of current concern are pharmaceutical compounds which are widely used in hu-
man and veterinary medicines, and eventually find their way into the natural environ-
ment with potential long-term adverse effects [1,2]. Many pharmaceuticals are poorly
absorbed by the human body and are mostly excreted with feces and urine without sig-
nificant metabolism [2–4]. In addition, many different pharmaceuticals do not possess
chromophores and are highly persistent towards hydrolysis, adsorption, biodegradation,
and abiotic degradation [3]. As a result, such pharmaceutical compounds are not effec-
tively removed during sewage treatment [2,5], as sewage treatment works (STWs) are still
geared towards traditional pollutants such as heavy metals, chemical oxygen demand
(COD), and 5-day biochemical oxygen demand (BOD5). Furthermore, sewage effluents
and hospital effluents are important point sources of pharmaceutical residues in surface
water and groundwater [5–7]. The potential impact of pharmaceutical residues on aquatic
organisms and potentially humans through endocrine-disrupting effects or pathogenic
bacteria developing antibiotic resistance [8,9] is a global major concern.

Advanced wastewater treatment is therefore needed to enhance the removal of phar-
maceuticals from sewage effluent. A full-scale commercial granular activated carbon
(GAC) plant has been operating in a major STW and proven effective in removing many
pharmaceutical compounds [7]. However, the associated high capital and running cost
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for GAC plants could prohibit their wide applications, particularly in the developing
world. Other methods such as advanced oxidation processes (AOPs) have been widely
studied, which rely on the production of very reactive oxygen species (ROS) such as hy-
droxyl radicals (•OH) and singlet oxygen (1O2) for the oxidation of organic pollutants such
as pharmaceuticals [10].

Among the different AOPs, photocatalysis using semiconductors such as TiO2 repre-
sents a clean technology which has been studied and is becoming popular for the degra-
dation of pharmaceuticals [8,11]. Various metal oxides such as Ga2O3 [12], ZnO [13,14],
TiO2 [15–17], and In2O3 [18], polymeric materials such as g-C3N4 [19–22], and spinel struc-
tures such as CuFe2O4 [23] and ZnFe2O4 [24] have been used in photocatalysis technology.
Notably, TiO2 is generally regarded as the benchmark photocatalyst [25]. It has the ad-
vantages of abundancy, structural diversity, and high chemical stability [26]. Furthermore,
it has found applications in sodium-ion batteries [27]. In photocatalysis, the irradiation
of light in the presence of a photocatalyst could lead to the generation of charge carriers
as follows [28]:

Photocatalyst + hυ → e−CB + h+
VB (1)

The photo-excited e− and h+ species then generate extremely ROS such as hydroxyl
(•OH) and superoxide radicals (O2

•−) at the semiconductor surface that cause the oxidation
of pharmaceutical molecules [29]. In addition, sulfate radicals (SO4

•−) are increasingly been
used for environmental photocatalysis applications [30]. The photocatalytic degradation
of pharmaceuticals such as diclofenac, paracetamol, ibuprofen, oxolinic acid, amoxicillin,
and memantine has been previously examined [3,31–34]. However, most studies tend
to be conducted using very high pharmaceutical concentrations (e.g., mg L−1), which
are typically several orders of magnitude higher than those found in sewage effluents
or natural waters (ng L−1–µg L−1 range). In addition, the process of indirect photolysis
can be influenced by many factors, including the properties of the photocatalyst, the
physicochemical properties of the target compounds, and environmental conditions [5,35].

The effect of dissolved organic matter (DOM) on the photochemical transformation of
organic contaminants has been widely studied, due to the ubiquitous occurrence of DOM in
natural water and wastewater [10,36]. It has been reported that DOM can become excited,
under solar irradiation, to singlet state before being rapidly elevated to the excited triplet
states (3DOM*) [37]. In particular, dissolved black carbon was reported to be six times
more effective than humic substances in photosensitizing the photo-transformation of
17β-estradiol in water [10]. However, there are also reports that DOM inhibited the photo-
chemical processes, which was suggested to be due to the DOM absorption of photons and
thus the quenching of radicals [35,38]. Therefore, further investigation of the DOM effect
on pharmaceutical photodegradation is warranted.

This work aimed to examine the photocatalysis of three pharmaceuticals (propranolol,
mebeverine, and carbamazepine) under realistic environmental concentrations. They were
chosen based on their high-risk characterization ratio, quantity used, and wide occur-
rence. The reaction kinetics, environmental factors affecting the photodegradation process,
and the potential role of radicals were investigated. The application of photocatalysis
to the treatment of secondary sewage effluents was also assessed as a potential low-cost
green technology.

2. Materials and Methods
2.1. Material and Reagents

The pharmaceutical compounds propranolol, mebeverine, and carbamazepine were
obtained from Sigma-Aldrich, Sydney, Australia. The internal standards (diuron-d6 and 13C-
phenacetin) were supplied by Cambridge Isotope Laboratories, Andover, MA, USA. Stock
solutions of all standards (1000 mg L−1) were prepared from which working standard solu-
tions (10 mg L−1) were made in methanol and then stored in a freezer at −18 ◦C. Organic
solvents of high-performance liquid chromatography (HPLC) grade including acetonitrile,
methanol, 2-propanol, and formic acid were purchased from Sigma-Aldrich, Sydney, Aus-
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tralia. Three different photocatalysts were used, including Degussa P25 TiO2,(Degussa
AG, Frankfurt, Germany), Aldrich TiO2 (Sigma Aldrich, Sydney, Australia), and Hom-
bikat UV100, (Sachtleben Chemie GmBH, Duisburg, Germany), and their characteristics
are summarized in Table 1. Ultra-pure water was provided from a Milli-Q water system.
The Oasis® HLB solid-phase extraction (SPE) cartridges (6 mL/200 mg) were obtained
from Waters Corporation, Wilmslow, UK. Natural aquatic colloids (representing dissolved
organic matter or DOM) were isolated from a range of water samples by using cross-flow
ultrafiltration [39], and subsequently characterized using solid-state 13C nuclear magnetic
resonance in the chemical shift region (110–160 ppm) on Avance DMX400 (Bruker, Billerica,
MA, USA) for aromatic carbon content.

Table 1. Properties of different TiO2 nanostructures used in photocatalytic experiments.

Photocatalyst Degussa P25 Aldrich Hombikat UV100
Manufacturer Degussa AG Aldrich Sachtleben Chemie GmBH
Density (g mL−1) at 20 ◦C 3.8 4.17 3.9
Average diameter of primary particles (nm) 21 72 5
BET surface area (m2 g−1) 50 152 270
Anatase by XRD (%) 70 5 100
Rutile by XRD (%) 30 95 0

In addition, sewage effluent samples were taken from a STW in Sydney, NSW, Australia.
The effluent quality was measured for pH (6.8–7.9), dissolved oxygen (5.4–7.1 mg L−1),
temperature (8.6–11.8 ◦C), COD (76–105 mg L−1), and BOD5 (11–27 mg L−1). For the
photocatalysis experiments, effluent samples were collected in pre-cleaned amber glass
bottles (2.5 L) and spiked with sodium azide (final conc. = 0.02 M) to minimize potential
biodegradation. On return to the laboratory, the samples were immediately filtered using
pre-combusted Whatman (Banbury, UK) GF/F filter paper (0.7 µm) to remove particulate
matter, and spiked with 100 ng each of internal standards. Then, the samples were ready for
solid-phase extraction (SPE) to measure the concentrations of the pharmaceuticals.

2.2. Photocatalysis

Two photo-reactors designed by Heraeus Noblelight (Hanau, Germany) were used
in this study, equipped with TQ 150 (medium-pressure Hg-vapor lamp, 150 W) and TNN
15–32 (low-pressure Hg-vapor lamp, 15 W), respectively. The TQ 150 emitted a continuous
wavelength (238–579 nm), and due to the filtering by the glass jacket, its effective wave-
length was in the near UV to visible range. The TNN 15–32 was housed in a quartz jacket,
with intense UV irradiation at 253 nm.

The working water samples were prepared by spiking stock solutions (10 mg L−1)
to ultrapure water (0.4 L and 0.7 L for TQ150 and TNN 15–32, respectively) to obtain an
initial concentration of 18–1000 ng L−1. A magnetic stirrer was used to stir the solutions
(for 30 min) before TiO2 was added at different concentrations. Control experiments
conducted in the presence of TiO2 but absence of light showed a very limited loss of
the three compounds (<2%). The prepared solutions were then transferred to the photo-
reactors to start the photocatalysis experiments. For extraction and analysis, samples (e.g.,
10 mL) were taken from the reactor vessel at different time intervals. The photocatalytic
experiments were performed under a variety of conditions such as different solution pH,
different concentrations of pharmaceuticals or TiO2 photocatalyst, and the presence of
precursors and inhibitors of •OH, to identify the mechanism.

For sewage effluent samples, the photocatalytic experiments were conducted for both
the original sewage effluents and effluents spiked with 50 ng L−1 of the target compounds.
Once completed, the effluent samples were processed using SPE, in the same way as for
water samples.
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2.3. Extraction and Analytical Procedures

The water and sewage effluent samples were extracted using SPE, following a method
developed previously [40]. Briefly, the Oasis HLB (Waters) SPE cartridges were conditioned
with 10 mL of methanol, followed by ultrapure water (3 × 10 mL) at a rate of 1–2 mL min−1.
Then, water samples were extracted using SPE at a flow rate of 5–10 mL min−1. Afterwards,
the cartridges were dried for 30 min under vacuum, with the analytes being eluted with
10 mL of methanol which was reduced to 0.1 mL under a gentle N2 flow.

HPLC-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) was
used for the analysis of pharmaceuticals, following a method developed by Zhou et al. [40].
Briefly, sample extracts (10 µL) were injected into a Waters 2695 HPLC separations mod-
ule (Waters Corporation, Milford, MA, USA), for separation on a Waters Symmetry C18
column (2.1 × 100 mm, particle size 3.5 µm). The mobile phase comprised eluent A (with
0.1% formic acid in ultrapure water), eluent B (acetonitrile), and eluent C (methanol). At a
flow rate of 0.2 mL min−1, the elution started with eluent B (10%), followed by a 25 min
gradient to eluent B (80%) and a 3 min gradient to eluent B (100%), and then changed to
eluent C (100%) within 8 min, held for 10 min and then reverting to the initial conditions.
The MS/MS analyses were performed by using a Micromass Quattro triple-quadrupole
mass spectrometer (Waters, Wilmslow, UK) in the positive ion mode. The ESI source block
and desolvation temperature was 100 and 300 ◦C, respectively; the capillary and cone
voltage was 3.0 kV and 30 V, respectively; the argon collision gas was at 3.6 × 10−3 mbar;
the flow rate for the cone nitrogen gas and desolvation gas was 25 and 550 L h−1. The
collision energy, cone voltage, and transitions chosen for the multiple reaction monitoring
experiment were optimized.

3. Results and Discussion
3.1. Kinetics of Pharmaceutical Photocatalysis in Water

The kinetic experiments were performed using a polychromatic lamp (TQ 150, Her-
aeus Noblelight, Hanau, Germany) with a continuous wavelength of 238–579 nm, under
different initial pharmaceutical concentrations although the photocatalyst dosage was kept
at 150 mg L−1. As shown in Figure 1a–c, the concentration of propranolol, mebeverine, and
carbamazepine decreased rapidly with time. After 30 min of irradiation, approximately
76.7% of propranolol, 67.3% of mebeverine, and 67.2% of carbamazepine were degraded.
At the end of 2 h irradiation, 99.7% of propranolol, mebeverine, and carbamazepine were
degraded, suggesting a rapid degradation process.

When a monochromatic lamp (TNN 15–32) emitting at a single wavelength of 253 nm
was used, the results (Figure 2) showed an even more rapid degradation than that using
a continuous wavelength (TQ 150). The disappearance of 99.3% of propranolol, 98.5% of
mebeverine, and 83.2% of carbamazepine was achieved after 30 min of irradiation. The
photodegradation kinetics were also relatively independent of the initial pharmaceutical
concentration (from 36–108 ng/L), which are similar to the results under the continuous
wavelength irradiation (Figure 1). The results can be explained by the light absorption in the
UV region of these three compounds with the absorbance peaks at 215 nm for propranolol,
221 nm and 263 nm for mebeverine, and 211 nm and 285 nm for carbamazepine, which are
very close to the emission wavelength of 253 nm.

To investigate the apparent rate constant of pharmaceutical degradation, a first-order
kinetics model was applied as follows [41]:

ln
(

C
C0

)
= −kt (2)

where C0 and C are the concentrations at time zero and time t (min), and k is the first-order
photodegradation rate constant (min−1). The results indicated that the UV photocatalytic
kinetics of the three pharmaceutical compounds in aqueous solution were in accordance
with the first-order law.
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Figure 2. Kinetics of photocatalysis of (a) propranolol, (b) mebeverine, and (c) carbamazepine
using Degussa P25 TiO2 (150 mg L−1) under irradiation with TNN 15–32. Initial pharmaceutical
concentration = 36, 72, and 108 ng L−1. Error bars ≤ 18%.

The kinetics data are consistent with those of Martínez et al. [42] who observed spectral
changes of carbamazepine upon irradiation with UV at 254 nm, and that 95% of carba-
mazepine was transformed after 30 min of irradiation. In addition, Martínez et al. [43]
found that 90% of initial diclofenac was degraded using photocatalysis within 30 min.
Martínez et al. [42,43] suggested that the photocatalysis of carbamazepine and diclofenac
was more effective under UV than that under near UV-visible irradiation. Considering
Figure 2c, the calculated rate constants of photocatalysis under UV irradiation for car-
bamazepine (0.055–0.063 min−1) were smaller than 0.1521 min−1 that was obtained by
Martínez et al. [42], but higher than 0.0029 min−1 reported by Haroune et al. [5]. Such a
difference could be partly related to the high pharmaceutical concentrations being used in
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other studies, e.g., 8 mg L−1 [42], which are significantly higher than those concentrations
being detected in sewage effluent and river waters often at ng L−1 to µg L−1 range. The
findings therefore demonstrate the importance of conducting photocatalytic experiments at
environmentally relevant concentrations, to ensure that the findings can be used for field
application, plant design, and scale-up in STWs.

3.2. Performance of Different Photocatalysts at Different Dosages

To fully understand the mechanism of photocatalysis, three different photocatalysts
were tested under irradiation using TNN 15–32. Like Degussa P25, the TiO2 photocatalyst
from Aldrich also displayed potential in the degradation of pharmaceuticals (Figure 3).
The photodegradation kinetics also followed the first-order model. In addition, the rate
of photocatalysis was highly dependent on the dosage of the photocatalyst, improving
with increasing the photocatalyst dosage up to 150 mg L−1. A further increase in the
photocatalyst dosage to 500 mg L−1 was shown to reduce the rate of photocatalysis. The
increase in rate constant with catalyst dosage up to 150 mg L−1 can be explained by the
positive relation between the photocatalyst dosage and the abundance of available active
sites on TiO2. However, at the highest photocatalyst dosage (500 mg L−1), the total available
active sites on TiO2 may be reduced as a result of particle interactions such as coagulation
forming visible aggregates. For instance, it has been reported by So et al. [44] that the
agglomeration and sedimentation of TiO2 particles occurred at 2000 mg L−1. In addition,
light penetration through TiO2 suspension can be adversely affected by the relatively high
catalyst dosage, due to the scattering of incident light [45], causing a reduction in the
efficiency of TiO2.
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As shown in Table 2, the performance of photocatalysis was dependent on several
operating parameters, which became more efficient using irradiation under UV light than
under UV-visible light. Secondly, the photodegradation was most effective with Degussa
P25, followed by Hombikat 100 TiO2, and finally by Aldrich TiO2, suggesting the critical
role of the crystal structure on the photocatalytic activity of TiO2. Notably, Degussa P25
TiO2 consists of anatase and rutile phases and is generally known as a benchmark photocat-
alyst [25]. Thirdly, the photocatalysis was most efficient when the photocatalyst dosage was
150 mg L−1. When studying diclofenac photocatalysis, Achilleos et al. [34] and Martínez
et al. [42] observed that a pure anatase photocatalyst exhibited a greater photocatalytic
activity than a pure rutile photocatalyst. Such a difference in photocatalytic activity between
anatase and rutile TiO2 is likely to be due to some factors such as the more positive position
of the conduction band for the rutile phase, the lower recombination rate of e−/h+ pairs
in the anatase phase, and the higher capacity of the anatase phase for the adsorption of
oxygen (owing to the higher density of superficial hydroxyl groups) [46]. In addition, it
should be noted that Hombikat UV100 had a larger specific surface area than Aldrich TiO2
(Table 1), hence favoring electron transfer amongst electrons, holes, and the reactants [47],
and improving the efficiency of Hombikat UV100 compared with Aldrich TiO2.

Table 2. A summary of the rate constants from the photocatalytic degradation of the pharmaceutical
compounds under different operating conditions.

Photocatalyst
Photocatalyst
Dose (mg L−1) Reactor

Propranolol Mebeverine Carbamazepine

k (min−1) t½
(min) k (min−1) t½

(min) k (min−1) t½
(min)

Degussa P25 50 TQ 150 0.032 ± 0.005 21.7 0.028 ± 0.006 24.8 0.019 ± 0.004 36.5
150 0.042 ± 0.004 16.5 0.033 ± 0.002 21.0 0.027 ± 0.002 25.7
15 TNN

15–32 0.079 ± 0.006 8.8 0.062 ± 0.006 11.2 0.030 ± 0.006 23.1
50 0.102 ± 0.014 6.8 0.089 ± 0.016 7.8 0.040 ± 0.008 17.3
150 0.171 ± 0.035 4.1 0.136 ± 0.009 5.1 0.059 ± 0.004 11.7

Aldrich 15 TNN
15–32 0.018 ± 0.002 38.5 0.014 ± 0.003 49.5 0.013 ± 0.002 53.3

50 0.023 ± 0.002 30.1 0.018 ± 0.003 38.5 0.016 ± 0.001 43.3
150 0.051 ± 0.003 13.6 0.045 ± 0.005 15.4 0.041 ± 0.003 16.9
500 0.032 ± 0.004 21.7 0.027 ± 0.002 25.7 0.024 ± 0.002 28.9

Hombikat
UV100

15 TNN
15–32 0.027 ± 0.003 25.7 0.020 ± 0.001 34.7 0.018 ± 0.002 38.5

50 0.030 ± 0.004 23.1 0.028 ± 0.003 24.8 0.022 ± 0.003 31.5
150 0.058 ± 0.004 11.9 0.048 ± 0.004 14.4 0.042 ± 0.004 16.5
500 0.039 ± 0.002 17.8 0.032 ± 0.004 21.7 0.031 ± 0.005 22.4
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Notably, Martínez et al. [42,43] observed an optimum photocatalyst dosage of 0.5 g L−1

and 1.0 g L−1 for the photodegradation of carbamazepine and diclofenac, respectively,
using Degussa P25. By increasing the dosage of the photocatalyst, the number of active sites
for the absorption of light and subsequent photodegradation will be enhanced. On the other
hand, the amount of light dispersed by the photocatalyst particles will also be increased,
making some of the photocatalyst particles unavailable for the generation of h+/e− pairs.
Furthermore, some of the originally activated TiO2 may also be deactivated through colli-
sion with ground-state molecules [48]. As a result, an optimum concentration of 150 mg L−1

P25 TiO2 was recommended for the subsequent and future photocatalytic experiments.

3.3. Effect of DOM on the Photocatalytic Degradation Rate

In this work, the effect of water and wastewater properties such as pH and DOM on
the pharmaceutical photodegradation was carefully examined. When the photocatalysis
experiments were conducted at different pH values between 6 and 9, no significant effect
was observed on the reaction kinetics. Similarly, when using TiO2 as the photocatalyst,
the percentage phototransformation of carbamazepine was not affected between pH 3.0
and 6.4 [5]. However, the researchers reported that carbamazepine photo-oxidation was
significantly inhibited at a very high pH of 11.

In comparison, the presence of aquatic colloids in water enhanced the photodegrada-
tion rate constant when being irradiated using lamp TQ 150 (Figure 4a). When a different
lamp (TNN 15–32) was used, a similar enhancement trend was observed (Figure 4b). These
results confirmed the important role of aquatic colloids as chromophores in absorbing
photons, which is likely followed by the production of radicals, subsequently inducing the
indirect photolysis of the pharmaceuticals [5]. In studying the DOM effect, the large major-
ity of research was conducted using humic substances which were obtained by chemical
extraction methods, during which harsh chemicals such as NaOH and HCl solutions may
have altered the structure of natural organic matter [39]. Here, natural aquatic colloids were
isolated using a physical method (cross-flow ultrafiltration) which is more representative
of natural DOM than chemically extracted humic material. In addition, various studies
show that aquatic colloids are important repositories of emerging pollutants such as EDCs
and pharmaceuticals in the aquatic environment [6,39].
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The effects of DOM on the photocatalysis of organic contaminants have been widely
reported, and can include both positive and negative influences. This is likely due to the
counter forces from DOM, which can absorb light or react with radicals causing a reduction
in photodegradation, or which becomes a photosensitizer, thus enhancing photodegrada-
tion [5,49]. This is further compounded by the high diversity and chemical complexity of
DOM molecules, which are often poorly characterized. In studying the photodegradation
of three antiviral drugs, Zhou et al. [36] reported that different DOMs promoted their
photodegradation, and the promotion effect of seawater DOM was weaker than that of
freshwater DOM.

To further understand the mechanism of the colloidal DOM effect on photocataly-
sis, different aquatic colloids that demonstrated a photosensitizing effect were analyzed
for elemental composition and the contents of functional groups such as aromatic and
aliphatic carbon content. Through statistical analysis, a positive relationship was observed
between colloidal aromatic carbon content and the rate constant of pharmaceutical pho-
tocatalysis (Figure 5). Chin et al. [50] observed significant bisphenol A transformation in
the presence of humic substances, and their effect was loosely correlated to the carboxyl
carbon content. In a study of estrone photodegradation, Caupos et al. [51] found that its
kinetics were enhanced by DOM, with the effect being more significant the higher the
fluorescence efficiency of DOM. In addition, Leech et al. [52] observed that the photodegra-
dation of 17β-estradiol was enhanced in the presence of aquatic humic acids. However,
no significant effect of humic acid was observed during the photocatalytic degradation of
carbamazepine and three derivatives [5]. In another study by Mohapatra et al. [35], humic
acid reduced the photodegradation of diclofenac and sulfamethoxazole but increased the
photodegradation of acetaminophen, carbamazepine, and gemfibrozil. They suggested
the direct photodegradation of diclofenac and sulfamethoxazole, and the indirect pho-
todegradation of acetaminophen, gemfibrozil, and carbamazepine. In a study of the DOM
effect on the photodegradation of antiviral drugs, the photodegradation of acyclovir was
mainly promoted by 3DOM*, and the photodegradation of lamivudine was accelerated
by a combination of 3DOM*, 1O2, and •OH radicals [36]. Furthermore, in studying the
photodegradation of 17β-estradiol in water, Zhou et al. [10] reported that a higher media-
tion efficiency of dissolved black carbon than humic substances was caused by the higher
aromatic content and smaller molecular sizes.
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3.4. Probing of Radicals Involved in Pharmaceutical Photocatalysis

It is well known that sunlight-irradiated DOM can result in the formation of ROS
like hydroxyl radicals (•OH), singlet oxygen (1O2), and 3DOM*, thereby improving the
photodecomposition of organic pollutants [53]. The positive effect of aquatic colloids on
pharmaceuticals photocatalysis can be interpreted by the so-called photosensitizing effect,
in particular the production of ROS. To examine which types of radicals are particularly
important in the degradation process, a range of experiments were conducted to examine
the importance of hydroxyl radicals and their scavengers. First, the effect of NaNO3 was
tested, as it is widely present in wastewater and natural water. In addition, during water
treatment, the irradiation of nitrate by UV can generate radicals such as •OH [54]. A range
of nitrate concentrations (up to 20 mg L−1) was added to the solutions of pharmaceuticals
and colloid mixtures to assess the nitrate impact on the photodegradation rate constant
(Figure 6). At low concentrations of aquatic colloids (≤2 mg L−1), the presence of nitrate
had no appreciable effect on the photodegradation rate constants of the pharmaceuticals.
When aquatic colloids were present at relatively high concentrations (8 and 10 mg L−1), the
presence of nitrate was shown to enhance the photodegradation rate constants, and the
effect became more significant with increasing the concentration of nitrate. The findings
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would suggest some sort of synergistic effect between the aquatic colloids and nitrate
to promote the production of ROS such as hydroxyl radicals when both are present at
relatively high concentrations. Based on this set of experiments, the highest rate constants
for the photodegradation of propranolol, mebeverine, and carbamazepine were found to
be 0.369 min−1, 0.334 min−1, and 0.214 min−1, which were equal to a half-life of 1.9 min,
2.1 min, and 3.2 min, respectively.
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Figure 6. Effect of nitrate as a photosensitizer on the photocatalysis rate constant for (a) propra-
nolol, (b) mebeverine, and (c) carbamazepine. Symbols “*” and “**” indicate p < 0.05 and p < 0.01,
respectively (initial pharmaceutical concentration = 100 ng L−1, light = TNN 15–32).

Zhan et al. [55] also observed a complex relationship between nitrate, humic sub-
stances, and bisphenol A photodegradation, which was dependent on their respective
concentrations. Hence, the results suggest that the photocatalysis of the three pharmaceuti-
cals is likely to be facilitated by the presence of hydroxyl radicals.
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To further differentiate between hydroxyl-radical- and non-hydroxyl radical-mediated
photolysis pathways, the influence of radical scavenging was examined. The results
(Figure 7) show that 2-propanol (0.1 M) was found to inhibit the kinetics of photocatalysis of
propranolol, mebeverine, and carbamazepine. However, at the concentration of 0.01 M, the
effect of 2-propanol was insignificant. These results confirmed that the photodegradation of
these pharmaceutical compounds could be likely through indirect photolysis by hydroxyl
radicals. Similarly, Zhan et al. [55] observed that the photosensitized degradation of
bisphenol A was significantly inhibited by 0.14 M of 2-propanol. During the study of
bisphenol A photodegradation, Chin et al. [50] found that the addition of methanol slowed
its indirect photolysis as a result of the •OH scavenge effect. Similarly, Leech et al. [52]
observed a significant reduction in the photodegradation rate of 17β-estradiol on the
addition of 2-propanol (2% v/v), and Zhou et al. [36] reported the inhibition of acyclovir
and lamivudine photodegradation from the addition of isopropanol.
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3.5. Photocatalytic Removal of Pharmaceuticals in Sewage Effluent

Further experiments were conducted by examining the potential destruction of the
pharmaceutical compounds in sewage effluents under the influence of photocatalysis.
The results showed that the disappearance of the three compounds from filtered sewage
effluent samples (4.3 ng L−1 propranolol, 6.6 ng L−1 mebeverine, and 2.5 ng L−1 carba-
mazepine) was rapid in the presence of 150 mg L−1 of Degussa P25 when irradiated using
TNN 15–32, and within 20 min, none of them was detected. A further set of experiments
involving spiking 50 ng L−1 of the three compounds in sewage effluent demonstrated
that the rate constants of photodegradation were 0.28 ± 0.04 min−1, 0.21 ± 0.04 min−1,
and 0.15 ± 0.03 min−1, respectively, which were close to those obtained in water sam-
ples. The findings are interesting as sewage effluent is far more complex than natural
waters containing many trace contaminants, and such a high performance with undi-
minished kinetics indicates the great potential of photocatalysis in rapidly degrading
pharmaceuticals in wastewater. In addition, the extraction and LC-MS analysis of sewage
effluent treated using photocatalysis showed no intermediate compounds derived from the
three target pharmaceuticals, suggesting their potential mineralization at environmentally
relevant concentrations.

4. Conclusions

The photocatalytic degradation of propranolol, mebeverine, and carbamazepine was
studied under UV and UV-visible irradiation using three different TiO2 nanostructures.
The results showed that the photocatalysis of pharmaceuticals was influenced by several
parameters, in particular, the source of light and the type of photocatalysts. In essence,
the photocatalysis rate constant was more rapid under UV light than under UV-visible
light, and more effective by using Degussa P25 TiO2 than that using Hombikat UV100
or Aldrich TiO2. Notably, the kinetics of the photocatalytic degradation of propranolol,
mebeverine, and carbamazepine followed the first-order law with an estimated half-life
of 4.0–8.8 min, 5.1–11.1 min, and 11.8–23.3 min, respectively, under UV irradiation with
P25 as the photocatalyst; and the presence of aquatic colloids increased the photodegra-
dation of the pharmaceuticals. The photodegradation rate constant was further increased
by the addition of nitrate, showing a potential synergistic effect with DOM. Notably, the
addition of 2-propanol (0.1 M) reduced the rate constant of photocatalysis, demonstrating
the important role of •OH in the photocatalytic degradation of the pharmaceuticals. The
optimized photocatalytic conditions were subsequently used in treating STW effluents,
with performance (e.g., kinetics) comparable to that observed in water. With increasing
concern over pharmaceuticals and other emerging contaminants in aquatic systems, photo-
catalysis showed its potential as an effective, rapid, and green method of removing such
contaminants, thus protecting aquatic ecosystems and public health.
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