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Abstract: Layered honeycomb magnets with strong atomic spin–orbit coupling at transition metal
sites have been intensively studied for the search of Kitaev magnetism and the resulting non-Abelian
braiding statistics. α-RuCl3 has been the most promising candidate, and there have been several
reports on the realization of sibling compounds α-RuBr3 and α-RuI3 with the same crystal structure.
Here, we investigate correlated electronic structures of α-RuCl3 and α-RuI3 by employing first-
principles dynamical mean-field theory. Our result provides a valuable insight into the discrepancy
between experimental and theoretical reports on transport properties of α-RuI3, and suggests a
potential realization of correlated flat bands with strong spin–orbit coupling and a quantum spin-Hall
insulating phase in α-RuI3.

Keywords: Kitaev magnetism; spin–orbit coupling; layered compounds; honeycomb lattice; first-
principles electronic structure calculation; density functional theory; dynamical mean-field theory

1. Introduction

Kitaev’s exactly solvable honeycomb lattice model, hosting Majorana quasiparticles
and non-Abelian braiding statistics, has attracted enormous interest recently, due to the
potential fault-tolerant topological quantum computations that it promises [1]. A subse-
quent theoretical suggestion by G. Jackeli and G. Khaliullin, the so-called Jackeli–Khaliullin
mechanism [2,3], paved a direction towards the realization of Kitaev’s frustrated anisotropic
exchange interactions in solid-state systems, which in an ideal situation should result in
the Kitaev spin liquid phase. This initiated a new field of Kitaev magnetism study and
intensive theoretical and experimental follow-up investigations [4–9].

Among the material candidates, α-RuCl3 has been considered the most promising
candidate [10–16]. However, the nonvanishing zigzag-type antiferromagnetic order in the
compound, albeit suppressed by external magnetic fields [14] has hindered true realization
of the Kitaev spin liquid phase. In this regard, enhancing hybridizations between the Ru
and halide ions by replacing Cl into Br and I in α-RuCl3 has been considered a viable
path toward realizing ideal Kitaev exchange interactions and the resulting spin liquid
state [17–19].

Fortunately, there have been several experimental reports on successful syntheses of
α-RuBr3 [20,21] and α-RuI3 [22,23], focusing on the possibility of promoting and realizing
the Kitaev spin liquid phase. Interestingly, α-RuI3 was reported to be metallic, but with
exceptionally high resistivity [23]. On the other hand, a theoretical study employing the
density functional theory + U (DFT + U) method presents a magnetic and insulating
phase for α-RuI3 [24]. In this study, it was speculated that the bad-metallic state observed
experimentally can be due to sample quality issues, and especially due to formations of
metal grain boundaries between insulating RuI3 grains [24]. Later DFT + U studies provide
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a partial explanation of this discrepancy between experimental and theoretical observations
by choosing a suitable U-value that yields insulating and metallic phases in α-RuCl3 and
α-RuI3, respectively [25,26]. However, the observed high resistivity in α-RuI3, which goes
beyond simple band descriptions, still raises questions about the true nature of the metallic
character and potential effects of electron correlations in the compound [23].

To address these issues, we study electronic structures of α-RuCl3 and α-RuI3 by
employing first-principles dynamical mean-field theory combined with density functional
theory (DFT + DMFT) in a comparative manner. Specifically, we focused on the impact of
dynamical electron correlations on the Mott-insulating and potentially correlated metallic
phases of α-RuCl3 and α-RuI3, respectively, which cannot be captured within conventional
DFT and DFT + U approaches. In α-RuCl3, we produce the paramagnetic Mott-insulating
phase with the formation of the spin-orbit entangled Ru jeff = 1/2 local moment [11,17,27,28].
On the other hand, in α-RuI3, we observe a metallic phase with strongly renormalized
almost-flat bands consisting of the jeff = 1/2 orbital character. Therefore, α-RuI3 can be
considered a correlation-induced flat band system with strong spin–orbit coupling effects,
where the flat bands are located exactly at the Fermi level and may give rise to the bad-
metallic character, as observed experimentally, due to its heavy electron mass and other
flat-band-induced instabilities [23]. We further suggest that exfoliating α-RuI3 may result
in an insulating sheet of single-layer RuI3, which can be driven into Mott-insulating or
topological quantum spin-Hall phases. This observation calls for further studies on the
nature of the correlated flat bands in the presence of long-range Coulomb interactions and
potential intriguing electronic instabilities in α-RuI3.

2. Computational Methods

A fully charge-self-consistent DMFT method [29], implemented in DFT + embedded
DMFT (eDMFT) functional code [30] combined with the WIEN2k package [31], was em-
ployed for calculating electronic structures and relaxing internal atomic coordinates [32]. In
the DFT part, Ceperley–Alder (CA) local density approximation (LDA) was employed [33],
and 2000 k-points were used to sample the first Brillouin zone with RKmax = 7.0. A
force criterion of 10−4 Ry/Bohr was adopted for optimizations of internal coordinates.
A continuous-time quantum Monte Carlo method in the hybridization-expansion limit
(CT-HYB) was used to solve the auxiliary quantum impurity problem [34], where the Ru
t2g orbital was chosen as our correlated subspace in a single-site DMFT approximation. For
the CT-HYB calculations, up to 1.5 × 109 Monte Carlo steps (at T = 232 K) were employed
for each Monte Carlo run. We checked that lowering T down to 58 K in the Monte Carlo
runs did not affect qualitatively the nature of our results.

The reasonable hybridization window of −10 to +10 eV (with respect to the Fermi
level) was chosen, and U = 6∼10 eV and JH = 0.8 eV of on-site Coulomb repulsion and
Hund’s coupling parameters were used for the Ir t2g orbitals. Note that the U-value
employed in eDMFT calculations should be larger than that used in DFT + U studies, due to
differences in consideration of electron screening processes between eDMFT and DFT + U
methodologies [35,36]. Also note that the U-value used in this study is higher than the value
employed in other eDMFT studies on iridate compounds [37–39], U = 4.5∼5.0 eV, which is
acceptable considering Ru 4d orbitals are more localized than the Ir 5d ones. Discussion on
the choice of the U-value and the effect of U-tuning will be discussed below.
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Note that, in our calculations, we fully incorporated atomic spin–orbit coupling within
the Ru t2g orbitals. Inclusion of the spin–orbit coupling transforms the six (three orbitals ×
two spin components) orbitals into the so-called jeff = 1/2 and 3/2 orbitals, as follows [27,28];∣∣∣∣jeff =

1
2

;±1
2

〉
= ∓ 1√

3
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which are characterized by the effective total angular momentum quantum numbers jeff and
jzeff. Note that the Ru t2g shell behaves as effective orbital angular momentum eigenstates,
with leff = 1 (|leff = 1; lz

eff = 0⟩ ≡ |dxy⟩, |leff = 1; lz
eff = ±1⟩ ≡ ∓(|dyz⟩ ± i|dxz⟩)/

√
2). Here,

by “effective” we mean that the t2g orbitals are not exactly the l = 1 orbital momentum
states, and that we obtain an additional minus sign in the spin–orbit coupling term (l · s →
−leff · s). Combined with spin s = 1/2 of the electron, this [leff = 1]⊗ [s = 1/2] complex
splits into a jeff = 1/2 doublet and 3/2 quadruplet. These jeff orbitals become convenient
bases for the electronic structure description and are chosen for the orbital projections in
the density of states plots. Note also that, to reduce the sign problems in the Monte Carlo
calculations, an Ising-type (density–density) Coulomb interaction was chosen.

3. Results
3.1. Comparison between α-RuCl3 and α-RuI3

Figure 1 shows the crystal structures of α-RuCl3 and α-RuI3 in the rhombohedral R3̄
space group symmetry. We employed lattice parameters and internal coordinates from
previous experimental studies [22,40], after which internal coordinates were optimized
within our DFT + DMFT calculations. The differences between the experimental and DMFT-
optimized internal atomic coordinates are less than 0.03 Å and are not shown in this work.

a b

c

Ru

Cl, I

Figure 1. Crystal structure of α-RuCl3 and α-RuI3 with the R3̄ space group symmetry.
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Figure 2a,b show quasiparticle spectral functions of α-RuCl3 and α-RuI3, obtained from
DFT + DMFT calculations, respectively. Left panels in Figure 2a,b show false-color maps
of momentum-dependent spectral functions A(k, ω), corresponding to band structures
from conventional DFT calculations, with the blurring induced by quasiparticle scattering
effects by self-energies [41,42]. Right panels show momentum-integrated and orbital-
projected spectral functions, corresponding to projected density of states (PDOS) from DFT
calculations. For this plot, on-site Coulomb repulsion and Hund’s coupling parameters for
the quantum impurity problems were chosen to be 6 and 0.8 eV, respectively.RuCl3 U6J0.8
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Figure 2. Momentum-dependent and momentum-integrated spectral functions of (a) α-RuCl3 and
(b) α-RuI3, with U = 6 eV and JH = 0.8 eV, where orbital-projected spectra are shown on the right
panel of each compound. E = 0 is set to be the Fermi level. Schematic energy diagrams for (c) α-RuCl3
and (d) α-RuI3, where schematic PDOS of Ru jeff = 1/2, 3/2, and Cl/I p-orbitals are depicted in red,
blue, and gray, respectively.

In both systems, Ru eg bands are well separated from Ru t2g states by about 2 eV, with
little mixture between t2g and eg characters near the Fermi level, justifying our choice of
Ru t2g as the correlated subspace for the impurity problem. It is also noticeable that the
splitting between eg bands in α-RuI3 (Figure 2b) is larger than in α-RuCl3 (Figure 2a), which
signals larger crystal field effects in α-RuI3 due to the enhanced hybridization.

From Figure 2a, a Mott-insulating gap of about 1.8 eV can be seen in α-RuCl3. This
gap value is consistent with a previous experimental observation in the compound [43],
justifying our choice of U and JH values. In addition, an almost pure jeff = 1/2 (red curve
in the right panel of Figure 2a) orbital character can be seen from the upper Hubbard band
(around 1 eV above the Fermi level), signifying the presence of the spin–orbit-entangled
jeff = 1/2 local moment in α-RuCl3, originating from the cooperation of the Ru spin–orbit
coupling and on-site Coulomb interactions, as previously reported [11,17].

On the other hand, Figure 2b shows a metallic electronic structure of α-RuI3. This
metallic behavior has been reported previously and attributed to the larger hybridiza-
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tion between the Ru 4d and I 5p orbitals in α-RuI3 than that between the Ru 4d and Cl
3p orbitals in α-RuCl3 [19,25,26]. A larger I 5p orbital character, in addition to strong
mixing between the Ru jeff = 1/2 and 3/2 characters, can be seen from the right panel of
Figure 2b, in a consistent manner with previous theoretical results (schematically illustrated
in Figure 2c,d) [19,25,26]. Also note that the out-of-plane band dispersion (between the
Γ and A points) of the jeff = 1/2 bands at the Fermi level is not significant, manifesting
the quasi-two-dimensional nature of the jeff = 1/2 bands despite the large interlayer I-I
hybridizations in this system.

3.2. Robust Metallic Character against the On-Site Coulomb Repulsion in α-RuI3

It is notable that the bandwidth of the jeff = 1/2-like bands close to the Fermi level in
α-RuI3 is about 0.25 eV (see Figure 2b), suppressed by about 50% compared with previous
nonmagnetic DFT + U results [19,25,26]. This bandwidth renormalization is due to the
dynamical correlation effects inherent in DMFT calculations. A natural question to follow
is how α-RuI3 is close to the phase boundary between the metallic and insulating phases,
or, equivalently, whether the metallic phase remains stable or becomes insulating as the
on-site Coulomb parameter, U, is increased or the system reaches a two-dimensional limit.

To answer this question, we performed calculations with enhanced U-values. Figure 3
presents the results, where Figure 3a,b shows spectral functions with U = 8 and 10 eV,
respectively (JH = 0.8 eV in both cases). As U is enhanced (see Figure 3a,b), the bandwidth
renormalization and the eventual Mott-insulating phase at U = 10 eV is observed. Note,
however, that U = 10 eV is an unacceptably large value for the Ru t2g orbital, and that
U = 6 eV reasonably reproduces the size of the single-particle gap from photoemission and
inverse photoemission results in α-RuCl3 [43]. Hence, we speculate that the correlated
metallic phase remains stable in α-RuI3. Considering that almost flat bands in the vicinity of
the Fermi level may be prone to various instabilities, this observation might be the origin of
the sample dependence in the material properties of α-RuI3, as reported previously, where
the presence of impurities or grain boundaries may lead to domains of distinct ground
states [22–24]. Also, the correlation-induced band flattening and quasiparticle scattering
may give rise to the bad-metallic character, as observed experimentally [23].RuI3 U8J0.8 nominalDC nearEf
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Figure 3. (a,b) Spectral functions of α-RuI3 U = 8 and 10 eV, respectively (JH fixed to be 0.8 eV). In the
PDOS panels Ru jeff = 1/2, 3/2, Ru eg, and Cl/I p-orbital components are depicted in red, blue, green,
and gray, respectively.

3.3. Potential Quantum Spin-Hall Insulator in the Single-Layer α-RuI3

In a previous DFT + U study, it was suggested that exfoliating the system and realizing
the single-layer limit may drive the system into the insulting regime [26]. To check this, we
performed a DMFT calculation of the single-layer RuI3 with the relaxation of internal atomic
coordinates. Figure 4a shows the result, with the choice of (U, JH) = (6, 0.8) eV. Interestingly,
a clear pseudogap feature is observed. By plotting quasiparticle band dispersion by
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computing spectral function with the imaginary part of the self-energy set to be 0, depicted
as white dotted lines in Figure 4a, a clear band gap of about 40 meV is observed.
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Figure 4. Spectral functions and imaginary part of self-energies of the single-layer α-RuI3 with
(a) U = 6 eV and (b) U = 8 eV (JH fixed to be 0.8 eV). In the leftmost panel of (a), white dotted lines
depict quasiparticle band dispersions of the jeff = 1/2-like bands from a separate spectral function
calculation, with the imaginary self-energy set to 0. In the self-energy panels (rightmost panels) red
and blue curves depict imaginary part of self-energies (−ImΣ1/2,3/2(E)) for Ru jeff = 1/2 and 3/2
states, respectively. Note the peak of −ImΣ1/2(E) at the Fermi level when U = 8 eV (bright red curve
in the rightmost panel of (b)), demonstrating the Mott-insulating nature of the jeff = 1/2 states.

The band-like character of the jeff = 1/2 can be checked from the self-energy Σ̂σ(E). In
DMFT calculations, the spectral function can be computed from the single-particle band
dispersion and the self-energy as follows;

Â(k, E) = − 1
π

ImĜk(E), (1)

where
Ĝk(E) =

(
E − µ + Ĥk − Σ̂(E)

)−1. (2)

Here, Ĝk(E) and Â(k, E) are the Green’s function and the spectral function, while Ĥk and
Σ̂(E) are the single-particle band Hamiltonian from DFT calculations and the self-energy
from the many-body quantum impurity problem, respectively [41]. The hat and boldface
used for Â(k, E), Ĝk(E), Ĥk, and Σ̂(E) denote that these symbols are represented as
matrices with spin–orbital indices. Note that the Mott-insulating phase is characterized by
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the presence of peaks in ImΣ̂(E) close to the Fermi level, which demonstrates quasiparticle
scatterings at the atomic sites from the Coulomb repulsion [41].

The rightmost panel in Figure 4a shows that both the jeff = 1/2 and 3/2 states show
almost vanishing −ImΣ̂(E) for both states close to the Fermi level. This shows that the
effect of Coulomb repulsion, which introduces quasiparticle scatterings and the resulting
Mott-insulating behavior, is marginal at U = 6 eV, even in the single-layer limit. Considering
that the presence of jeff = 1/2 orbitals hosts nontrivial complex second nearest neighbor
hopping integrals, hence realizing Kane–Mele model-like electronic structures [44,45], this
phase can be considered as a candidate of the quantum spin-Hall-like effect. Note that a
similar suggestion was made on a potential realization of the quantum anomalous Hall
phase in a fictitious ferromagnetic RuI3 single layer [46].

A direct confirmation of the topological nature of this phase can be tricky, because
of the presence of electron correlations that blur the band description. Hence, we made
an indirect check by constructing Wannier functions of the four jeff = 1/2 quasiparticle
band dispersions (i.e., bands computed with Σ̂(E) = 0, depicted as white dotted lines
in Figure 4a) via employing the WIEN2WANNIER package [47]. To check the topological
character, parity eigenvalues of the unoccupied jeff = 1/2 bands at four time-reversal-
invariant momenta (i.e., Γ and three M-points) were obtained from the Wannier-constructed
jeff = 1/2 tight-binding model [48]. The result shows that the band-like insulating phase of
the single-layer RuI3 at U = 6 eV, shown in Figure 4a, is topologically trivial. Note that it
can be driven into the quantum spin-Hall regime by applying an in-plane uniaxial strain,
which induces band inversion at one of the three M-points depending on the direction of
the strain [49].

Next, we check our calculation results for higher U-values. Figure 4b show the spectral
functions and −ImΣ̂(E) at U = 8 eV. From the left and middle panels, we see a gap of about
0.1 eV. A comparison between Figure 4a and b shows that the band-like features at U = 8 eV
are much more blurred compared with those at U = 6 eV, which can be attributed to the
enhanced role of the Coulomb repulsion. Plotting self-energy, depicted in the rightmost
panel in Figure 4b, shows that a clear signature of Mott-insulating nature is observed for
the jeff = 1/2 states. Considering the size of the small band gap (∼0.1 eV) in Figure 4b, even
at U = 8 eV the RuI3 is quite close to the insulator–metal phase boundary. Therefore, we
believe that α-RuI3 is likely to be metallic even at the single-layer limit, in contrast to its
structural siblings α-RuCl3 and RuBr3.

4. Discussion and Summary

It should be commented that the flat-band-like feature observed in the bulk α-RuI3
(see Figures 2b and 3a) is distinct from those reported in kagome lattice systems such
as vanadium-based compounds [50]; while the flat bands in kagome lattices originate
from the geometric frustration effect, our flat-band-like character in α-RuI3 is from the
correlation-induced bandwidth renormalization effect. Comparison between our eDMFT
band dispersion (Figures 2b and 3a) and those from DFT + U calculations (see, for example,
Figure 3 in Ref. [26]) shows the bandwidth renormalization of the jeff = 1/2 bands from the
dynamical electron correlations.

Still, the correlated metallic phase in the α-RuI3, as observed from our results, raises an
interesting question: with the presence of an almost vanishing kinetic energy scale due to
the flat bands, what would be the role of additional intersite Coulomb repulsion, especially
in the potential presence of nontrivial widespread Berry curvature in the momentum space?
Such a situation in the absence of spin degree of freedom may lead to exotic phenomena
such as fractional Chern insulator phases [51,52]. On the other hand, the flat bands may
result in other types of electronic instabilities such as nontrivial charge density waves [53,54]
or even superconductivities [55]. Hence, a following study on the topological nature of the
metallic jeff = 1/2 bands in the bulk α-RuI3, especially on the distribution of the Berry phase
across the k-space and the consequences of including longer-ranged Coulomb interactions,
may be necessary in the near future. Another potential study on the effects of tensile
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epitaxial strain on the single-layer α-RuI3 may also be interesting, since the tensile strain
may result in a transition between the trivial and topological band insulating regimes, and
also between the band-like and the Mott-insulating regimes.

Overall, we compare the electronic structures of α-RuCl3 and α-RuI3 by employing
DFT + DMFT methods. We capture the Mott-insulating nature of α-RuCl3 with the for-
mation of the jeff = 1/2 local moments. In addition, we report that α-RuI3 is a correlated
metal with a correlation-induced flat-band-like feature. Note that this observation can
shed light on the puzzling behavior of α-RuI3, especially on its bad-metallic character
and sample-dependent magnetic properties, as reported previously [22–24]. Our finding
suggest that α-RuI3 can be a promising platform for the study of correlated and topological
metallic systems.
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