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Abstract: Nanoparticle transport into plants is an evolving field of research with diverse applications
in agriculture and biotechnology. This article provides an overview of the challenges and prospects
associated with the transport of nanoparticles in plants, focusing on delivery methods and the
detection of nanoparticles within plant tissues. Passive and assisted delivery methods, including the
use of roots and leaves as introduction sites, are discussed, along with their respective advantages and
limitations. The barriers encountered in nanoparticle delivery to plants are highlighted, emphasizing
the need for innovative approaches (e.g., the stem as a new recognition site) to optimize transport
efficiency. In recent years, research efforts have intensified, leading to an evendeeper understanding
of the intricate mechanisms governing the interaction of nanomaterials with plant tissues and cells.
Investigations into the uptake pathways and translocation mechanisms within plants have revealed
nuanced responses to different types of nanoparticles. Additionally, this article delves into the
importance of detection methods for studying nanoparticle localization and quantification within
plant tissues. Various techniques are presented as valuable tools for comprehensively understanding
nanoparticle–plant interactions. The reliance on multiple detection methods for data validation is
emphasized to enhance the reliability of the research findings. The future outlooks of this field are
explored, including the potential use of alternative introduction sites, such as stems, and the continued
development of nanoparticle formulations that improve adhesion and penetration. By addressing
these challenges and fostering multidisciplinary research, the field of nanoparticle transport in plants
is poised to make significant contributions to sustainable agriculture and environmental management.

Keywords: assisted delivery; passive delivery; vascular bundles; localization; quantification;
nanoparticle characterization; detection strategies

1. Introduction

The transport of matter into plants, also known as plant uptake, is a crucial process
for the growth and development of plants. Plants require various essential nutrients, water,
and gases for their survival and growth. The primary processes facilitating the transport
of matter into plants encompass water uptake and the assimilation of nutrients. Water
is essential for plants as it serves as a solvent for nutrients and is involved in various
physiological processes [1]. Water is absorbed by the roots of plants through a process
called osmosis [2]. The root hairs, tiny hair-like structures on the roots, play a critical role
in water uptake [3]. Additionally, Choi and Cho discovered that root hairs significantly
enhance the soil retention capacity of seedling roots in Arabidopsis thaliana [3]. Plants rely
on essential nutrients like macronutrients (e.g., nitrogen, phosphorus, and potassium) and
micronutrients (e.g., iron, zinc, and copper) [4], which they absorb through their roots from
the soil. Nutrient uptake is a complex process utilizing both passive and active transport
mechanisms. Smaller ions typically enter root cells through passive diffusion driven by
concentration gradients [5,6]. However, for nutrients found in lower soil concentrations,
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plants employ active transport, an energy-consuming process facilitated by specific root
cell transport proteins. Examples of these proteins include K+ transporters and channels
like OsGORK, OsAKT1, OsHAK1, OsHAK5, and OsHAK21 [7]. Nutrients travel through two
main pathways in plants. The symplastic pathway involves nutrient movement through
the plant cells via plasmodesmata [8], while the apoplastic pathway involves movement
through the cell walls and intercellular spaces [9]. After the roots absorb nutrients, the
plant’s vascular system, composed of xylem and phloem, transports them to various
tissues. Xylem carries water and nutrients from the roots to aerial parts, while phloem
transports sugars and organic compounds throughout the plant [10]. In Zea mays, Wang
et al. demonstrated varied localization and translocation patterns within the xylem and
phloem [11]. Transpiration, the loss of water vapor through the stomata [12], creates tension
in the plant’s vascular system, facilitating the upward pull of water and nutrients from the
roots, known as transpiration pull [13]. Additionally, plants absorb carbon dioxide (CO2)
through the stomata, mainly in the leaves, for photosynthesis, converting light energy into
chemical energy and producing oxygen (O2) as a byproduct [14].

The transport in plants extends beyond water, nutrients, and gases, encompassing the
movement of various particles or nanoparticles, as well as other exogenous materials. This
includes genetic material such as double-stranded RNA (dsRNA). Nanoparticles can be
transported into plants for several reasons, often as a result of environmental exposure or
as a part of research and development efforts. The transport of nanoparticles into plants can
have various implications, both beneficial and potentially concerning, depending on the
type of nanoparticles and the intended purpose. Nanoparticles can be classified based on
both their chemistry and size [15]. The chemical composition of nanoparticles dictates their
inherent properties, such as optical, electrical, magnetic, and catalytic characteristics [16,17].
Different materials exhibit unique behaviors and functions. Additionally, particle size also
directly influences their physical and chemical properties due to quantum effects and an
increased surface-to-volume ratio [18]. In many cases, a combination of both chemistry and
size is considered to tailor nanoparticles for specific applications. Nanoparticles have dual
applications in delivering nutrients, fertilizers, and genetic materials to plants, offering
significant benefits in agriculture and biotechnology [19,20]. Designed for controlled
nutrient release, nanoparticles, like the nanoU-NPK fertilizer (Ca 23.3%, P 10.1%, K 1.5%,
NO3 2.9%, urea 4.8%), minimize over-fertilization and enhance nutrient use efficiency [21].
This controlled release also mitigates environmental impacts related to nutrient leaching
and runoff. Additionally, nanoparticles act as carriers for genetic materials, facilitating
genetic modification, gene silencing, or gene editing [20,22]. They deliver transgenes
or genetic constructs into plant cells for trait enhancement or modification [22]. Small
RNA molecules, like small interfering RNA (siRNA), delivered by nanoparticles, initiate
RNA interference (RNAi) for targeted gene regulation or virus resistance [23]. Combining
nutrient and genetic material delivery through nanoparticles is particularly valuable in
modern agriculture, addressing challenges and contributing to crop improvement.

In this review, we will provide an overview of the transport of nanoparticles in plants
and the methods employed for their detection. Additionally, we will outline the challenges
associated with current methodologies and explore potential future directions.

2. Transport of Nanoparticles into Plants

Understanding the transport of nanoparticles into plants is crucial for harnessing their
potential in agriculture and biotechnology. The journey of nanoparticles from external
environments to internal plant tissues involves intricate processes influenced by both the
properties of the nanoparticles and the characteristics of plant structures. Nanoparticles
can be designed to transport specific materials, compounds, or genetic information within
plants, acting as carriers to deliver these payloads to target locations. The controlled
delivery of nanoparticles can be advantageous for precise and efficient plant applications.
Nanoparticles can be used for fertilizer or nutrient delivery, genetic material delivery, and
pesticide or herbicide delivery (Figure 1). Nanoparticles can be used to transport essential
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nutrients, including micronutrients such as iron, zinc, and other trace elements, into plant
cells [21,24,25]. Tombuloglu et al. successfully synthesized composites of micronutrient
nanoparticles (NPs) and applied them to Hordeum vulgare L. [25]. They demonstrated
the effective incorporation of these micronutrients into plant tissue. The transportation
of these NPs significantly increased the quantity of elements in both the root and leaf
tissues. Specifically, the contents of Fe, Zn, and Cu were raised to approximately 5, 3, and
18 times higher than the control, respectively [25]. This approach is known as nanoparticle-
mediated nutrient delivery and is aimed at enhancing the nutrient uptake and utilization
of plants. Nanoparticles, due to their small size, can be taken up by plant roots or leaves.
The nanoparticles may enter plant cells through various mechanisms, such as diffusion,
endocytosis, or direct uptake through ion channels and transporters [7,26]. Once inside
the plant cells, the nanoparticles release the encapsulated nutrients. This controlled release
ensures that the nutrients are made available within the plant at a rate that matches the
plant’s needs [25]. By improving nutrient uptake and utilization, nanoparticle-mediated
nutrient delivery can reduce the number of traditional fertilizers needed, minimizing the
environmental impact associated with excess nutrient runoff and leaching.
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Figure 1. Nanoparticles used as carriers for nutrient (fertilizer), genetic material, and pesticide
delivery into plants.

Nanoparticles can also serve as vehicles for delivering genetic material, such as DNA,
RNA, or small interfering RNA (siRNA), into plant cells [22,23]. This technology, often
referred to as “nanoparticle-mediated gene delivery”, has several applications in plant
biotechnology and agriculture. Nanoparticles are engineered to encapsulate, bind, or
complex with genetic material. These nanoparticles are designed to protect the genetic
material from degradation and facilitate its delivery into plant cells [27]. Wang et al. used
several types of NPs (CS, PEI, protamine, CQD, PAMAM, and CSC) to deliver dsRNA
against rice sheath blight (Rhizoctonia solani) in Oryza sativa L. [28]. These nanoparticles
could protect dsRNA from degradation by nucleases. Nanoparticles are introduced to
plant tissues through various methods, such as direct injection into plant cells, root soaking,
or foliar spray. Once inside the plant cells, the nanoparticles release the encapsulated
genetic material. This can be achieved through controlled release mechanisms or by
breaking down the nanoparticle complexes under specific conditions. Nanoparticles can be
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used to transport pesticides or herbicides to specific target areas within plants [29]. This
approach can enhance the precision and efficiency of pesticide application and reduce the
environmental impact associated with conventional spray applications. Nanoparticles can
be designed to target specific plant tissues or cell types, ensuring that the pesticides or
herbicides are delivered directly to the intended areas, such as the leaves, stem, or root
system [29,30]. A water-soluble chitosan (CS) derivative (N-(2-hydroxyl)propyl-3-trimethyl
ammonium CS chloride, HTCC) was successfully capped on the surface of pyraclostrobin-
loaded MSNs by Cao et al. [31]. This particle directly targeted Phomopsis asparagi (Sacc.)
and had fungicidal activity against it. By improving the targeted delivery of pesticides and
herbicides, nanoparticle-mediated delivery can reduce the amount of chemicals needed,
minimize off-target effects, and reduce environmental pollution and contamination.

Nanoparticles have also shown potential impacts on plant development and growth,
and their applications in agriculture are an active area of research. Nanoparticles can influ-
ence seed germination rates and early plant growth [32,33]. They may enhance seedling
vigor and promote healthier plant establishment. Our previous study showed that the
use of SiO2 NPs could improve tomato (Solanum lycopersicum var. Momotaro) seed ger-
mination [33]. Some nanoparticles have been studied for their potential to enhance plant
stress tolerance, such as resistance to drought, salinity, or heavy metal toxicity [34]. These
nanoparticles may act as stress mitigators and improve overall plant health. The presence
of nanoparticles in soil can also influence microbial communities and soil health [35]. The
impact depends on the type of nanoparticles used and their interactions with soil microor-
ganisms. Some nanoparticles may exhibit phytotoxic effects. This can result in stunted
growth, reduced photosynthesis, or other negative impacts on plant health [36]. The fate of
nanoparticles in the environment, including their persistence and potential for leaching
into water sources, is an important consideration for sustainable agricultural practices.
Balancing the potential benefits with environmental and human health considerations is
crucial for the sustainable integration of nanotechnology in agriculture.

2.1. Types of Nanoparticles Used for Transport

Various types of nanoparticles are used for transport in plants, depending on the
specific application and the payload (substance being transported). Different nanoparticles
possess unique properties that make them suitable for diverse purposes in plant biology and
agriculture. The choice of nanoparticle type in plant-related applications depends on several
critical factors, as listed in Table 1. The careful consideration of these factors is essential
when choosing the appropriate nanoparticle type for specific plant-related applications. The
goal is to ensure that the selected nanoparticles align with the objectives of the application,
provide benefits, and minimize potential risks to plants and the environment.

Nanoparticles can be categorized into commercial (engineered) and biogenic (natu-
rally occurring) based on their origin [37]. Commercial nanoparticles, also referred to as
engineered nanoparticles, are particles that are intentionally designed, synthesized, and
produced with specific characteristics for various industrial, technological, agricultural,
or consumer applications such as metal nanoparticles, metal oxide nanoparticles, carbon
nanotubes, quantum dots, nanocomposites, and polymeric nanoparticles [37,38]. These
nanoparticles are created through engineering processes to achieve desired properties at
the nanoscale, typically ranging from 1 to 100 nanometers. The intentional manipulation
of the size, shape, surface properties, and composition distinguishes engineered nanopar-
ticles from naturally occurring nanoparticles. On the other hand, biogenic nanoparticles
refer to nanoparticles that are naturally formed or synthesized by living organisms or
natural processes without human intervention. Unlike engineered nanoparticles, which
are intentionally produced by humans for specific purposes, biogenic nanoparticles occur
naturally because of biological and environmental processes [39]. These nanoparticles can
be found in various natural sources and are often associated with specific organisms or
geological phenomena such as bacterial nanoparticles, fungal nanoparticles, volcanic ash,
clay minerals, and wildfire ash [39].
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Table 1. Factors influencing nanoparticle selection for plant transport-related applications.

Factor Description

Desired application
Different applications, such as nutrient delivery, genetic material transfer, or

pesticide transport, require specific nanoparticle types with suitable
properties [25,28,31].

Payload type
The nature of the payload, whether it is nutrients, genetic material (DNA or RNA),

pesticides, or other substances, influences the selection of the appropriate
nanoparticle [23,24,29].

Payload size and solubility The size and solubility of the payload may determine the choice of nanoparticle, as
some nanoparticles are better suited for carrying particular types of cargo [40].

Targeted delivery If precise delivery to specific plant tissues or cells is required, the nanoparticle type
should allow for targeted delivery [41].

Biocompatibility Some applications, such as those involving genetic material delivery or
interactions with living organisms, necessitate biocompatible nanoparticles [42].

Environmental considerations

The environmental impact of nanoparticle use, including factors like
biodegradability and safety, is crucial in agriculture and ecological

applications [43]. In addition to these considerations, environmental conditions
such as soil pH, temperature, and relative humidity play pivotal roles in

determining the fate and impact of nanoparticles [44].

Size and shape The size and shape of nanoparticles can influence their ability to enter plant cells
or tissues. In some cases, specific shapes or sizes may be more effective [29,45].

Crop or plant type Different plant species or crops may have varying requirements and responses to
nanoparticle-based applications, affecting the selection of nanoparticle types [46].

There are numerous types of nanoparticles, and the field of nanotechnology contin-
ues to evolve, leading to the development of new types and functionalities. Examples
of nanoparticles used for transport in plants are presented in Table 2 along with their
introduction site. Metals and metal oxides are types of nanoparticles that are commonly
used in various plant transportation applications.

Table 2. Types of nanoparticles used for transport in plants and their places of introduction.

Type NPs Size (nm) Plants Introduction Site Ref.

Metal or metalloid

Ag 1–10 Tomato Roots [47]
Ag 10 Triticum aestivum Roots [48]

Ag 20 ± 3 Linum usitatissimum, Lolium
perenne, Hordeum vulgare Roots [49]

Ag 20 Arabidopsis thaliana Roots [50]
Ag 10 Phaseolus radiatus, Sorghum bicolor Roots [51]
Ag 10–15 Lycopersicum esculentum Roots [52]

Ag 27.3 ± 6 Populus deltoides, Arabidopsis
thaliana Roots [53]

Al 18
Brassica napus, Raphanus sativus,

Lolium perenne, Lactuca sativa, Zea
mays, Cucumis sativus

Roots [54]

Au 1–3 Oryza sativa Roots [55]
Au 3.5 and 18 Nicotiana xanthi Roots [56]

Au 6–10 Oryza sativa, Lolium perenne,
Raphanus sativus, Cucurbita mixta Roots [57]

Co 28 Tomato Roots [47]
Ni 28 Tomato Roots [47]
Si 14 Arabidopsis thaliana Roots [58]

Zn 35
Brassica napus, Raphanus sativus,

Lolium perenne, Lactuca sativa, Zea
mays, Cucumis sativus

Roots [54]
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Table 2. Cont.

Type NPs Size (nm) Plants Introduction Site Ref.

Metal or metalloid
oxide

CeO2 25 Holcus lanatus, Diplotaxis tenuifolia Roots [59]
CeO2 8 Glycine max Roots [60]
CeO2 8 ± 1 Oryza sativa Roots [61]
CeO2 20 ± 2 Solanum lycopersicum Roots [62]

CeO2
6.6 ± 1;
25.2 ± 2 Cucumis sativus Roots [63]

Fe3O4 20–30 Tomato Roots [47]
Fe3O4 8 Cucurbita maxima Roots [64]
SiO2 10–20 Chelidonium majus Leaves [65]
SiO2 20 Cucumis sativus Leaves [66]
TiO2 20 Tomato Roots [47]
TiO2 20 ± 5 Triticum aestivum Roots [67]
TiO2 27 ± 4 Cucumis sativus Roots [68]
TiO2 27 Lycopersicum esculentum Roots [52]
TiO2 2.8 ± 1 Arabidopsis thaliana Roots [69]
ZnO 10 Glycine max Roots [60]

ZnO 20 ± 5
Brassica napus, Raphanus sativus,

Lolium perenne, Lactuca sativa, Zea
mays, Cucumis sativus

Roots [54]

Carbon-based

C 20 Zea mays Roots [70]
Carbon nanotubes

(CNT) 10–30 Cicer arietinum Roots [71]

Multi-walled carbon
nanotubes (MWCNT) 10–20

Brassica napus, Raphanus sativus,
Lolium perenne, Lactuca sativa, Zea

mays, Cucumis sativus
Roots [54]

MWCNT 6–9 Zea mays Roots [72]

MWCNT 4–13
Lactuca sativa, Oryza sativa,

Cucumis sativus, Amaranthus
tricolor, Abelmoschus esculentus,
Capsicum annuum, Glycine max

Roots [73]

MWCNT 30 Brassica juncea Roots [74]
MWCNT 6–13 Triticum aestivum Roots [75]

Single-walled carbon
nanotubes (SWCNT) 20 Nicotiana benthamiana Leaves [76]

Semiconductor

3-mercaptopropionic
acid (MPA) quantum

dots (QDs)
4–5.4 Lemna minor Leaves [77]

Cd-based QDs 1.9 and 2.4 Allium cepa Roots [78]
CdSe/CdZnS QDs 19.5 ± 7 Populus deltoides Roots [79]

CdTe QDs 4 Oryza sativa Roots
Glutathione (GSH)

QDs 4–4.4 Lemna minor Leaves [77]

Polymeric
Chitosan 19–21 Oryza sativa Roots [80]

Thiamine loaded
chitosan 10 Cicer arietinum Roots [81]

Magnetic Superparamagnetic
iron oxide (SPION) 9 Glycine max Roots [82]

Research on the interaction of nanomaterials with plants has mainly focused on
phytotoxicology. At the same time, less research has been conducted on positive effects
such as increasing crop productivity and enhancing plant resistance, and research on
beneficial effects on plants is still incomplete. The entry of nanoparticles into plants,
especially at high concentrations, can lead to phytotoxicity. Geisler-Lee et al. showed that
Ag NPs could exert detrimental effects on A. thaliana, but the phytotoxic effect of Ag NPs
could not be fully explained by the released silver ions [50]. Another study also indicated
that the internalization and upward translocation of ZnO NPs by Lolium perenne could
significantly reduce the biomass and cause damage to root epidermal and cortical cells [54].
Some nanoparticles, such as certain metal and metal oxide nanoparticles, can generate
reactive oxygen species (ROS) when they enter plant cells [83]. Elevated ROS levels can
damage cell structures, disrupt cellular functions, and cause oxidative stress, leading to
plant injury or even cell death [83,84]. High nanoparticle concentrations can disrupt the
integrity of plant cell membranes [85]. This can lead to the leakage of cellular contents
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and negatively impact cell viability. Rossi et al. stated that NPs could also influence plant
symplastic pathways by altering ion transport activity or root cell membrane integrity [86].
Excessive nanoparticle accumulation can interfere with the uptake and distribution of
essential nutrients, disrupting nutrient balance in plants and causing nutrient deficiencies
or toxicities. High nanoparticle concentrations may also physically obstruct the plant’s
nutrient and water transport systems, impeding the movement of substances throughout
the plant [26]. Plants exposed to high nanoparticle concentrations may activate stress
responses, diverting resources away from growth and development and reducing overall
plant health [46,87]. The phytotoxicity of nanoparticles can vary depending on factors
such as nanoparticle type, size, shape, surface properties, and the plant species involved.
Therefore, selecting the appropriate concentration of nanoparticles is a critical decision, as
it can significantly impact the performance and effectiveness of nanoparticle transport.

Nanoparticles, whether naturally occurring or engineered, can have various negative
effects on plants. The impact of nanoparticles on plants depends on factors such as the type
of nanoparticles, their concentration, exposure duration, and the specific plant species [88].
Nanoparticles can exhibit phytotoxic effects, leading to damage being caused to the plant
cells, tissues, and overall plant structure. This can result in stunted growth, reduced
biomass, and compromised plant health [36]. Exposure to certain nanoparticles can alter
the root morphology and function. This includes changes in the root length, surface area,
and the structure of root hairs, which can impact nutrient and water uptake [89]. Nanopar-
ticles can induce oxidative stress in plants by generating reactive oxygen species (ROS).
Elevated ROS levels can lead to the damage of cellular components, such as membranes,
proteins, and DNA, affecting plant health [90]. Some nanoparticles may persist in the
environment, leading to long-term exposure for plants. Additionally, there is a concern
about the potential bioaccumulation of nanoparticles in plant tissues, which can have
implications for organisms higher up the food chain [91].

2.2. Modes of Transport of Nanoparticles into Plants

Nanoparticle transport in plants can be categorized based on two main mechanisms,
i.e., assisted delivery and passive delivery. When referring to assisted delivery in the
context of transporting nanoparticles to the plant body, it means that external power or
forces are applied to facilitate the transport of nanoparticles into the plant tissues [20].
This external power or force assists in the delivery process, often overcoming barriers
that would hinder passive transport [92]. Examples of assisted delivery techniques in
plant nanoparticle applications are shown in Figure 2 and described briefly in Table 3.
The biolistic (gene gun) is a device that uses an external force, such as compressed gas or
helium, to propel nanoparticles [93,94]. Rajkumari et al. reported the use of Ag NPs as
gene carriers, replacing Au microcarriers for biolistic gene delivery in Nicotiana tabacum
L., and showed that the transformation efficiency was significantly higher with Ag NPs
than Au microparticles as carriers [94]. Sonoporation involves the application of ultra-
sound waves to create temporary pores in plant cell membranes, allowing nanoparticles
to enter the cells [95]. The external force of ultrasound assists in the delivery process.
Zolghadrnasab et al. showed that ultrasonic treatment provides an economical and straight-
forward approach for poly-ethyleneimine (PEI)-coated mesoporous silica nanoparticles
(MSNs) transferring into plant cells without any need for complicated devices and without
concerns about safety issues [96]. Magnetic nanoparticles can be guided to specific plant
tissues using external magnetic fields, effectively assisting in the targeted delivery of these
nanoparticles [97]. Characterizing the intrinsic magnetic properties of nanoparticles in-
volves understanding their behavior at the bulk level as well as at the level of individual
molecules. Various techniques are employed for both bulk and single-molecule investiga-
tions. Bulk techniques include vibrating sample magnetometry (VSM), superconducting
quantum interference device (SQUID), magnetic resonance imaging (MRI), Mössbauer
spectroscopy, and X-ray magnetic circular dichroism (XMCD) [98,99]. Single-molecule
techniques include magnetic force microscopy (MFM), scanning tunneling microscopy
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(STM), electron magnetic circular dichroism (EMCD), single-particle magnetometry, and
fluorescence-based techniques [100,101]. Electroporation involves applying external elec-
tric fields to plant cells, creating temporary pores in the cell membranes [102]. This method
uses an external electrical power source to facilitate nanoparticle entry. Microinjection,
combined with external manipulation, can be used to introduce nanoparticles into spe-
cific plant cells [103]. Most of the assisted delivery methods are used for transporting
nanoparticles in vitro (outside living organisms, typically in a controlled laboratory setting)
as indicated in Figure 2. Nanoparticles can be introduced to plant embryos cultivated
in a controlled laboratory setting [104]. Plant embryos, which are the earliest stages of
plant development, offer a convenient point of entry for introducing nanoparticles that
can influence the growth and characteristics of the resulting plant. Nanoparticles can also
be introduced to plant callus cultures, which are undifferentiated masses of plant cells
grown in vitro [105]. Plant callus cultures are typically initiated from explants, such as leaf
pieces, stem segments, or immature embryos. These explants are sterilized and placed on a
suitable culture medium containing plant growth regulators to induce callus formation.
Introducing nanoparticles to plant protoplasts is also a technique that is commonly used in
plant biotechnology. Protoplasts are plant cells that have had their cell walls enzymatically
removed, leaving behind the cell membrane and cytoplasm [106].
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Assisted delivery methods can facilitate the delivery of relatively larger particles due
to the external forces involved, as indicated in Table 3. These methods are valuable for over-
coming natural barriers and transporting particles efficiently. However, there are still many
big issues related to this transport method, especially regarding their scalability to larger
scales. Therefore, passive delivery still has advantages over it. In a controlled laboratory
setting, it is easier to maintain uniform conditions for assisted delivery, ensuring consis-
tency in nanoparticle uptake [107]. On larger scales, achieving uniformity across a field or
agricultural area becomes more challenging. Variability in environmental conditions, soil
composition, and plant physiology can affect the effectiveness of delivery methods [108].
Assisted delivery in vitro also allows for precise control over factors such as temperature,
humidity, and nutrient levels. However, real-world conditions vary widely in agricultural
settings. Adapting in vitro strategies to diverse environments becomes complex, and fac-
tors like wind, rainfall, and temperature fluctuations can impact the efficacy of nanoparticle



Nanomaterials 2024, 14, 131 9 of 29

delivery [109]. Implementing these assisted delivery methods on a large scale also requires
significant resources and may not be economically feasible. Factors such as the cost of
materials, equipment, and labor must be considered for practical application in agriculture.
The large-scale implementation of assisted delivery may face regulatory challenges related
to environmental impact, safety, and ethical considerations [110]. Demonstrating the safety
and environmental compatibility of nanoparticle delivery systems becomes essential.

Table 3. Examples of assisted delivery techniques for introducing nanoparticles into plants.

Method NPs Size (nm) Plants Target Ref.

Biolistic (gene gun)

Ag 100 Nicotiana tabacum Leaf explants [94]
Au 712 ± 95 Nicotiana benthamiana Leaf explants [106]

Au-MSN 600 Nicotiana tabacum,
Teosinte Leaf explants [111]

Au-MSN 600 Zea mays Embryos [103]
Fe 255 ± 170 Nicotiana benthamiana Leaf explants [106]

Sonoporation hPAMAM-G2 123 ± 21 Medicago sativa Cells [112]
PEI-MSN 100 ± 87 Nicotiana tabacum Cells [96]

Magnetic field

γ-Fe2O3 21.2 ± 3 Zea mays Roots [113]
Carbon-coated iron 10–50 Cucurbita pepo Roots [114]

Fe2O3 10 Solanum lycopersicum Roots [115]
Fe3O4 13 Hordeum vulgare Roots [116]

Electroporation CPNs 60–80 Tobacco Protoplasts [105]

Microinjection mGNPs 20–30 Brassica napus Cells [117]
SWNTs 500 Nicotiana tabacum Cells [118]

In contrast to assisted delivery, passive delivery in the context of nanoparticle transport
in plants typically refers to the movement of nanoparticles through natural routes without
the assistance of external forces or active mechanisms. It encompasses various methods
through which nanoparticles enter the plant body, often via sites such as roots and leaves. In
summary, assisted delivery and passive delivery are different concepts. Assisted delivery
involves an intervention to enhance nanoparticle uptake, while passive delivery relies
on natural processes, without external assistance. These approaches cater to different
research goals and applications in the field of nanotechnology for plant science. These
passive delivery routes include root uptake and foliar uptake [29]. Plants naturally absorb
water and dissolved substances, and nanoparticles can enter the plant through the roots
as they take up water and nutrients [26,29]. This is a common method for delivering
nanoparticles to plants in vivo. When discussing in vivo delivery in the context of plants, it
typically involves the intact, living plant. In vivo experiments aim to study the interaction
between nanoparticles and the entire living organism, considering the complexities of
the plant’s biological systems [119]. Nanoparticles can also be sprayed or applied to the
leaves of plants [26,120]. Lian et al. showed that the response of Zea mays L. to Cd and
TiO2 NPs was highly dependent on the exposure mode. They reported that leaf exposure
provided more benefits than root exposure [120]. Some nanoparticles, like those used in
foliar fertilizers or pesticides, can be taken up by the plant through the stomata (small
openings on leaf surfaces) or through the leaf cuticle [29]. Examples of these two methods
are shown in Table 1 above, which use the in vivo nanoparticle transport route (Figure 3).
After nanoparticles enter the roots or leaves of a plant, they can be transported throughout
the plant’s vascular system, which includes the xylem and phloem in the stem [121]. The
vascular system plays a crucial role in the distribution of water, nutrients, and various
substances, including nanoparticles, to different parts of the plant.
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2.3. Challenges during Nanoparticle Transport

One of the primary challenges of using assisted delivery techniques is the potential
for plant cell damage [122]. Assisted delivery methods, especially those involving physical
forces or electrical pulses, can cause physical stress or damage to the target plant cells [123].
This may result in cell death, reduced viability, or altered cell function. Each assisted
delivery method often requires the careful optimization of parameters. Finding the optimal
parameters for different applications can be labor-intensive and may involve trial and error.
Some assisted delivery methods may raise safety concerns due to potential unintended
biological effects. Some assisted delivery methods may also be less suitable for in vivo
applications due to challenges related to safety, depth of penetration, and the potential
for systemic effects. A description of the advantages and disadvantages of each assisted
delivery method can be seen in Table 4. Some of the disadvantages associated with assisted
delivery methods are precisely what make passive delivery methods preferable in certain
situations. Passive delivery methods are often favored when conducting studies in living
plants, particularly when the goal is to minimize risks to plant health and create conditions
that more closely resemble real-world scenarios.

Table 4. Advantages and disadvantages of using assisted delivery methods to introduce nanoparticles
into plants.

Method of Assisted Delivery Advantages Disadvantages

Biolistic (gene gun)

- Can be applied to a wide range of
plant species.

- No need for specific plant
developmental stages [124].

- Can cause physical damage to plant
cells, potentially leading to cell death or
reduced regeneration efficiency [125].

- Requires specialized equipment.
- The composition of the delivery buffer

can influence the stability of
nanoparticles and their tendency to
aggregate [126].
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Table 4. Cont.

Method of Assisted Delivery Advantages Disadvantages

Sonoporation

- Non-invasive method, making it
less damaging to plant cells.

- Pores created are temporary and
typically reseal over time [127].

- Optimization can be complex and may
require extensive experimentation.

- May have limited penetration into deep
tissues [128].

- The composition of the medium in
which sonoporation is conducted can
influence nanoparticle stability [129].

Magnetic field

- Enable highly targeted and
localized delivery to specific plant
tissues or cells [97].

- Allows for precise control over the
release of nanoparticles.

- Require the use of magnetic
nanoparticles, which can limit their
applicability [130].

- Methods are well suited for in vitro
applications, and not in vivo.

Electroporation

- Can be used for a broad range of
plant species.

- Relatively fast, allowing for efficient
delivery within a short time
frame [131].

- Can lead to physical damage to the cell
membranes, potentially causing cell
death or reducing cell viability [132].

- Can induce cellular stress responses.

Microinjection

- Allows for precise and targeted
delivery of nanoparticles into
specific cells or locations within
an organism.

- Can be used to introduce a wide
range of nanoparticles, making it a
versatile technique [133].

- Can be invasive and potentially
damaging to the plant cells, which may
lead to stress or mortality.

- Low-throughput method, making it
unsuitable for large-scale
applications [134].

Passive delivery methods in plants have several advantages over assisted delivery
methods, especially in certain applications and contexts. Passive delivery methods do not
require the application of external forces, such as mechanical or electrical forces, which
can potentially damage plant cells or tissues [27,122]. This results in less invasive effects
on the plant, reducing the risk of cell damage or stress. Characterizing the mechanical
and electrical properties of nanoparticles is essential for understanding their behavior
and performance, especially when they interact with plant tissues [135]. Mechanical
properties at the bulk level are characterized by atomic force microscopy (AFM) and
dynamic mechanical analysis (DMA) [136]. In contrast, AFM-based nanoindentation and
scanning probe microscopy (SPM) are the techniques commonly used to characterize at
the nanoscale level [137], and techniques used to characterize electrical properties at the
bulk level are impedance spectroscopy and four-point probe measurement [138]. On the
other hand, techniques used to characterize at the nanoscale level are conductive AFM
(cAFM), Kelvin probe force microscopy (KPFM), and transmission electron microscopy
(TEM) with energy-dispersive X-ray spectroscopy (EDS) [139]. Passive delivery methods
are often simpler and more straightforward to implement. They do not require specialized
equipment or complex optimization processes, making them accessible to a wider range of
researchers and practitioners. Passive delivery methods are generally more cost-effective
because they do not necessitate the use of expensive equipment or consumables. However,
there are several challenges, particularly when it comes to particle size limitations. Passive
delivery methods are often constrained by the physical characteristics of the nanoparticles
being transported [140]. In the case of roots and leaves, the size of particles that can
be transported is limited by the size of pores, channels, or structures within the plant
tissue [141]. Large particles may encounter limitations in passing through these structures,
thereby constraining the efficacy of passive transport. The examples presented in Table 1
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indicate that the majority of the particle sizes utilized are below 40 nm. Particles with sizes
above 40 nm may not be accommodated through passive delivery via roots and leaves.
Plant cells have rigid cell walls, and the pore size diameter ranges from less than 10 nm in
most pores to a rare maximum size of 40 nm [142–144]. McCann et al. observed that intact
cell walls of Allium cepa var. Jumbo generally measure 10–20 nm [142]. The average cell
wall size was 30 nm in width, which was visualized using spectroscopic methods [145].
The same is true for foliar uptake, where a waxy cuticle in leaves acts as a barrier for
particles entering the plant [146]. Many particles, particularly larger ones, will not be able
to pass through the stomata (microscopic openings) on the leaf surface, as these typically
have diameters of less than 10 nm to 20 nm [147]. Passive delivery methods often involve
incorporating nanoparticles into the growth medium, soil, or other components of the
plant’s environment during specific developmental stages, such as seed germination or
seedling growth, as indicated in Table 5. Passive delivery via root uptake and foliar uptake
has its own set of advantages and disadvantages, as also listed in Table 5. Exploring
alternative introduction sites for passive transport in plants is a worthwhile direction for
future research and development. It allows for the customization of delivery methods and
the potential to overcome limitations associated with roots and stems.

Table 5. Advantages and disadvantages of using existing passive delivery methods and plant
developmental stages to introduce nanoparticles into plants.

Passive Delivery Advantages Disadvantages

Methodology

Root uptake

- Plant roots are naturally adapted to
take up water and nutrients from the
soil. Nanoparticles can leverage these
existing uptake mechanisms, making it
a relatively non-invasive and
eco-friendly method [29].

- Nanoparticles introduced through the
root system can potentially provide
longer-lasting effects compared to foliar
applications, as they may be less prone
to weathering and degradation [148].

- The transport of nanoparticles through
the root system may be subject to size
and charge limitations, as not all
nanoparticles can efficiently pass
through the root cell walls or move
within the plant [142,145].

- The efficiency of nanoparticle uptake
through roots can vary among different
plant species. Some plants may not
readily take up nanoparticles or may
do so less efficiently [29,149].

Foliar uptake

- Leaves are the primary sites for
photosynthesis and gas exchange in
plants. Nanoparticles applied to leaves
can be directly taken up by the plant,
potentially leading to faster effects
compared to root uptake [150].

- Leaf-based applications eliminate the
need for nanoparticles to interact with
soil components, which may affect the
stability and bioavailability of the
nanoparticles [151].

- Not all nanoparticles are efficiently
taken up by leaves, and the extent of
uptake can vary among plant species.
Leaf properties, such as waxes and
surface structures, can create barriers to
nanoparticle penetration [26,149].

- Nanoparticles may not efficiently
translocate to other plant tissues
beyond the treated leaves, limiting their
systemic effects [152].

Plant developmental stages

Seed germination

- Nanoparticles become integrated into
the plant from the earliest stages,
potentially influencing overall
development [33].

- Since seeds are typically uniform in size
and structure, introducing
nanoparticles during germination
allows for relatively uniform exposure
across a population of plants [153].

- During germination, the developing
seedling may have limited root
development, potentially limiting the
uptake of nanoparticles [54].

- Nanoparticles introduced during
germination might have a higher
chance of causing toxicity, as
developing seedlings are often more
sensitive to external factors [154].
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Table 5. Cont.

Passive Delivery Advantages Disadvantages

Seedling growth

- Seedlings generally have more
developed root systems compared to
germinating seeds, allowing for
potentially higher uptake of
nanoparticles [155].

- Seedlings are often more robust and
resilient compared to germinating
seeds, making them potentially better
equipped to handle the introduction of
nanoparticles without adverse effects
on growth [155].

- Seedlings may exhibit variability in size
and developmental stage, leading to
potentially inconsistent exposure to
nanoparticles across a population [156].

- Growing seedlings requires more
resources such as space, light, and
nutrients compared to germinating
seeds [33].

3. Detection of Nanoparticles in Plants

Selecting the appropriate detection methods for nanoparticles in plants is crucial for
various applications, including understanding nanoparticle uptake, distribution, and poten-
tial impacts on plant health and the environment [125,157]. The choice of detection method
should depend on the specific research objectives, the characteristics of the nanoparticles,
and the resources available. Often, a combination of techniques is employed to gain a
comprehensive understanding of nanoparticle transport in plants [158,159]. Deng et al.
studied the uptake of titanium dioxide NPs in Oryza sativa L. tissues using multiple or-
thogonal techniques: electron microscopy, single-particle inductively coupled plasma mass
spectroscopy, and total elemental analysis using ICP optical emission spectroscopy [159]. It
is also essential to consider the potential impact of the detection method on the integrity of
the plant samples and the interpretation of the results. Some considerations for selecting
detection methods are listed in Table 6. These considerations involve both the character-
istics of the particles being studied and the context in which the research is conducted.
The choice between in vivo, in vitro, and in silico approaches is an important decision that
influences the type of detection methods that can be applied.

Table 6. Considerations for selecting detection methods for studying particle transport in plants.

Factors Description

Methodological considerations

• In vivo (within the living organism):

Advantages: Provides real-time information about particle transport in a
physiological context [160].
Considerations: May be challenging to observe and quantify; has potential effects on
plant health [122].

• In vitro (outside the living organism, typically in a controlled environment):

Advantages: Allows for controlled experiments; easier to monitor and quantify [107].
Considerations: May not fully represent the complexity of the in vivo
environment [108].

• In silico (computer simulation):

Advantages: Enables modeling and simulation of particle transport; cost-effective
and flexible [161].
Considerations: Requires accurate input parameters; simplifications may limit
realism [161].

Particle properties The size and composition of nanoparticles may influence the choice of detection
method. Some methods are better suited for specific sizes or materials [162].
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Table 6. Cont.

Factors Description

Objectives

• Localization: Detect nanoparticles on the plant’s surface, in the root, or within
various plant tissues [97,163].

• Quantification: Quantitative data on the concentration of nanoparticles in plant
tissues or qualitative information on their presence [159,163].

Non-invasive vs. invasive Some methods are non-invasive and allow real-time monitoring, while others
require destructive sampling [164].

Sensitivity and precision Considers the required sensitivity to detect low concentrations of
nanoparticles [165].

Sample preparation Evaluates the ease and compatibility of sample preparation with the chosen method.
Some methods may require complex sample processing [166].

3.1. Type of Detection Methods

Detecting the transport of nanoparticles in plants is an important area of research with
several potential applications. There are various techniques and methods for detecting and
studying nanoparticle transport in plants, as listed in Table 7. All of these methods play
crucial roles in understanding how nanoparticles are taken up and distributed and how
they interact with plant tissues. Zhang et al. reported the detection of 7 nm and 25 nm
CeO2 NPs in the roots of Cucumis sativus by TEM [63]. They observed the adsorption
and aggregation of the particles on the root surface, but not inside the cells [63]. Similarly,
TEM was used to monitor the distribution of 25 nm CuO NPs in the roots of Glycine max,
as shown in Figure 4 [167]. SEM could also be used to see the presence of particles in
plant tissue. α-Fe2O3 NPs led to alterations in the root morphology of Hordeum vulgare
and induced cell membrane injury and, hence, root damage, as indicated by SEM observa-
tions [168]. The use of several detection methods can mutually validate each other, thereby
increasing the confidence level regarding particle transport. Bao et al. have shown that
TEM analysis agreed well with the SP-ICP-MS results [169]. They also demonstrated that
NPs accumulated in the leaf tissues showed large variations in size and relatively few
readings compared to the NPs in the root tissues. Other examples of the application of
detection methods for particle transport studies are shown in Table 8.
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Table 7. Techniques and methods used to detect nanoparticles in plants.

Methods Description

Transmission electron microscopy (TEM)

TEM allows us to visualize nanoparticles at the nanoscale within plant tissues. By
preparing ultrathin sections of plant material and using TEM, the internal

distribution and movement of nanoparticles can be observed in different plant
structures [167].

Scanning electron microscopy (SEM)

SEM is another microscopy technique that can be used to study the surface
morphology of plant tissues and detect the presence of nanoparticles. It provides
high-resolution images and can help identify the localization of nanoparticles on

the plant’s surface [168].

Inductively coupled plasma mass
spectrometry (ICP-MS)

ICP-MS is a highly sensitive analytical technique used to quantify the elemental
composition of samples. By digesting plant tissues and then subjecting them to

ICP-MS analysis, the presence and concentration of specific nanoparticles can later
be determined [169].

Confocal laser scanning microscopy (CLSM)

CLSM is a non-destructive imaging technique that can be used to track the
movement of fluorescently labeled nanoparticles within plant tissues over time.

This method is particularly useful for studying the dynamics of nanoparticle
transport [163].

X-ray fluorescence (XRF)
XRF can be employed to analyze the elemental composition of plant tissues and

identify the presence of nanoparticles. It can provide information about the
distribution of specific elements, including those contained in nanoparticles [33].

Fluorescence and luminescence techniques
(Flo-Lum)

Utilizing fluorescent or luminescent tags on nanoparticles, researchers can track
the movement of nanoparticles through plants using fluorescence microscopy or

other imaging techniques [170].

Table 8. Application of several detection methods for particle transport studies.

Detection Method Detected NPs Size (nm) Plants Introduction Site Ref.

TEM

Ag 7 and 18 Medicago sativa Roots [171]
Ag 10 Arabidopsis thaliana Roots [169]
Au 3.5 and 18 Nicotiana xanthi Roots [56]

CeO2 6.6 ± 1; 25.2 ± 2 Cucumis sativus Roots [63]
MgO 27.7 Watermelon Leaves [172]
SiO2 30 Cotton Roots [173]
TiO2 24.5 Watermelon Leaves [172]
TiO2 27 ± 4 Cucumis sativus Roots [68]
ZnO 20 Ryegrass Roots [174]
ZnO 30 ± 5 Zea mays Roots [175]

SEM

α-Fe2O3 14 Hordeum vulgare Roots [168]
Ag@CoFe2O4 10 Triticum aestivum Roots [176]

Ag2S 35 Cucumis sativus, Triticum aestivum Roots [177]
CeO2 15.5 Raphanus sativus Roots [178]
Fe3O4 12–20 Lactuca sativa Roots [179]
MgO 15–20 Arachis hypogaea Roots [180]
TiO2 19 Oryza sativa Roots [159]
TiO2 12–20 Lactuca sativa Roots [179]

ICP-MS

Ag 10 Arabidopsis thaliana Roots [169]
Ag 7.6 ± 2 Oryza sativa Roots [181]
Au 2 Oryza sativa Roots [55]

CeO2 30 Solanum lycopersicum, Cucumis
sativus, Cucurbita pepo, Glycine max Roots [182]

CeO2 30 Raphanus sativus Roots [183]
CuO 25 Raphanus sativus Roots [183]

La2O3 20–30 Pfaffia glomerata Roots [184]
TiO2 30 Raphanus sativus Roots [185]
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Table 8. Cont.

Detection Method Detected NPs Size (nm) Plants Introduction Site Ref.

CLSM

CeO2 1.7–18 Gossypium hirsutum, Zea mays Leaves [186]
MSNs 20 Lupin, wheat, maize Roots [163]

QD 10 Arabidopsis thaliana Leaves [187]
SiO2 1.7–18 Gossypium hirsutum, Zea mays Leaves [186]
ZnO 30 Triticum aestivum Leaves [188]

XRF

Au 13.4 ± 1 Arabidopsis thaliana Roots [189]
CeO2 12 ± 3 Triticum aestivum Roots [190]

CeO2 4 Zea mays, Lactuca sativa, Solanum
lycopersicum, Oryza sativa Roots [190]

CuO 30.7 ± 4 Oryza sativa Roots [191]
SiO2 10 Solanum lycopersicum Roots [33]
TiO2 14 and 25 Brassica napus, Triticum aestivum Roots [192]
TiO2 5–10 Salvinia natans Roots [193]
TiO2 30 Pisum sativum Roots [194]
TiO2 14 Oryza sativa Roots [195]
ZnO 24.5 ± 4 Oryza sativa Roots [191]

Flo-Lum

Ag 35 ± 15 Stevia rebaudiana Roots [170]
CdSe/ZnS QD 6.3 ± 1 Arabidopsis thaliana Roots [196]

CeO2 8 ± 1 Zea mays Roots [197]
TiO2 8 Spirodela polyrrhiza Roots [198]
TiO2 2.8 ± 1 Arabidopsis thaliana Roots [199]

3.2. Challenges in Using Selected Detection Methods

Detecting nanoparticles in plants can be challenging due to the complex biological
matrix and the small size of nanoparticles. Plants naturally contain a variety of elements
and compounds that can interfere with the detection of nanoparticles, making it difficult to
distinguish the nanoparticles from background signals [162,200]. The size of nanoparticles
can be similar to or smaller than the cellular structures in plants [201]. This can make it chal-
lenging to visualize and accurately quantify nanoparticle uptake and distribution. Some
nanoparticles may be present at low concentrations in plant tissues, requiring highly sensi-
tive detection methods to accurately measure their presence [202]. Achieving high spatial
resolution to precisely locate nanoparticles within plant tissues can be difficult, especially
for in vivo imaging techniques. Some detection methods are destructive, requiring the
disintegration of plant samples for analysis, which may limit the ability to conduct further
studies on the same samples [203]. A summary of the advantages and disadvantages of
each detection method can be seen in Table 9. The use of multiple detection methods, often
referred to as a multi-method or multi-technique approach, can significantly enhance the
robustness and reliability of research findings related to particle transport. Each detection
method has its strengths and limitations, and combining several methods provides comple-
mentary information, cross-validation, and a more comprehensive understanding [184].
In a study conducted by Neves et al., the uptake and translocation of La2O3 NPs to the
stems and leaves of Pfaffia glomerata (Spreng.) Pedersen were demonstrated after in vitro
cultivation in the presence of 400 mg/L of NPs. Various detection methods, including
laser ablation-ICP-MS (LA-ICP-MS) and µ-XRF, were employed. Both techniques proved
to be effective for detecting nanoparticles in plants, yet LA-ICP-MS exhibited higher sen-
sitivity than µ-XRF, enabling the improved detection and visualization of La distribution
throughout the entire leaf [184].
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Table 9. Advantages and disadvantages of detection methods for localizing or quantifying nanoparti-
cles in plants.

Detection Method Advantages Disadvantages

TEM

- Provides incredibly high resolution. Can
detect and characterize very small
particles [204].

- Offers detailed structural information
about the particles, including their size,
shape, and arrangement [204].

- Sample preparation is complex and
time-consuming. It often involves ultrathin
sectioning or sample staining [205].

- Has a limited field of view, which means
that only a small portion of the sample can
be imaged at high resolution at a time [205].

SEM

- SEM has a larger field of view compared to
TEM. Can accommodate a wide range of
samples [206].

- Energy-dispersive X-ray spectroscopy
(EDS) can be integrated with SEM for
elemental analysis, helping to identify the
composition of particles [207].

- Cannot reveal internal structures or details
within particles unless the sample is
specially prepared by cutting or
fracturing [208].

- Non-conductive samples may require
special preparation techniques, such as
coating with a conductive layer, to avoid
charging effects [208].

ICP-MS

- Extremely sensitive and can detect trace
levels of elements and isotopes in a wide
range of samples, making it suitable for
both qualitative and quantitative
analyses [209].

- Can analyze a wide range of elements,
from the lightest (e.g., hydrogen) to the
heaviest (e.g., uranium) elements in the
periodic table [209].

- Sample preparation can be complex and
time-consuming, particularly for solid
samples like nanoparticles. Sample
digestion and extraction methods may be
required [210].

- Can be sensitive to interferences and matrix
effects that may affect the accuracy of
results, requiring the use of correction
techniques [210].

CLSM

- Enables optical sectioning, allowing for the
collection of images at various depths
within a sample [211].

- Use of a pinhole aperture to restrict the
collection of light from outside the focal
plane, which results in reduced
background noise and improved
signal-to-noise ratio [212].

- Continuous laser illumination can lead to
photobleaching of fluorescent dyes,
reducing the fluorescence signal over
time [213].

- Proper sample preparation is essential,
including fixation, labeling, and mounting,
which can be time-consuming [213].

XRF

- Non-destructive method; it allows for
analysis without altering or damaging the
samples [214].

- Can analyze broad range of elements
simultaneously, providing comprehensive
view of the elemental composition of the
sample [214].

- Has limited spatial resolution, which can be
a drawback when studying nanoparticles
at the cellular or sub-cellular level [215].

- Provides information from the surface of
the sample, and depth profiling may be
limited [215].

Flo-Lum

- Allows the simultaneous detection of
multiple particles or structures by using
different fluorescent labels with distinct
emission spectra [216].

- Enable real-time imaging and tracking of
dynamic processes in live samples, making
them suitable for cellular and molecular
studies [217].

- Continuous exposure to excitation light can
lead to photobleaching of fluorescent dyes,
reducing signal intensity over time [218].

- When multiple fluorophores are used,
bleed-through and crosstalk between
channels can complicate data
analysis [218].
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4. Plant Stems as Future Recognition Sites for Transport

Introducing particles through the stem of a plant, as opposed to the roots or leaves,
can offer several advantages. The vascular system in plant stems is better equipped
to transport larger particles, such as nanoparticles, microspheres, or even macro-sized
particles, compared to the relatively finer structures in roots or leaves. This means that
when specific substances or materials need to be delivered in a particulate form, stem
application allows for larger and more complex particles to be used. When larger particles
are introduced through roots or leaves, there is a higher risk of blockage in the smaller
vessels or stomata, potentially hampering nutrient and substance transport [219,220]. The
stem’s larger vascular system can handle larger particles more efficiently, reducing the risk
of clogs [221].

The vascular system in the stem, comprising the xylem and phloem, possesses specific
characteristics that make it suitable for the introduction of larger particles compared to the
roots or leaves [10,121]. The xylem and phloem vessels in the stem are larger in diameter
compared to the corresponding structures in roots or leaves, as indicated in Table 10. This
increased diameter allows for the accommodation of larger particles without clogging
or obstructing the vascular pathways. The primary function of the vascular system is to
transport water, nutrients, and other essential substances throughout the plant [29,222].
This natural transport system within the stem is well adapted to carry and distribute
larger particles efficiently. The stem’s vascular system is responsible for the long-distance
transport of water and nutrients from the roots to the leaves and other plant parts [223]. It
is capable of maintaining the flow of materials over significant distances, making it an ideal
route for distributing larger particles throughout the plant. The xylem and phloem vessels
provide a continuous pathway throughout the stem, ensuring that introduced particles can
be transported uniformly to different parts of the plant. The stem serves as a structural
support for the plant, and this mechanical strength helps ensure that the vascular system
remains intact even when larger particles are introduced, minimizing the risk of damage
to the plant [224]. When particles are introduced through the roots or leaves, there is a
greater risk of surface deposition, where the particles may remain on the outer surfaces
and not penetrate the plant’s interior. In contrast, introducing particles through the stem
offers a more direct and internal pathway for distribution. The vascular system in the
stem typically transports materials in a unidirectional manner, following the natural flow
of water and nutrients from the roots upward toward the leaves [225]. This consistent
transport direction can be advantageous for certain applications.

These characteristics of the stem’s vascular system make it well suited for the introduc-
tion of larger particles, whether for the purpose of nutrient delivery, disease control, or other
agricultural and horticultural practices. In our previous investigation, we successfully intro-
duced 110 nm SiO2 nanoparticles into tomato seedlings using the stem cutting method [226].
However, it is essential to use appropriate techniques and precautions to ensure that the
introduction of particles through the stem is carried out safely and effectively.

Table 10. Vascular bundle size in the stem, comprising the xylem and phloem, of various plant species.

Plants Xylem Diameter (µm) Phloem Diameter (µm) Ref.

Arabidopsis thaliana 16 - [227]
Cucurbita maxima - 5 [228]
Ipomoea hederifolia - 323–358 [229]
Larix sibirica - 24–29 [230]
Phaseolus vulgaris - 1.5–20 [228]
Populus trichocarpa 29–104 16–43 [231]
Portulaca grandiflora 121.5 - [232]
Portulaca oleracea 98 - [232]
Portulaca quadrifida 101.9 - [232]
Quercus chapmanni 333 - [233]
Quercus falcata 492 - [233]
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Table 10. Cont.

Plants Xylem Diameter (µm) Phloem Diameter (µm) Ref.

Quercus hemisphaerica 474 - [233]
Quercus incana 470 - [233]
Quercus laevis 469 - [233]
Quercus margaretta 345 - [233]
Quercus myrtifolia 455 - [233]
Quercus nigra 517 - [233]
Quercus pubescens 202.4 35.8 [234]
Quercus sessiliflora 1837.6 286.8 [235]
Quercus austrina 340 - [233]
Quercus geminata 273 - [233]
Quercus michauxii 332 - [233]
Quercus shumardii 569 - [233]
Quercus virginiana 286 - [233]
Ricinus communis 300 100–150 [236]
Rosmarinus officinalis 467.3 7.2 [237]
Solanum lycopersicum - 1.5–20 [228]
Talinum fruticosum 133.2 - [232]
Tectona grandis 110.2–212.5 - [238]
Vitis vinifera 33.6–35.8 - [239]

5. Conclusions and Perspectives

The transport of nanoparticles into plants is indeed a growing area of research with a
wide range of potential applications. Nanoparticles can be employed as delivery agents
for a variety of substances, including nutrients, genetic material, or pesticides. Their
small size, high surface area, and tunable properties make them useful for enhancing
the targeted delivery of these materials to plants. However, it is important to consider
factors such as nanoparticle toxicity, long-term effects, and environmental impact, as well to
optimize the nanoparticles’ properties for specific delivery requirements. There are various
methods for delivering nanoparticles to plants, and they can be broadly categorized into
two main approaches: assisted delivery and passive delivery. Each method has its own set
of advantages and disadvantages, depending on the specific application and goals of the
research or practice.

Passive delivery methods are more appealing due to their simplicity and reduced
reliance on external sources, making them environmentally friendly and cost-effective.
Roots and leaves are the primary sites for the passive delivery of exogenous materials
into plants. These natural entry points have evolved to allow plants to absorb water,
nutrients, and gases from their environment. However, both have natural barriers that
can inhibit the delivery of nanoparticles or other exogenous materials to plants. These
barriers can pose challenges in achieving efficient and reliable passive delivery. Exploring
new introduction sites for delivering nanoparticles to plants is an interesting avenue of
research, and the stem is indeed a potential candidate. Stems are natural conduits for the
transport of water and nutrients within plants, as they contain vascular systems with xylem
and phloem tissues. The large diameter of these vascular tissues suggests that they could
potentially carry larger particles, making stems intriguing alternative introduction sites
for nanoparticle delivery. The particle delivery process is also closely tied to the choice
of detection methods, especially when it comes to studying nanoparticle localization and
quantifying the number of particles in plant tissues. Utilizing multiple detection methods
can enhance the reliability of the data obtained, as it allows for cross-validation and a
more comprehensive understanding of the interaction between nanoparticles and plants.
The plant effects produced by different nanomaterials vary greatly, and focus should be
placed on the intrinsic mechanism of the effects of nanomaterials on plants, which can be
studied in depth from the genetic and molecular levels to investigate the mechanism of the
effects of nanomaterials on plant growth and development, as well as the plant’s response
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mechanism. The problem of considering stems as alternative introduction sites remains to
be further investigated.
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