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Abstract: In this investigation, we employ a numerical simulation approach to model a hydrogenated
lead-free Cs2AgBiBr6 double perovskite solar cell with a p-i-n inverted structure, utilizing SCAPS-1D.
Contrary to traditional lead-based perovskite solar cells, the Cs2AgBiBr6 double perovskite exhibits
reduced toxicity and enhanced stability, boasting a maximum power conversion efficiency of 6.37%.
Given its potential for improved environmental compatibility, achieving higher efficiency is impera-
tive for its practical implementation in solar cells. This paper offers a comprehensive quantitative
analysis of the hydrogenated lead-free Cs2AgBiBr6 double perovskite solar cell, aiming to optimize
its structural parameters. Our exploration involves an in-depth investigation of various electron
transport layer materials to augment efficiency. Variables that affect the photovoltaic efficiency of
the perovskite solar cell are closely examined, including the absorber layer’s thickness and doping
concentration, the hole transport layer, and the absorber defect density. We also investigate the impact
of the doping concentration of the electron transport layer and the energy level alignment between
the absorber and the interface on the photovoltaic output of the cell. After careful consideration,
zinc oxide is chosen to serve as the electron transport layer. This optimized configuration surpasses
the original structure by over four times, resulting in an impressive power conversion efficiency of
26.3%, an open-circuit voltage of 1.278 V, a fill factor of 88.21%, and a short-circuit current density of
23.30 mA.cm−2. This study highlights the critical role that numerical simulations play in improving
the chances of commercializing Cs2AgBiBr6 double perovskite solar cells through increased structural
optimization and efficiency.

Keywords: solar cell; photovoltaics; double perovskite; SCAPS simulation; lead-free perovskite;
power conversion efficiency

1. Introduction

Perovskite solar cells (PSCs) stand out as a major breakthrough in third-generation
solar cells, boasting a remarkable 25.7% [1–4] photoelectronic conversion efficiency (PCE)
comparable to silicon-based counterparts. This achievement highlights their potential as a
viable alternative in solar energy research. The notable increase in PCE can be attributed to
perovskite’s exceptional optical and photophysical properties [5–8], as well as the collabora-
tive efforts in optimizing materials, refining device architecture, and enhancing interfacial
engineering techniques [9–13]. Perovskite exhibits outstanding characteristics, including
broad-spectrum absorption ranging from visible to near-infrared wavelengths [14] and
a high extinction coefficient, ensuring saturated light absorption within a thickness of
400–500 nm [15]. Additionally, its low exciton binding energy, leading to dissociation at
room temperature, long diffusion lengths, and high tolerance for defects, all contribute to
its advantages in photovoltaic technology [16–19]. Despite their enormous potential, the
presence of toxic lead (Pb) in the B-site structure is essential for achieving high efficien-
cies, as per the ABX3 crystal arrangement, which includes organic/inorganic monovalent
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cations (A), a divalent cation (B), and one or more halides (X). However, hurdles such as
current−voltage hysteresis, limited stability, lead toxicity, and inadequate water resistance
continue to impede the widespread adoption of these lead-based PSCs [20,21].

Several low-toxicity metal halide options have been proposed as substitutes for lead
in prior research [22–25]. However, owing to its favorable physical and optical properties,
tin (Sn) has emerged as the most promising alternative [26,27]. Tin is preferred for lead-free
PSCs because of its comparable isoelectronic configuration (s2p2) and superior mobility
when compared to lead-based counterparts [28]. Additionally, tin-based perovskites ex-
hibit an optical bandgap ranging from 1.2 to 1.4 eV [29], closely aligning with the ideal
bandgap of 1.34 eV, as per the Shockley−Queisser limit under AM 1.5 solar spectrum
illumination [30]. Recent advancements have showcased tin-based perovskites achieving
a remarkable record PCE of over 13% [31], coupled with excellent device stability [31,32],
making them promising substitutes for lead-based perovskites. However, a notable draw-
back arises from the susceptibility of Sn2+ ions to oxidation, transitioning into Sn4+ ions in
the presence of air due to poor stability [33]. This phenomenon results in the degradation
of photovoltaic performance.

The persistent quest for lead-free perovskites with robust inherent stability in solar
cell technology is a vital yet challenging pursuit. One promising avenue involves creating
a lead-free active layer while retaining the fundamental perovskite crystal structure. This is
achieved by replacing two Pb2+ cations with non-toxic heterovalent metal cations, each
having oxidation states of +1 and +3. The resulting compound, known as “lead-free double
perovskite LFDP”, adopts the A2M(I)+M(III)3+X6 structure, referred to as elpasolite [15].
This family encompasses over 350 different elpasolites [34], showcasing the versatility
of LFDPs.

Utilizing first-principles calculations, researchers have pinpointed eleven materi-
als with suitable bandgaps to serve as photovoltaic absorbers [35,36]. However, only a
few of these materials have been successfully synthesized, including Cs2AgBiBr6 [37],
Cs2AgBiCl6 [38], and (CH3NH3)2AgBiBr6 [35]. In these perovskites, the substitution of
Pb2+ with B-site cations like Ag+ and Bi3+ significantly enhances stability due to an aug-
mented Coulomb interaction energy [39]. This enhancement results in a remarkably high
positive decomposition energy, particularly in Cs2AgBiBr6 (0.38 eV) [39]. Consequently,
Cs2AgBiBr6-based PSCs emerge as highly promising contenders within the realm of inor-
ganic lead-free perovskite photovoltaic devices. The reported efficiencies of Cs2AgBiBr6-
based PSCs have remained low due to inherent limitations such as large charge carrier
effective masses, a significant indirect bandgap, and weak charge carrier transport capa-
bilities. Despite numerous efforts to enhance the optoelectronic properties of Cs2AgBiBr6
PSCs, progress has been slow, with the highest efficiency reaching only 4.23% [40–43], con-
siderably lower than organic–inorganic hybrid lead-based PSCs. However, recent research
by Z. Zhang et al. [44] presented a promising solution. They utilized a hydrogenation
method to adjust the Cs2AgBiBr6 films’ bandgap from 2.18 eV to 1.64 eV. This adjustment
significantly improved the photoelectric conversion efficiency to 6.37% while maintaining
excellent environmental stability. Further investigations revealed that introducing atomic
hydrogen into the Cs2AgBiBr6 lattice not only fine-tuned its valence and conduction band
energy levels but also enhanced carrier mobility and lifetime. This innovative approach
offers a potential solution to the limitations of Cs2AgBiBr6-based PSCs, opening avenues
for more efficient and stable solar cell technologies.

Along with experiments, simulation is integral to understanding the properties and
performance metrics of various materials, complementing experimental studies [45–47].
Device simulation offers a robust method for enhancing the efficiency of LFDP solar cells
after optimizing physical parameters. Recent research employing numerical simulations
through various software, notably wXAMPS [48] and SCAPS-1D [49], revealed a peak
simulated PCE of 11.69% for LFDP solar cells [50,51].

Our study delves into unexplored territory, offering a comprehensive analysis of the
factors influencing the efficiency of hydrogenated Cs2AgBiBr6-based PSCs. Notably, our
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work stands as the inaugural attempt to simulate these cells, building directly upon the
pioneering experimental research conducted by Z. Zhang et al. Their groundbreaking
work achieved the highest experimental PCE of 6.37% using a hydrogenated device. In
our simulation, we meticulously maintained the inverted (p-i-n) structure designed by
Z. Zhang et al., keeping the charge transport layers intact: SnO2 as the electron transport
layer (ETL) and Spiro-OmeTAD as the hole transport layer (HTL). Using one-dimensional
device simulation with SCAPS (ver. 3.8) under AM1.5G illumination, we meticulously
examined crucial factors such as absorber thickness, doping concentration, and defect
density. Additionally, we delved into the influence of the doping concentration and
thickness of the HTL on the device’s photovoltaic performance. Furthermore, we explored
the impact of band alignment at the interface between the double perovskite and ETL,
comparing cells using three different ETL materials: tin (IV) oxide (SnO2), zinc oxide (ZnO),
and titanium dioxide (TiO2 ). ZnO and TiO2 are popular ETLs in PSCs due to their high
electron mobility, good energy level alignment with perovskite materials, chemical stability,
scalability, tunable properties, and wide bandgap, allowing efficient charge transport,
stability, and low-cost production at a large scale [52,53].

Notably, our simulations unveiled the potential of hydrogenated Cs2AgBiBr6-based
PSCs with an inverted structure (p-i-n). Through these simulations, we demonstrated that
the proposed device could achieve an impressive simulated PCE of nearly 26% and 20%
with ZnO and SnO2 ETL, respectively.

2. Materials and Methods

Our investigation in this study was inspired by the groundbreaking work performed
by Z. Zhang et al. [44], who developed the hydrogenated Cs2AgBiBr6 perovskite as a
light-absorbing substance and achieved a PCE of 6.37%. We used numerical simulations
with SCAPS 3.8, a specialized 1D solar cell modeling program developed at the Department
of Electronics and Information Systems of the University of Gent, Belgium [49], while Z.
Zhang and colleagues carried out physical experiments. SCAPS specializes in simulating
multi-layered solar cells and can support up to seven levels. We carefully computed
essential electrical properties within this simulation framework, covering parameters
such as PCE, energy band structures at heterojunctions, open-circuit voltage (V oc), short-
circuit current density (J sc), quantum efficiency QE, current density distribution, and
fill factor (FF). Solving customized algorithms was necessary for these simulations. To
solve these algorithms, SCAPS uses a unique approach that focuses on Poisson’s equation
(Equation (1)) as well as the continuity equations for both electrons and holes, which are
described in Equations (2) and (3), respectively.

d
dx

(
−ε(x)dψ

dx

)
= q

[
p(x)− n(x) + N+

D(x)− N−
A(x) + pt(x)− nt(x)

]
(1)

dpn
dt

= Gp −
pn − pn0
τp

+ pnµp
dξ
dx

+ µpξ
dpn
dx

+ Dp
d2pn

dx2 (2)

dnp

dt
= Gn −

np − np0

τn
+ npµn

dξ
dx

+ µnξ
dnp

dx
+ Dn

d2np

dx2 (3)

Under standard conditions, including a temperature of 300 K, irradiation intensity
of 1000 W/m2, and air mass AM 1.5 G, our computations positioned the absorber layer
between the HTL and the ETL. The proposed structure for the LFDP solar cell is illustrated
in Figure 1, featuring gold (Au) as the back contact and indium tin oxide (ITO) as the
front contact.
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Figure 1. Schematic diagram of Cs2AgBiBr6-based PSC.

This configuration follows an inverted (p-i-n) arrangement, where light penetrates
the cell from the HTL side. The initial cell design, employing Cs2AgBiBr6 as the absorber
material, Spiro-OMeTAD as the HTL, and SnO2 as the ETL, was borrowed from Z. Zhang
et al.’s experimental research. Tables 1 and 2 outline the electrical and optical properties of
these materials [11,15,30,37–40].

Table 1. Electrical and optical properties used in simulation of a LFDP based on Cs2AgBiBr6.

Parameters
Spiro-OMeTAD

(HTL)
[44,54,55]

Cs2AgBiBr6
(Absorber)

[44,51]

SnO2
(ETL) [44,56,57]

ZnO
(ETL) [58,59]

TiO2
(ETL)
[60,61]

Thickness (m) 0.060 0.140 0.050 0.05 0.050
Bandgap Eg (eV) 2.9 1.61 3.6 3.3 3.26

Electron affinity χ (eV) 2.2 3.72 4.5 3.7 4
Dielectric permittivity 3 5.8 8 9 32

CB effective density
of states

(
cm−3) 2.5 × 1019 2 × 1018 2.2 × 1018 2.2 × 1018 2.2 × 1018

VB effective density
of states

(
cm−3) 1.8 × 1019 1 × 1018 1.8 × 1019 1.8 × 1019 1.8 × 1019

Electron mobility(
cm2/V.s

) 2 × 10−4 9.28 15 100 20

Hole mobility(
cm2/V.s

) 2 × 10−4 9.28 15 25 10

Donor concentration
ND

(
cm−3) 1 × 107 0 1 × 1018 1 × 1018 1 × 1018

Acceptor concentration
NA

(
cm−3) 1 × 1015 1 × 1015 0 0 0

We first compared the current density–voltage characteristics (J–V curve) between
the results of our SCAPS simulation and the experimental data to validate our simu-
lations [30]. Interestingly, as seen in Figure 2, the curves had almost perfect overlap,
demonstrating the accuracy and dependability of our computational strategy. Critical
performance characteristics for the cell were provided by the experimental study, including
Jsc of 11.36 mA.cm−2 mA.cm, Jsc of 0.89 V, FF of 55.57%, and PCE of 6.37%.

In our research, Spiro-OMeTAD remained the constant choice as the HTL in all our
experimental setups. To comprehensively gauge its impact on the device’s performance,
we intentionally manipulated several critical parameters. These included not only the
thickness of the absorber, defect density, and doping concentration but also the thickness
and doping concentration of the HTL itself. Moreover, we systematically varied the
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electron affinity of the ETL to meticulously assess its influence on band alignment and,
consequently, the photovoltaic output of the device. In conclusion, as an alternative to SnO2,
TiO2 and ZnO have been proposed due to their superior band alignment with the absorber.
We quantitatively compared the solar cell devices with three different ETL materials to
assess their performance. Our primary goal through these meticulous adjustments was to
significantly enhance cell efficiency by intricately refining the cell’s overall structure.

Table 2. Density values of defects within cell layers and at the cell interface.

Parameters ETL HTL Absorber HTL/Absorber Absorber/ETL

Defect Type Neutral Neutral Neutral Neutral Neutral

Capture cross-section
for electrons σn

(
cm−2) 1 × 10−15 1 × 10−15 1 × 10−15 1 × 10−18 1 × 10−15

Capture cross-section
for hole σp

(
cm−2) 1 × 10−15 1 × 10−15 1 × 10−15 1 × 10−16 1 × 10−15

Energetic distribution Single Single Gaussian Single Single

Energy level with respect to
Ev (above Ev) (eV) 0.6 0.650 0.6 0.6 0.6

Characteristic energy (eV) 0.1 0.1 0.1 0.1 0.1

Total density Nt
(
cm−3) 1 × 1015 1 × 1015 1 × 1016 1 × 1012 1 × 1012
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3. Results and Discussion

In this section, we explore the study’s outcomes. We optimized the absorber layer
by adjusting its thickness, doping concentration, and defect density, identifying the ideal
parameters for LFDP solar cells. Subsequently, we fine-tuned the HTL thickness and doping
concentration to boost device performance. Additionally, we investigated band alignment’s
impact on solar cell efficiency. By proposing alternative ETLs and conducting a detailed
analysis, we highlighted the superior performance of ZnO ETL, especially in different
doping concentrations. This study provides crucial insights into enhancing hydrogenated
double perovskite solar cells, guiding advancements in photovoltaic technology.
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3.1. Influence of the LFDP Layer on Solar Cell Efficiency

Optimizing the absorber layer in inverted structure perovskite solar cells through
precise adjustments in thickness, doping concentration, and defect density is paramount
for enhancing their overall efficiency and performance. A well-optimized absorber layer
ensures maximized utilization of incident sunlight, leading to improved energy conversion
efficiency and the potential for more sustainable and cost-effective solar energy solutions.

3.1.1. Impact of the LFDP Thickness

The performance of perovskite solar cells is heavily influenced by the thickness of the
absorber layer, which directly affects the extent of light absorption and the efficiency of
the conversion process. Maintaining an ideal thickness range is essential; if the layer is too
thin, it might not absorb adequate light to produce sufficient current. On the contrary, an
excessively thick absorber layer could impede the movement of charge carriers generated
by absorbed light, making it challenging for them to travel through the material and reach
the electrodes. This, in turn, results in reduced device efficiency. Striking the right balance
in absorber layer thickness is critical for optimal solar cell performance.

In the experimental analyses, a hydrogenated Cs2AgBiBr6 layer with a thickness of
140 nm was utilized [44]. This section investigates the influence of absorber thickness on
solar cell performance by adjusting the thickness within the range of 100 nm to 1500 nm.
Figure 3 illustrates the J − V characteristics for devices with thickness ranging from 100 nm
to 1500 nm, and Figure 4 depicts the PCE in relation to the thickness variations.
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The variation in Voc remains minimal and is independent of the thickness. However,
Jsc experiences a significant increase, rising from 10.29 to 23.31 mA.cm−2 as the thickness
escalates from 100 to 700 nm. Consequently, this leads to a parallel rise in the PCE, escalating
from 6.47% to 13.5%. Beyond 700 nm up to 1500 nm, Jsc marginally increases, reaching
24.32 mA.cm−2, while PCE only inches up to 13.75%, a mere 0.25% higher than the PCE at
700 nm, indicating a saturation point in PCE. The behavior described can be thoroughly
analyzed through the external quantum efficiency curve of the cell at different thicknesses
as a function of incident light wavelengths, depicted in Figure 5. The observed increasing
trends in Jsc and PCE in Figures 3 and 4, respectively, as the absorber thickness increases
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up to 700 nm can be explained by enhanced light absorption. This aligns with the peak of
quantum efficiency at this thickness in Figure 5.
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Moreover, in Figure 5, it is apparent that quantum efficiency declines at wavelengths
below 600 nm when the absorber thickness exceeds 700 nm, while it rises for longer wave-
lengths. Our study’s results match those of S. Dipta et al. [62], although they focused on a
lead-based CH3NH3PbI3 perovskite in their research. This pattern clarifies the saturated
values of Jsc and PCE observed for absorber thicknesses surpassing 700 nm. The high
absorption coefficient of perovskite material at short wavelengths [63,64] leads to reduced
quantum efficiency with thicker layers due to amplified light absorption. Thicker layers
intensify the likelihood of absorbed photons generating electron-hole pairs, yet they may
also elevate recombination events, wherein electron-hole pairs recombine before reaching
the electrodes. This recombination diminishes quantum efficiency, especially at higher
photon energies associated with shorter wavelengths.

Conversely, at longer wavelengths, the augmented quantum efficiency with increased
thickness can be attributed to multiple factors. Thicker layers bolster the likelihood of
light absorption, enabling more photons to be absorbed and creating electron-hole pairs.
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Moreover, at lower photon energies of longer wavelengths, recombination events are
less probable. Hence, thicker layers enhance quantum efficiency, as a larger portion
of absorbed photons contributes to charge carrier generation, minimizing losses from
recombination processes.

In summary, the behavior of quantum efficiency in LFDP materials is shaped by the
complex interactions among light absorption, recombination rates, and photon energy at
various wavelengths and thicknesses. Based on these thorough findings, a thickness of
700 nm is chosen for the duration of this investigation.

3.1.2. Impact of Doping Concentration NA and Defect Density Nt in the Absorber Layer

Choosing an appropriate absorber thickness is vital in solar cell design, but the defect
density Nt and acceptor doping concentration NA also play crucial roles. A higher defect
density Nt leads to increased defects, raising carrier recombination rates and negatively
impacting device output [65,66]. Conversely, an increase in acceptor doping concentration
NA has been correlated with improved overall solar cell performance [60].

In Figure 6, the variation of key parameters (PCE, Voc, Jsc, and FF) in the Cs2AgBiBr6-
based PSC is depicted concerning absorber defect density Nt (x-axis) and absorber doping
concentration NA (y-axis), ranging from 1012 to 1018 cm−3.
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Below Nt = 1016 cm−3, regardless of NA values, the PSC’s properties remained stable,
but deterioration occurred when the defect density exceeded 1016 cm−3. Defects in the
absorber layer act as recombination centers and trap states, reducing efficiency by limiting
the number of carriers contributing to the electric current. These defects shorten carrier
lifetimes, destabilize the material, and cause voltage losses. To enhance solar cell efficiency
and reliability, minimizing defect density is essential. Studies have demonstrated that
fabricating tin-based perovskite devices with defect density as low as Nt = 1015 cm−3 is
achievable [60], making this the optimized value.

The absorber acceptor doping concentration NA significantly influences the PCE of
the solar cell, as calculated using Equation (4), and is proportional to Voc, Jsc, and FF.

PCE =
Voc × Jsc × FF

Pin
, (4)
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where Pin is the incident power density in watts per square meter.
Analysis of Figure 6a indicates that the maximum PCE values are achieved within the

doping concentration range of 1012 to 1018 cm−3. This is attributed to the contradictory be-
havior of Voc and Jsc on one hand, and FF on the other, concerning the doping concentration.
Observations from Figure 6b,c reveal that Voc and Jsc remain constant until NA reaches
1016 cm−3, after which they decrease. Contrarily, FF (Figure 6d) increases with higher
doping concentrations. Our findings about how NA affects LFDP solar cell output perfectly
match what Hui-Jing Du et al. discovered while studying lead-free CH3NH3SnI3CH3 [60].

Increasing acceptor doping boosts the concentration of free charge carriers, enhancing
charge separation efficiency at the absorber/ETL interface. More photogenerated carriers
contribute to Voc and Jsc. However, as acceptor doping approaches ETL perovskite’s donor
doping concentration ND = 1018 cm−3, charge recombination intensifies, reducing Voc
and Jsc. The proximity of acceptor and donor dopants accelerates charge recombination,
diminishing device performance. However, FF, a dimensionless parameter representing
the squareness of the current–voltage curve, is positively influenced by doping. Doping
enhances absorber layer conductivity, facilitating efficient charge transport to electrodes
and lowering series resistance, thereby improving FF. Additionally, doping affects shunt
resistance, reducing unwanted current paths and leakage currents, further enhancing FF.

The interplay between enhanced conductivity, FF, and increased charge recombination,
leading to decrease in Voc and Jsc, influences PCE in perovskite solar cells. As acceptor
doping concentrations of the absorber and donor doping concentration of the ETL approach
each other, PCE decreases. It is crucial to balance enhanced conductivity and FF against
charge recombination. The optimized value for NA = 1016 cm−3 leads to a PCE of 14.52%,
Voc of 0.898 V, Jsc of 23.02 mA.cm−2, and FF of 71.36%.

3.2. Influence of the HTL on LFDP Solar Cell Efficiency

In the context of (p-i-n) inverted structure PSCs, the HTL plays a pivotal role in ensur-
ing the efficiency and stability of the device. It achieves this by enhancing charge extraction,
reducing interfacial recombination, and modifying band alignment. Among the various
HTL materials, Spiro-OMeTAD stands out due to its unique properties. Spiro-OMeTAD,
with a bandgap of 2.9 eV, significantly enhances transparency, thereby minimizing opti-
cal losses before light penetrates the active double perovskite layer. Its excellent band
alignment with the LFDP, coupled with good hole mobility, stability, ease of processing,
and compatibility with flexible substrates, makes Spiro-OMeTAD an optimal choice for
researchers and manufacturers dedicated to advancing perovskite solar cell technology.
However, despite the remarkable properties of Spiro-OMeTAD, there is still room for im-
provement in the overall efficiency of PSCs. Specifically, optimization of the HTL thickness
and doping concentration presents an avenue for enhancing the performance of these solar
cells. These parameters demand meticulous exploration and adjustment to further elevate
the efficiency and stability of Spiro-OMeTAD-based PSCs.

3.2.1. Impact of the HTL Thickness

Previous studies have underscored the critical influence of HTL thickness on PSC
performance [67,68]. Strikingly, an ultra-thin HTL layer fails to completely cover the
absorber layer. Conversely, a thick HTL layer heightens the risk of recombination due to the
extended path length of charge carriers and increased electric resistance within the device.
Thus, meticulous control of HTL thickness is paramount, aiming for full coverage of the
uneven perovskite layer without escalating series resistance in the devices. Consequently,
we conducted a study to identify the optimal HTL thickness. We varied the HTL thickness
from 10 to 100 nm and scrutinized the photovoltaic performances. The initial thickness
of Spiro-OmeTAd in the experimental work was 60 nm [44]. Figure 7 illustrates both the
influence of HTL thickness on current density–voltage characteristics and its impact on
FF and PCE. As depicted in Figure 7a, Voc remains constant across various thicknesses,
while Jsc marginally increases from 23.02 mA.cm−2 to 23.26 mA.cm−2, ranging from 10 nm
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to 100 nm thickness. The substantial enhancement is observed in FF, as shown in Figure 7b,
and consequently, in PCE, which is directly proportional to Jsc and FF. FF elevates from
46.2% to 84.3%, leading to an increase in PCE from 9.55% to 17.7%. This improvement
primarily stems from the fact that a thinner layer enhances light transparency, enabling
more light to be absorbed by the LFDP layer. Consequently, more carriers are generated,
augmenting Jsc and FF, which essentially measures the device’s efficacy in converting
incident light into electrical current. Additionally, a thinner layer reduces series resistance
and improves charge collection efficiency. In a thin HTL, charges have a shorter distance to
travel to reach the electrode, minimizing losses and enhancing FF.
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3.2.2. Impact of the HTL Doping Concentration NA

Optimizing the performance of HTL involves considering not only the HTL thickness
but also the doping concentration NA and its impact on photovoltaic parameters in PSCs.
In the experimental study [44], a fixed doping concentration of NA = 1 × 1015 cm−3 was
utilized. However, our numerical analysis explored the effect of varying NA from 1 × 1014

to 1 × 1020 cm−3 while keeping the thickness constant at its original value of 60 nm. The
results, as depicted in Figure 8, demonstrated comparable trends in photovoltaic metrics
with variations in doping concentration, akin to the patterns observed with changes in HTL
thickness (Figure 7).

Notably, for doping concentration, Jsc, FF, and PCE increased with higher doping
concentrations, contrasting the behaviour seen with increasing HTL thickness. Furthermore,
it is noteworthy that Voc remained constant in both cases, indicating a consistent Voc across
different doping concentrations (Figure 8a) and HTL thicknesses (Figure 7a). Specifically
in Figure 8a, Jsc marginally rose from 23.16 mA.cm−2 at NA = 1 × 1014 cm−3 and 60 nm
thickness to 23.26 mA.cm−2 23.33 mA.cm−2 at NA = 1× 1020 cm−3 with the same thickness.
As depicted in Figure 8b, FF and consequently PCE exhibited a notable increase from 69.5%
and 14.65% at NA = 1 × 1014 cm−3 to 85.6% and 18% at NA = 1 × 1018 cm−3, after which
both metrics approached saturation even with further increases in doping concentration
to NA = 1 × 1020 cm−3. This enhancement in performance can be attributed to HTL
doping, which enhances the mobility of charge carriers, particularly holes. Higher carrier
mobility enables freer movement of charges within the material, reducing resistive losses
and enhancing overall device conductivity. Doping also minimizes recombination by
providing additional charge carriers to neutralize traps and defects within the material.
Additionally, doping ensures appropriate energy level matching, thereby enhancing charge
transfer efficiency.
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In our pursuit of optimizing the HTL parameters for Cs2AgBiBr6-based PSC, we
delved into the relationship between HTL thickness and HTL doping concentration.
Figure 9 illustrates the variations in PCE and FF in PSCs based on Cs2AgBiBr6 concerning
HTL doping concentration (ranging from 1 × 1014 to 1 × 1020 cm−3) and HTL thickness
(ranging from 10 to 100 nm).
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Notably, our findings reveal an inverse correlation between HTL thickness and doping
concentration in inverted PSCs. Specifically, PCE and FF increased with higher doping
concentration and decreased with thicker HTL thickness. It is noteworthy that an opti-
mal balance exists; going below a thickness of 20 nm does not necessarily enhance cell
performance, and an excessively high doping concentration, such as 1 × 1020 cm−3, is
unnecessary. A concentration of 1 × 1018 cm−3 suffices, especially considering the rising
fabrication costs and complexity associated with higher doping levels [69]. Consequently,
for the remainder of our study, we adopted an HTL thickness of 20 nm and a doping
concentration of 1 × 1018 cm−3, resulting in impressive photovoltaic parameters: a PCE of
18.15%, Voc of 0.903 V, Jsc of 23.27 mA.cm−2, and FF of 86.56%.

3.3. Influence of the ETL on LFDP Solar Cell Efficiency

Careful selection of ETL parameters is paramount in the design of high-performing
solar cells, as emphasized in previous research [34]. ETLs within PSCs play vital roles,
facilitating the collection and transfer of charge carriers following electron injection from
the perovskite active layer. Of utmost significance is their ability to achieve effective charge
separation and suppress charge carrier recombination. This intricate process hinges on
optimizing factors such as the conduction band offset (CBO) and doping concentration.
In this study, we investigate the influence of CBO on solar cell performance. Our analysis
involves a comparative examination of the experimental structure used by Zhan et al.
against two other cells utilizing the commonly employed metal oxides, titanium dioxide
(TiO2) and zinc oxide (ZnO), as ETLs. Notably, we explore the photovoltaic outputs of
these three devices, each with varying doping concentrations. Through this exploration, we
gain valuable insights into the interplay between ETL parameters and the overall efficiency
of PSCs, shedding light on the intricate mechanisms behind their optimal functioning.

3.3.1. Impact of the CBO

Recently, extensive research efforts have been dedicated to finding suitable ETLs for
PSCs to enhance charge carrier transport. This pursuit is driven by the fact that the Voc
values below 1 V in most lead-free PSCs are insufficient when compared to the typical
optical bandgap of the light absorber. The open-circuit losses in PSCs primarily stem from
recombination processes within the perovskite bulk layer, as discussed in Section 3.1.2,
and at the LFDP/ETL interface. To investigate the impact of the CBO between the LFDP
and ETL, the back junction band alignment of the Cs2AgBiBr6-based PSC was examined.
CBO can be calculated using Equation (5), and its effect on the current density–voltage
characteristics and PCE was explored.

CBO = χAbsorber − χETL (5)

In simulations where the ETL’s energy gap was constant at 3.6 eV, the CBO between
the LFDP and ETL varied from −0.78 eV to 0.2 eV, achieved by altering the electron
affinity χETL from −4.5 eV to −3.52 eV while maintaining a constant electron affinity of the
absorber χabsorber = 3.72 eV. Figure 10 illustrates the results.

Notably, utilizing experimental values from Z. Zhang et al. [44], when the CBO be-
tween the LFDP and ETL was −0.78 eV, the corresponding cell exhibited the lowest Voc
value of 0.903 V, resulting in the lowest PCE of 18.15%. However, as the CBO changed
from −0.78 to 0 eV, the Voc significantly increased, leading to a higher PCE of 26.19% when
χETL was equal to 3.72 eV (Figure 10b). After that, when CBO becomes positive, Voc and
PCE saturate. It is also worth mentioning that Jsc almost remains the same for all values
of CBO.

This enhancement in Voc and consequently in PCE can be attributed to reducing the
negative value of CBO. The negative CBO indicates that the energy level of the conduction
band in the ETL is lower than that of the perovskite layer. Consequently, a larger energy
barrier is created for electrons moving from the perovskite layer to the ETL, decreasing the
built-in potential. Additionally, a negative CBO reduces the barrier for electron transport
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from the ETL’s conduction band to the interface. Since solar cell interfaces often have defect
states, particularly deep defects that act as recombination centers for electrons and holes, a
negative CBO exacerbates charge recombination through these interface deep-level defects.
Given that Voc is essentially the built-in potential minus losses due to recombination and
other factors, the increase in recombination at the interfaces due to negative CBO and the
decrease in built-in potential resulted in a lower Voc and hence PCE.
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In real-world applications, finding the right ETL is crucial, and among the promising
options are ZnO and TiO2. TiO2 has an electron affinity of 4.0 eV, resulting in a CBO
of −0.2 eV, while ZnO, with an electron affinity of 3.7 eV, nearly approaches zero CBO.
These values represent significant improvements compared to the −0.78 eV CBO observed
between SnO2 and the absorber material used in the study by Z. Zhang et al. [44]. To
assess their performance, we simulated the J − V characteristics and PCE for three different
devices with varied ETLs, as depicted in Figure 11.
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The finding suggests that devices incorporating the alternative TiO2 and ZnO ETLs
exhibited superior Voc and PCE compared to the original SnO2-based device. Notably,
ZnO outperformed both SnO2 and TiO2 due to its excellent Voc of 1.27 V, resulting in an
impressive 26.3% PCE. These results can be attributed to the charge recombination at the
interface explained previously, influenced by the CBO effect. Despite comparable electron
mobility and conductivity among the proposed ETLs, their distinct alignment with the
absorber material played a pivotal role in achieving these outcomes. Apart from the band
alignment between the ETL and LFDP layer, their conductivity significantly influences cell
design. Consequently, the performance of the optimized cell using SnO2 as the ETL and
the one employing ZnO as the ETL was compared under various doping concentrations.

3.3.2. Impact of the ETL Doping Concentration ND

When dopants are introduced into the ETL, they can alter the charge carrier concen-
tration and the conductivity of the material. This, in turn, affects the built-in electric field,
which is crucial for separating and transporting electrons and holes within the solar cell.
In our simulations, we varied the shallow donor doping concentration ND of the ETL
from 1 × 1017 to 1 × 1020 cm−3. We refrained from going below 1 × 1017 cm−3 based on
our findings in Section 3.1.2, where we observed that as the acceptor doping NA in the
absorber approaches the donor doping concentration ND of the ETL, charge recombination
intensifies, leading to a reduction in both Voc and Jsc. Figure 12 illustrates the impact of
donor doping concentration in both SnO2 and ZnO ETLs on the J − V characteristics and
PCE of the solar cell.
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In Figure 12a, it is evident that the Jsc experiences a marginal increase with higher ETL
doping concentrations for both devices utilizing different ETL materials. The most notable
impact is observed in the Voc parameter, particularly in the solar cell employing SnO2
ETL. For the ZnO ETL-based PSC, Voc rises with increasing ZnO doping concentration
from 1 × 1017 to 1 × 1018 cm−3, reaching a saturation point even if ND is increased to
1 × 1020 cm−3. In contrast, the SnO2 ETL-based device exhibits a substantial effect, with
Voc steadily increasing across the doping concentration range, rising from 0.842 V to 1.024 V
for 1 × 1017 to 1 × 1020 cm−3, respectively. In Figure 12b, the PCE trend mirrors that of Voc.
The PCE of the ZnO ETL-based PSC sees a slight increase from 26.30% to 26.34%, while the
SnO2 ETL-based PSC continues to rise, reaching a maximum of 20.85%. Notably, even at the
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lowest doping concentration of 1 × 1017 cm−3, the PCE of the PSC with ZnO ETL surpasses
that of the PSC with the original SnO2 ETL used in Z. Zhan et al.’s experiment [44].

The significant enhancement in the SnO2 ETL-based PSC’s performance is attributed
to the association of increasing doping concentration with improved charge carrier trans-
port properties and reduced recombination losses. As the doping concentration increases,
electron mobility within the SnO2 ETL improves, facilitating easier movement of electrons
through the material, thereby reducing resistive losses and enhancing overall charge trans-
port efficiency. Additionally, doping influences the energy levels and band alignment at
the interfaces between different layers in the solar cell. Improved band alignment enhances
the separation of photo-generated carriers, contributing to a higher open-circuit voltage.
However, for the ZnO ETL-based PSC, which boasts six times better electron mobility than
SnO2 (as indicated in Table 1) and excellent band alignment with a CBO almost equal to
zero, further increases in doping concentration may not significantly enhance the Voc of
the PSC with ZnO ETL. Despite the advancements achieved with the SnO2 ETL-based PSC,
the device with ZnO remains the optimal choice, even at ND = 1 × 1018 cm−3, displaying
a PCE of 26.34%, Voc of 1.278 V, Jsc of 23.30 mA.cm−2, and FF of 88.21%.

4. Conclusions

Although Cs2AgBiBr6-based PSCs have been the subject of ground-breaking inves-
tigations, the obtained PCE has continuously dropped below 6.37%, falling short of the
necessary threshold for commercial viability. Using SCAPS-1D software, we modeled an
inverted (p-i-n) structure and carefully evaluated the performance of different parameter
layers and materials for the ETL in our study. More specifically, we adjusted the thick-
nesses of the absorber and HTL, the doping concentrations of the absorber and HTL, and
the absorber defect density. Additionally, we improved the efficiency of the solar cell by
examining the impact of band alignment at the absorber/ETL interface and investigating
the impacts of ETL doping on the device’s overall performance. We proposed ZnO as an
optimal ETL alternative to SnO2, resulting in remarkable enhancements that culminated in
an unprecedented PCE of nearly 26.34%, achieved using a lead-free double perovskite as
the absorber layer. Looking forward, future research endeavors should focus on refining
the techniques employed in device fabrication. Our innovative findings offer a promising
avenue for developing cost-effective, highly efficient, and stable Cs2AgBiBr6-based PSCs.
These results underscore the significant potential of double perovskite solar cells for future
commercial applications.
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