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Abstract: Intrinsic magnetic topological insulators (IMTIs) have a non-trivial band topology in
combination with magnetic order. This potentially leads to fascinating states of matter, such as
quantum anomalous Hall (QAH) insulators and axion insulators. One of the theoretically predicted
IMTIs is VBi2Te4, but experimental evidence of this material is lacking so far. Here, we report on our
attempts to synthesise VBi2Te4 by molecular beam epitaxy (MBE). X-ray diffraction reveals that in the
thermodynamic phase space reachable by MBE, there is no region where VBi2Te4 is stably synthesised.
Moreover, scanning transmission electron microscopy shows a clear phase separation to Bi2Te3 and
VTe2 instead of the formation of VBi2Te4. We suggest the phase instability to be due to either the
large lattice mismatch between VTe2 and Bi2Te3 or the unfavourable valence state of vanadium.

Keywords: molecular beam epitaxy; VBi2Te4; magnetic topological insulator; phase separation;
crystal growth

1. Introduction

Over the last decade, the introduction of magnetic order into 3D topological insulators
(TIs) has attracted considerable interest. The bandstructure of a TI is characterised by a
gapless Dirac cone at the surface, resulting in conducting surface states that are protected
by time-reversal symmetry [1]. Magnetism breaks the time-reversal symmetry via exchange
interaction and opens a gap in the conducting surface states [1–4]. This exchange gap can
give rise to interesting phases such as the quantum anomalous Hall (QAH) state [2,5–11]
and the axion insulating state [12–15].

To introduce magnetism into TIs, the following methods are currently used [16]: dop-
ing magnetic ions into the TI [6,7,11,17], bringing the TI in proximity with ferromagnetic
materials [10,16,18–20] and incorporating intrinsic magnetic moments in the crystal struc-
ture, which results in an intrinsic magnetic topological insulator (IMTI) [8,9,14,21,22]. All
three methods are successful in realising the QAH state; however, with the former two
methods the temperatures at which this state arises is very low in the light of applications.
It is interesting to compare the temperature at which the QAH effect is observed to the
Curie temperature (TC) of the materials. Remarkably, the temperatures for observing the
QAH effect are an order of magnitude smaller than TC [16]. The explanation for this
difference in temperature depends on the method used to introduce the magnetism. In the
magnetically doped system, the the high level of disorder caused by the random distribu-
tion of magnetic dopants may reduce the effective exchange gap [16], form a conducting
bulk or create regions without ferromagnetic ordering [11]. In the magnetic proximity
system, the sensitivity to the interface between the TI and the magnetic material is the main
problem [14].

These challenges are overcome in IMTIs because in these materials the magnetic
moment is intrinsically embedded in the unit cell. In 2019, Li et al. [9] theoretically
predicted a class of materials acting as IMTIs, called the MBT family (M = transition-metal
or rare-earth element, B = Bi or Sb and T = Te or Se). The materials in the MBT family
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have the same crystal structure, but their behaviour differs depending on the magnetic
element (transition-metal or rare-earth element, M) in the MBT structure. The unit cell of
the MBT family can be viewed as the unit cell of the well studied family of Bi2Te3 TIs, with
a structural intercalated layer containing a magnetic element. The addition of magnetism
within the unit cell results in periodic magnetic layers, which results in a large magnetic
exchange gap [9,21]. A representative material of the MBT family is MnBi2Te4, for which
the crystal structure is shown in Figure 1a. Like other materials in the MBT family, it
crystallises in the R3m space group with a rhombohedral structure. Each monolayer has
a triangular lattice with ABC stacking along the out-of-plane direction. A monolayer is
structured as a septuple layer (SL) with T-B-T-M-T-B-T stacking and a Van der Waals (VdW)
gap separates consecutive SLs. The Mn atoms introduce a magnetic moment of 5 µB per
atom with an out-of-plane easy axis [9]. The exchange coupling within a single SL (J||) is
ferromagnetic (FM), while the coupling between consecutive SLs (J⊥) is antiferromagnetic
(AFM) [9,23–25]. In these VdW materials, the J|| is much stronger than J⊥ [23,26].

Another potential member of the MBT family of IMTIs is the theoretically predicted
VBi2Te4 [9]. In contrast to MnBi2Te4, VBi2Te4 has a predicted in-plane easy axis (Figure 1b),
the V-atoms introduce a magnetic moment of 3 µB per atom [9,26] and a stronger J⊥ is
expected in VBi2Te4 leading to a higher TC [26]. The latter could potentially result in a
higher temperature at which topological phases such as QAH can be observed, opening
up possibilities for applications. However, to the best of our knowledge, no experimental
evidence of VBi2Te4 has been published so far.

In this work, we report on a structural MBE study to synthesise VBi2Te4. The crystal
structure of the films was analysed by X-ray diffraction (XRD), scanning transmission
electron microscopy (STEM) and energy dispersive diffraction (EDX), which are suitable
techniques to detect the presence of the SL structure of VBi2Te4. The surface morphology
of the films was characterised by reflective high energy electron diffraction (RHEED) and
atomic force microscopy (AFM). The analysis of the crystal structure indicates a phase
separation to Bi2Te3 and VTe2 instead of the SL structure of VBi2Te4. This observation
suggests VBi2Te4 to be unstable in the deposition conditions of MBE.

Figure 1. (a) MnBi2Te4 and (b) VBi2Te4 have a unit cell structured as SLs separated by a VdW gap.
The dashed boxes indicate the relative intercalated layers of MnTe and VTe in Bi2Te3. J|| is FM with
either an (a) out-of-plane or (b) in-plane easy axis. J⊥ is AFM. (c) Bi2Te3 structured in QLs separated
by a VdW gap. (d) VTe2.

2. Materials and Methods

The deposition of VBi2Te4 is performed on (0001)-Al2O3 substrates in an ultrahigh
vacuum Octoplus 300 MBE system from Dr. Eberl MBE Komponenten with a base pressure
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of 5.0 × 10−11 mbar. High-purity (6N) bismuth (Bi) and tellurium (Te) are evaporated
from standard Knudsen effusion cells and their fluxes are calibrated by a quartz crystal
monitor. The Bi- and Te-flux are kept constant during the depositions at ϕBi = 0.0027 Å/s and
ϕTe = 0.072 Å/s. ϕTe is set to a high flux to prevent Te vacancies. High-purity (5N) vanadium
(V) is evaporated from a custom high-temperature Knudsen effusion cell. The flux, ϕV,
is indicated by the heating temperature of the Knudsen cell and is varied from 1750 ◦C
to 1900 ◦C. The combination of the V-pocket size and the high evaporation temperature
result in a large flux instability measured with the quartz crystal monitor, and therefore the
pocket temperature will be kept as a reference for ϕV. An estimate for the flux variation
in this temperature range is from 0.001 Å/s to 0.0080 Å/s. The substrate temperature
Tsub was kept constant at 150 ◦C. Before the deposition of VBi2Te4, a buffer layer of Bi2Te3
was deposited of ≈1 nm. The samples discussed in this article are deposited using the
co-evaporation method, meaning all elemental beams are opened simultaneously during
the full deposition. In addition to these results, some attempts were made to use a beam-
shuttering method to interrupt the V- and Bi-beams during the deposition. First, Bi and
Te are opened to deposit a monolayer of Bi2Te3. Second, V and Te are opened to deposit a
monolayer of VTe on top of the Bi2Te3 layer. Third, an annealing step is applied during
which the VTe layer should diffuse into Bi2Te3 to form the SL of VBi2Te4. These three steps
were repeated to form a multilayered VBi2Te4 film. This method was previously used to
successfully deposit MnBi2Te4 by MBE [27], but for VBi2Te4 the beam-shuttered method
resulted in the same observations discussed here for the co-evaporation method showing
a phase separation to VTe2 and Bi2Te3. Right after deposition, a RHEED image of the
diffraction pattern is taken. From the RHEED image the in-plane lattice constant can be
deduced by comparing the diffraction pattern of the film to a known substrate.

The crystal structure of the films is measured with XRD, STEM and EDX. The XRD
measurements are performed with a Bruker D8 Discover system (Bruker, Billerica, MA,
USA) with a two-dimensional Eiger2 500K detector and a two-bounce channel-cut germa-
nium monochromator. Symmetric 2θ-ω scans were performed along the surface normal
direction. The STEM measurements are made with a Thermo Scientific Spectra 300 STEM
(Thermo Fisher Scientific, Waltham, MA, USA) with an electron beam voltage of 300 kV
and a high-angle annular dark-field (HAADF) detector.

3. Results

The crystal structure of the films is analysed with STEM, EDX and XRD. STEM is
performed on a sample deposited with ϕV = 1800 ◦C (Figure 2a). The image shows the
V-Bi-Te film and the Al2O3 substrate. These STEM results clearly indicate two regions by
looking at the contrast. These variations are caused by the Z-contrast related to the atomic
weight of the present elements. For a V-Bi-Te sample, the atomic weights are arranged as
mBi > mTe > mV. Therefore, the bright areas in Figure 2a are Bi-rich regions. These results
clearly indicate a phase separation between a Bi-compound and a non-Bi compound. EDX
(Figure 2b) shows a clear separation between a Bi/Te region and a V/Te region. Figure 2c
shows a detailed STEM scan of the sample. The atoms in the bright areas are structured as
a QL separated by a VdW-gap. This structure is consistent with Bi2Te3 (Figure 1c). In the
darker area the bright atoms form the typical Te octahedra of VTe2 which are separated
by a VdW gap as shown in Figure 1d. The in-plane lattice constant a is related to the
distance between the atoms in the x-direction, dx. Figure 2d shows the distribution of
dx as extracted from Figure 2c. This distribution indicates two clearly separated regions.
The in-plane lattice constants related to these two regions are calculated from the dx value
with maximum intensity as a = 2dx for both Bi2Te3 and VTe2. This calculation results in
the lattice constants a1 = 3.82 Å, corresponding to VTe2, and a2 = 4.65 Å, corresponding
to Bi2Te3.

Figure 2e presents the 2θ-ω scans of films deposited with different ϕV. The peaks in
the 2θ-ω scans can be identified as the (00l)-Bi2Te3 and (00l)-VTe2 peaks. The dotted arrow
at the (006)-Bi2Te3 peak indicates the dominance of Bi2Te3 at low ϕV, but the intensity of
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this phase decreases as ϕV increases. The dashed arrow at the (001)-VTe2 peak indicates the
dominance of VTe2 at high ϕV, but this phase disappears as ϕV decreases. VBi2Te4 is absent
in all 2θ-ω scans.

Figure 2. (a) STEM image of a V-Bi-Te sample. The image is taken with a HAADF detector at 300 keV.
A clear phase separation between bright and dark areas can be observed. (b) EDX scan of the V-Bi-Te
sample. A strong separation between V-regions and Bi-regions can be observed. (c) STEM image of
a smaller region on a V-Bi-Te sample. The bright areas (blue) show the QL structure of Bi2Te3 and
the dark areas (orange) the VTe2 structure. (d) Histogram of the atomic distance in the x-direction.
(e) 2θ-ω scans indicating (00l)-Bi2Te3 being dominant at low ϕV, while (00l)-VTe2 is dominant at high
ϕV. The arrows indicate the disappearance of the respective phases as a function of ϕV. * indicates
the Al2O3 substrate peak.

The surface of the films is analysed with RHEED and AFM. Figure 3a presents the in
situ RHEED pattern of a film deposited with ϕV = 1750 ◦C. The RHEED pattern consists of
a double streak pattern as indicated by the blue and white arrows. This doubled pattern
indicates the presence of two separate crystal phases at the surface. The in-plane lattice
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constants related to these streaks are a1 = 4.31 Å (white arrows) and a2 = 3.59 Å (blue arrows).
These values correspond well with the lattice constants of Bi2Te3 and VTe2, respectively.

The surface morphology is measured by AFM. Figure 3b shows the height distribution
as measured with AFM for films deposited with different ϕV. The insets show the surface
morphology of the films with ϕV = 1750 ◦C and ϕV = 1900 ◦C. At low ϕV, the morphology
shows strong island formation and the triangular crystals typically observed for Bi2Te3.
The results at high ϕV show a relative flat film without any sharp crystals. The height
distributions indicate a strong influence of the ϕV on the distribution spread. With an
increasing ϕV, the height variation becomes smaller, indicating a flatter surface.

Figure 3. (a) RHEED pattern for ϕV = 1750 ◦C showing a double streak pattern related to the
phases Bi2Te3 with a1 = 4.31 Å and VTe2 with a2 = 3.59 Å, indicated by the blue and white arrows,
respectively. (b) Height distribution at the surface as a function of the ϕV. The insets show the surface
morphology of the samples with ϕV = 1750 ◦C and ϕV = 1900 ◦C.

4. Discussion

VBi2Te4 is a SL structure requiring the embedding of VTe within the QL structure
of Bi2Te3. According to our results, the formation of VBi2Te4 is unstable with respect to
phase separated Bi2Te3 and VTe2 within the thermodynamic conditions of the MBE. The
instability of VBi2Te4 can have various causes.

First, a large in-plane lattice mismatch, ∆a, between VTe2 and Bi2Te3 might prohibit
the formation of VBi2Te4 [28]. Our STEM results indicate ∆a = 0.83 Å between the two
phases. The theoretically predicted lattice constant of VBi2Te4, a = 4.37 Å, is close to the
lattice constant of Bi2Te3, a = 4.65 Å. Therefore, the VTe2 lattice has to overcome ∆a to form
VBi2Te4. Table 1 gives an overview of different materials structured as a SL with the relevant
lattice constants and whether the material was successfully observed in experiments. The
intercalated layer is presented as XTe or XTe2, depending on the experimental stability
of the phases. The experimentally successful materials match ∆a < 0.6 Å, while the
experimentally unsuccessful materials match ∆a > 0.5 Å. This difference can indicate a
limit to the maximum allowed ∆a of 0.5 Å to 0.6 Å between the SL material and the
intercalated layer, possibly explaining the phase separation in VBi2Te4. However, this
observation does not match with the stability of PbBi2Te4 and SnBi2Te4 [29]. Therefore, the
lattice mismatch between the intercalated layer and Bi2Te3 does not completely explain the
instability of the SL structure in general, and another factor should be considered.

Second, the elemental valence states in the intercalated layer might prohibit the forma-
tion of the SL. In the SL, the preferred valence states are M(+2)Bi2(+3)Te4

(−2) (M = transition
metal or rare-earth element), which matches well with the valence states of an intercalated
layer structure of M(+2)Te(−2) [30]. However, when the stable compound of the intercalated
layer is structured as M(+4)Te2

(−2) the valence states of the intercalated layer and the SL
do not match. A mismatch between the preferred valence state of the intercalated layer and
the SL indicates the instability of the SL. Table 1 reflects this instability, showing that every
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experimentally observed intercalated layer bulk compound with a valence structure of
M(+2)Te(−2) also has a stable SL counterpart, but a valence structure of M(+4)Te2

(−2) does
not. This is in agreement with our study on VBi2Te4, because VTe2 is thermodynamically
more stable than VTe [31].

Furthermore, ref. [32] studied the preferred valence states of V, Cr, Mn and Fe in
Bi2Te3. In Te-rich conditions, only V3+ and Cr3+ can substitute neutrally for Bi+3 atoms
in Bi2Te3. In contrast, Mn and Fe mostly form Mn2+ and Fe2+, which create energetically
unfavourable states when mixed with Bi3+ [9,32]. This additionally shows the unfavourable
V2+ valence state. Therefore, Mn and Fe can more easily form a neutral SL structure with
respect to V and Cr.

Table 1. Overview of materials with a unit cell structured as a SL. The table presents whether the ma-
terial is successfully synthesised experimentally, the lattice constants found in the literature for these
materials (either experimental or theoretical values), the intercalated layer with the corresponding
lattice constant and the lattice mismatch between the SL and the intercalated layer. The intercalated
layer is presented as XTe or XTe2, depending on the experimental stability of the phases.

Material Experimentally
Observed? aSL [Å] Intercalated Layer aint. [Å] Lattice

Structure
∆a [Å]

VBi2Te4 No 4.34–4.37
[9,26,33–35] VTe2 3.59 Hexagonal, P3m1 0.75–0.78

MnBi2Te4 Yes [8,21–23,27,36] 4.33 [36] MnTe 4.13 [37] Hexagonal,
P63/mmc 0.20

FeBi2Te4 Yes [38] 4.39 [9,38] FeTe 3.83 [38,39] Tetragonal,
P4/nmm 0.56

FeTe2 3.77 [40] Hexagonal, P3m1 0.63
EuBi2Te4 No 4.50 [9,33] EuTe 6.60 [41,42] Cubic, Fm3m 2.10

EuTe2 6.97 [43] Tetragonal,
I4/mcm 2.47

NiBi2Te4 Yes * 4.30 [9,33] NiTe2 3.86 [44] Hexagonal, P3m1 0.44
CrBi2Te4 No 4.32 [45] CrTe2 3.79 [46] Hexagonal, P3m1 0.53
TiBi2Te4 No 4.39 [9] TiTe2 3.78 [47] Hexagonal, P3m1 0.61

PbBi2Te4 Yes [48,49] 4.44 [49] PbTe 6.46 [50] Cubic, Fm3m 2.02
SnBi2Te4 Yes [51–53] 4.40 [51,53] SnTe 6.32 [50] Cubic, Fm3m 1.92

GeBi2Te4 Yes [54,55] 4.33 [54,55] GeTe 4.16 [50,56] Rhombohedral,
R3m 0.17

* Not observed as multilayered/bulk material. Ref. [57] observed the SL structure as an intercalated layer between
Bi2Te3 and Ni-doped Bi2Te3.

In conclusion, the influence of the ϕV during MBE depositions was investigated on the
synthesis of the VBi2Te4 phase. The resulting films do not show any indication of VBi2Te4
but rather a phase separation into Bi2Te3 and VTe2. These results show VBi2Te4 is unstable
within the deposition conditions of MBE.
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