
Citation: Shan, J.; Shan, Y.; Zou, C.;

Hong, Y.; Liu, J.; Guo, X. Cost-

Effective Preparation of Hydrophobic

and Thermal-Insulating Silica

Aerogels. Nanomaterials 2024, 14, 119.

https://doi.org/10.3390/

nano14010119

Academic Editor: Yi-Feng Lin

Received: 4 December 2023

Revised: 25 December 2023

Accepted: 29 December 2023

Published: 3 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nanomaterials

Article

Cost-Effective Preparation of Hydrophobic and
Thermal-Insulating Silica Aerogels
Jiaqi Shan 1, Yunpeng Shan 2, Chang Zou 1, Ye Hong 3, Jia Liu 3 and Xingzhong Guo 1,2,*

1 ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China;
21626008@zju.edu.cn (J.S.); 21926018@zju.edu.cn (C.Z.)

2 State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science
and Engineering, Zhejiang University, Hangzhou 310027, China; 22126085@zju.edu.cn

3 Zhejiang X-Way Nano Technology Co., Ltd., Hangzhou 311200, China; hy123haoben@outlook.com (Y.H.);
liujia-xway@outlook.com (J.L.)

* Correspondence: msewj01@zju.edu.cn; Tel.: +86-13067764767

Abstract: The aim of this study is to reduce the manufacturing cost of a hydrophobic and heat-
insulating silica aerogel and promote its industrial application in the field of thermal insulation.
Silica aerogels with hydrophobicity and thermal-insulation capabilities were synthesized by using
water-glass as the silicon source and supercritical drying. The effectiveness of acid and alkali
catalysis is compared in the formation of the sol. The introduction of sodium methyl silicate for
the copolymerization enhances the hydrophobicity of the aerogel. The resultant silica aerogel has
high hydrophobicity and a mesoporous structure with a pore volume exceeding 4.0 cm3·g−1 and a
specific surface area exceeding 950 m2·g−1. The obtained silica aerogel/fiber-glass-mat composite
has high thermal insulation, with a thermal conductivity of less than 0.020 W·m−1·K−1. The cost-
effective process is promising for applications in the industrial preparation of silica aerogel thermal-
insulating material.

Keywords: silica aerogel; hydrophobicity; thermal insulation; water glass; sodium methyl silicate

1. Introduction

Silica aerogel is a low-density material with a 3D co-continuous nanoporous structure
formed by interconnected silica nanoparticles [1]. The co-continuous network formed by
silica nanoparticles in aerogels extends heat conduction paths and increases heat radiation
loss. The sizes of the nanopores in aerogels are smaller than those in the free path of air
molecules, effectively suppressing thermal convection within pores [2,3]. Therefore, silica
aerogels often possess outstanding thermal insulation properties. However, due to the low
strength of the aerogel itself, it is often necessary to create composite materials with fibers
during application [4–7]. Currently, silica aerogel/glass-fiber composite mats are being
utilized as a thermal insulation and fire protection materials in various sectors, including
aerospace, petrochemical, construction, and transportation [8–10].

In 1930, Kistler synthesized silica aerogels for the first time by utilizing water-glass as
the silicon source and incorporating supercritical drying [11]. The study of silica aerogels
has spanned over 90 years. During this period, scholars have conducted extensive research
focused on the core objective of advancing the industrialization of silica aerogels. They have
attempted to utilize tetramethoxysilane and tetraethoxysilane or their oligomers as silicon
sources in place of water-glass, achieving success in each endeavor [12–16]. Scholars have
also attempted to substitute ethanol with low-surface-tension solvents, such as n-heptane
and cyclohexane, and they have adopted less costly drying methods, such as microwave
drying and atmospheric drying, to replace supercritical drying [17–23]. However, the
extensive use of alkane solvents has resulted in high recycling and environmental protec-
tion costs. Furthermore, the thermal insulation performances of aerogels synthesized by

Nanomaterials 2024, 14, 119. https://doi.org/10.3390/nano14010119 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano14010119
https://doi.org/10.3390/nano14010119
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0003-2901-971X
https://doi.org/10.3390/nano14010119
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano14010119?type=check_update&version=1


Nanomaterials 2024, 14, 119 2 of 11

atmospheric drying may decrease. Additionally, the porous structures of silica aerogels
ensure that they absorb substantial amounts of water when used outdoors, resulting in
significant reductions in their thermal insulation performances. Consequently, aerogels
with outstanding thermal insulation performances require hydrophobic modifications.
Researchers have treated silica aerogels with solutions of methyl-containing silane coupling
agents, such as methyltrimethoxysilane, trimethylchlorosilane, hexamethyldisiloxane, and
hexamethyldisilazane, to introduce methyl groups to the surfaces and enhance the aerogels’
hydrophobicity [15,24–27].

With the in-depth research and industrial development of silica aerogels, a refined
industrial process for producing commercial thermal insulation products based on silica
aerogels has been established. Currently, global aerogel manufacturers predominantly uti-
lize tetraethoxysilane, known for its stable reaction process, as the silicon source. They then
subject it to a series of processing steps, including sols, glass-fiber composites, gels, aging,
hydrophobic modifications, solvent replacements, and supercritical drying, to produce
silica aerogel composite glass-fiber mats [28–31]. While the aerogel insulations produced by
these processes have secured their positions in the global market, they remain costly, pre-
venting their widespread adoption in price-sensitive sectors such as construction [32–35].
The production costs of aerogel materials are primarily related to the silicon sources and
hydrophobic modifiers. Notably, the latter, with their high consumption levels, low utiliza-
tion levels, and challenging recycling, pose the greatest obstacles to cost reductions and
efficiency enhancements in the aerogel production process [36].

To reduce the cost of raw materials for aerogel synthesis, various silicon sources
such as tetramethoxysilane (TMOS), tetraethoxysilane (TEOS), water-glass, and fly ash
are used to synthesize silica aerogels. Aerogels synthesized from silicon alkoxide such
as TMOS and TEOS exhibit good pore structures and thermal insulation properties, but
their prices in the Chinese market typically reach CNY 15–20 per kg, whereas water-
glass and fly ash cost only CNY 1–2 per kg and CNY 0.1–0.2 per kg, respectively, in the
Chinese market. Given the price differences, water-glass and fly ash offer significant
advantages over silanol salts, with fly ash being the most cost-effective. However, fly
ash is an industrial waste, and its quality is not controllable. Although there are reports
of using fly ash as a silicon source for aerogel synthesis [37,38], the mass production of
aerogel products using fly ash remains challenging. Thus, water-glass stands out as one
of the few low-cost and quality-controlled silicon sources among the various options.
To further reduce the cost of hydrophobic modification, it has been reported that the
hydrophobicity of aerogels can be improved by introducing methyl silanol salts such as
methyltrimethoxysilane (MTMS) and methyltriethoxysilane (MTES) into the silicon source
for copolymerization [39–41], without the use of a hydrophobic modifier. Inspired by
this, this study explored the possibility of copolymerizing sodium methyl silicate and
water-glass to enhance the hydrophobicity of aerogels. Therefore, this study employed
cost-effective water-glass and sodium methylsilicate as the silicon sources and hydrochloric
acid as the catalyst. By means of the hydrolysis of these two silicon sources and in situ
copolymerization, we successfully synthesized hydrophobic silica aerogels without the aid
of hydrophobic modifiers, and we also achieved their composites with fiber-glass mats.

2. Materials and Methods

Materials: Water-glass (WG, Foshan Zhongfa Water Glass Factory, Foshan, China, 30%
solid content and a modulus of 3.37), sodium methyl silicate (SMS, Shanghai yuanye Bio-
Technology Co., Ltd., Shanghai, China, 30% solid content), ultra-pure water (H2O, Shanghai
yuanye Bio-Technology Co., Ltd., Shanghai, China), hydrochloric acid (HCl, Sinopharm
Chemical Reagent Co., Ltd., Shanghai, China, 36%~38%, AR), ethanol (EtOH, Sinopharm
Chemical Reagent Co., Ltd., Shanghai, China, 99.7%, AR), and glass-fiber mats (GF, Owens
Corning Composites (China) Co., Ltd., Hangzhou, China, 10 mm thick, 100 kg/m3) were
used as obtained.
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Preparation process of the silica aerogels: Water-glass (WG) and sodium methyl silicate
(SMS) were added sequentially into ultrapure water and stirred for 30 min to produce a
uniform precursor solution. After pouring a hydrochloric acid solution (HCl) of a specific
concentration into the precursor solution while stirring, a transparent and homogeneous
silica sol was obtained by maintaining continuous stirring for 30 min. Afterwards, the
silica sol was transferred to a sealed container and placed in an oven at 60 ◦C, where
the gel was aged for 24 h. To replace the solvent of the aged silica wet gel, 10 times the
volume of ultrapure water and 2 times the volume of ethanol were used for two additional
substitutions. Each substitution was performed at a temperature of 60 ◦C for a minimum of
12 h. The silica alcohol gel was dried through CO2 supercritical drying. The drying process
entailed a drying pressure of 17.5 MPa, a drying temperature of 60 ◦C, and a drying time of
8–10 h. After supercritical drying, the silica alcohol gel was transformed into silica aerogel.

Preparation process of the silica aerogel/glass-fiber composite mat: The silica sol
was prepared by mixing WG, SMS, and HCl under stirring, similar to the process used
for synthesizing the aerogel. Afterwards, the glass-fiber mat was submerged in the as-
prepared silica sol, and it was removed from the sol after 10 min. Then, the removed mat
was directly placed into a vacuum bag and kept at 60 ◦C for 24 h. The solvent replacement
and supercritical drying processes for the gel composite glass-fiber mat were identical to
those of the silica wet gel, as previously described. After supercritical drying, the silica
aerogel/glass-fiber composite mat was obtained.

Characterization of the silica aerogel and silica aerogel/glass-fiber composite mat: The
microstructures of the aerogel and the mat were observed by a scanning electron microscope
(SEM, Hitachi, Tokyo, Japan, SU8010). The pore structure of the aerogel was measured by a
fully automatic surface area and porosity analyzer (BET, Micromeritics, Norcross, GA, USA,
ASAP2460). The hydrophobicity capabilities of the aerogel and the mat were analyzed by
thermogravimetry (TG, TA, STA6000, temperature range of 30–200 ◦C and a heating rate of
10 ◦C/min) and a video-based contact-angle measuring device (DataPhysics, Filderstadt,
Germany, OCA20). The thermal insulation performance of the aerogel mat with a thickness
of 8 mm was measured by a heat-flow-method thermal conductivity measuring instrument
(Netzsch, Selb, Germany, HFM436). The molecular structure of the aerogel powder with
a KBr compression was characterized by Fourier-transform infrared spectroscopy (FT-IR,
ThermoFisher, Waltham, MA, USA, Nicolet IS5, 400–4000 cm−1).

3. Results

The hydrolysis polymerization of sodium silicate and sodium methylsilicate can be
achieved through acid catalysis or alkali catalysis. This paper reports the synthesis of
silica aerogels using two distinct catalytic methods. The synthesis formulas of the aerogel
samples are presented in Table 1.

Table 1. Synthesis formulas of all the silica aerogel samples.

Catalytic Type Sample No. WG/g SMS/g H2O/g HCl/g CHCl/mol·L−1 T */◦C Cr-NaOH/mol·L−1

Alkali

1 80 0 100 100 1.2 60 0.20
2 80 0 100 100 1.2 40 0.20
3 80 0 100 100 1.2 20 0.20
4 80 0 100 100 1.0 20 0.27
5 80 0 100 100 0.9 20 0.30
6 80 0 100 100 0.8 20 0.33
7 54 26 100 100 0.9 20 0.33
8 40 40 100 100 0.9 20 0.35

Acid

9 80 0 100 100 1.8 60 0
10 80 0 100 100 2.4 60 0
11 80 0 100 100 3.0 60 0
12 54 26 100 100 3.0 60 0

* T refers to aging temperature and Cr-NaOH refers to the concentration of residual NaOH.
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3.1. Alkali-Catalyzed Synthesis of the Silica Aerogels

As illustrated in Table 1, the concentrations of HCl for the preparation of samples 1–8
were less than 1.2 mol·L−1, and the silica sources employed underwent the sol-gel process
under alkali catalysis to form silica aerogels. Figure 1 depicts the microstructures of samples
1–8. As the aging temperature rose (samples 1–3), the microstructures of the synthesized
silica aerogels became denser. When the concentrations of HCl decreased (samples 3–6),
the silica aerogels exhibited increases in pore size. The macropores with larger pore sizes
(more than 1 um) were observable, as shown in the SEM image of sample 6. When an
appropriate amount of sodium methylsilicate replaced the water-glass as the silicon source
(sample 7), there was no noticeable change in the microstructure of the aerogel. However,
when the dosage of sodium methylsilicate was excessive (sample 8), the microstructure
of the aerogel exhibited noticeable agglomeration. Figure 2a,b shows the N2 adsorption-
desorption isotherms and BJH mesopore size distributions of samples 2–5 and 7. Table 2
displays the pore structure characteristics of samples 2–5 and 7. Based on the classification
of IUPAC, all N2 adsorption-desorption isotherms shown in Figure 2a exhibited type IV,
which was characteristic of mesoporous materials. Type IV isotherms exhibit hysteresis
loops, and the shapes of these loops in all isotherms were that of type H3, suggesting a slit-
like mesoporous structure. As shown in Figure 2b and Table 2, with reductions in the aging
temperatures (samples 2, 3), the mesopore diameters and volumes of the aerogels slightly
expanded, the mesopore distributions became more concentrated, and the specific surface
areas significantly increased. Furthermore, Figure 2b and Table 2 illustrate that as the HCl
concentration decreased (samples 3–5), the mesopore diameters, mesopore volumes, and
specific surface areas of the aerogels gradually increased. Sample 5 possessed a higher
specific surface area and mesopore volume. Using this as a starting point, an appropriate
amount of sodium methylsilicate was introduced to the silicon source to prepare sample
7. The specific surface area and mesoporous diameter of sample 7 decreased while the
mesoporous volume significantly increased.

Table 2. Pore structure characteristics of the silica aerogels prepared by alkali catalysis.

Sample No. Sp
a/m2·g−1 Vpore

b/cm3·g−1

2 326.94 1.20
3 654.67 1.22
4 701.46 1.26
5 757.08 1.45
7 466.03 2.00

a, Brunauer–Emmett–Teller specific surface area; b, mesopore volume measured by the Barrett–Joyner–Halenda method.
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3.2. Acid-Catalyzed Synthesis of the Silica Aerogels

As shown in Table 1, when the HCl concentrations of samples 9–12 exceeded 1.8 mol·L−1,
the silica sources used carried out the sol gel process due to acid catalysis, resulting in the
formation of the silica aerogels. Figure 3 shows the microstructures of samples 9–12. As
the concentrations of HCl increased (samples 9–11), the microstructures of the synthesized
silica aerogels exhibited refined frameworks, reduced pore sizes, and enhanced uniformity.
Sample 11 possessed a uniform mesoporous structure. Therefore, using the synthesis
process of sample 11 as a foundation, an appropriate amount of sodium methylsilicate
was introduced into the silicon source to synthesize sample 12. Upon comparing the
SEM images of samples 11 and 12, it was evident that the introduction of an appropriate
amount of sodium methylsilicate led to increases in the pore sizes of the synthesized silica
aerogels, and their microstructures maintained uniform mesoporous structures. Figure 4a,b
demonstrates the N2 adsorption-desorption isotherms and BJH mesopore size distributions
of samples 9–12. Table 3 identifies the pore structures of samples 9–12. All N2 adsorption-
desorption isotherms shown in Figure 4a were similar to those in Figure 2a, indicating slit-
like mesoporous structures. As illustrated in Figure 4b and Table 3, with the increases in the
HCl concentrations, the mesopore diameters of the synthesized aerogels slightly decreased
while the mesopore volumes and specific surface areas significantly increased. Specifically,
the specific surface area and mesopore volume of sample 11 reached 1045.60 m2·g−1 and
3.10 cm3·g−1, respectively. After the introduction of an appropriate amount of sodium
methylsilicate, the mesopore volume of the synthesized silica aerogel (sample 12) increased
to 4.21 cm3·g−1.
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Table 3. Pore structure characteristics of the silica aerogels prepared by acid catalysis.

Sample No. Sp
a/m2·g−1 Vpore

b/cm3·g−1

9 304.97 0.69
10 331.40 0.85
11 1045.60 3.10
12 958.58 4.21

a, Brunauer–Emmett–Teller specific surface area; b, mesopore volume measured by the Barrett–Joyner–Halenda method.
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3.3. Composition Analysis of the Silica Aerogels

To confirm the incorporation of the methyl groups into the silica aerogels through
the addition of sodium methyl silicate, this study conducted thermogravimetry (TG) and
infrared spectroscopy (IR) analyses on these materials. Figure 5a presents the TG curves
of the silica aerogels. As shown in Figure 5a, samples 7 and 12, synthesized through the
introduction of sodium methyl silicate, exhibited lower amounts of weight loss upon being
heated to 200 ◦C. This suggested that these aerogels possessed reduced adsorbed and
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structural water. This finding indirectly verified the enhancement in the hydrophobicity
of these aerogels. Figure 5b shows the IR spectrums of the silica aerogels. The absorption
peak near 3430 cm−1 corresponded to the antisymmetric stretching vibration of the O–H
bond, originating from the Si–OH groups and adsorbed water within the silica aerogels.
The absorption peaks near 2965 and 1258 cm−1 could be attributed to the antisymmetric
stretching and symmetrical bending vibration of the C–H bond, respectively, resulting
from the Si–CH3. The absorption peak near 1640 cm−1 could be ascribed to the bending
vibration of the O–H bond from the adsorbed water. The absorption peaks near 1100, 800,
and 465 cm−1 were due to the antisymmetric stretching, symmetric stretching, and bending
vibrations of the Si–O bond, respectively, which originated from the SiO2. The absorption
peaks near 850 and 758 cm−1 corresponded to the planar rocking vibration of the Si–C
bond from the Si–CH3. It could be seen, as shown in Figure 5b, that the absorption peak
corresponding to the O–H bond in the IR spectrum of sample 12, which was synthesized by
introducing sodium methyl silicate, was significantly weakened, and the absorption peaks
of the Si–C bond and C–H bond from the Si–CH3 appeared. This result directly confirmed
that the incorporation of methyl groups could be introduced into silica aerogels through
the addition of sodium methyl silicate.
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3.4. Properties of the Silica Aerogel/Glass-Fiber Composite Mats

In order to verify the hydrophobic and thermal-insulating properties of the synthesized
silica aerogels, the silica aerogels were compounded with glass-fiber mat, and the thermal
conductivity and water contact angles of the silica aerogel composite glass-fiber mats
were measured.

Table 4 lists the thermal conductivity capabilities and water contact angles of the
various silica aerogel composite fiberglass mats. Sample F0 was a glass-fiber mat without
a silica aerogel, serving as a blank control. Sample F5, F7, F11, and F12 were glass-fiber
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mats composited with the sample 5, 7, 11, and 12 silica aerogels, respectively. As shown in
Table 4, the thermal conductivity capability of sample F5 was higher than that of sample F0.
The thermal conductivity of sample F7 did not significantly decrease compared to that of
sample F0, suggesting that the thermal conductivity ability of sample F7 was lower than
that of sample F5. However, its thermal conductivity was not significantly lower than that
of air. These results aligned with the previous descriptions of the pore structures of samples
7 and 5. Specifically, after the introduction of sodium methyl silicate, the mesopore volume
of the sample 5 silica aerogel synthesized through alkali catalysis increased and its pore
structure had improved, yet it still fell short of an ideal silica aerogel structure. Compared
to sample F0, samples F11 and F12 exhibited lower levels of thermal conductivity (below
0.020 W·m−1·K−1). This suggested that both the sample 11 and 12 aerogels had lower
levels of thermal conductivity than air. This result aligned with the previous descriptions of
their pore structures, indicating that both aerogel samples possessed high specific surface
areas and mesopore volumes. The results of the water contact angle tests are illustrated in
Figure 6 and Table 4. In comparing samples F5, F11, F7, and F12, it was observed that the
silica aerogels synthesized with the addition of sodium methyl silicate exhibited higher
contact angles after being compounded with the glass-fiber mats, indicating high levels
of hydrophobicity.

Table 4. Thermal conductivity capabilities and water contact angles of the silica aerogel/glass-fiber
composite mats.

Sample No. Thermal Conductivity/W·m−1·K−1 Water Contact Angle/◦

F0 0.031 /
F5 0.037 114
F7 0.029 120

F11 0.020 115
F12 0.018 132
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4. Discussion

In this study, silica aerogels were synthesized through both acid and alkali catalysis,
and sodium methyl silicate was incorporated based on an optimized formula. The effects
of the sodium methyl silicate dosages, the aging temperatures, and the HCl concentrations
in the alkali catalysis system and the HCl concentrations in the acid catalysis system on the
microstructures, pore structures, hydrophobicity, and thermal-insulating properties of the
silica aerogels and aerogel/glass-fiber composites were investigated in detail.

Firstly, the structures and properties of the aerogels synthesized through alkali catalysis
were suboptimal. We speculated that the main reason was that large amounts of NaOH
remained in the alkali catalytic systems after the formation of the silica aerogels from
the water-glass. This residual NaOH eroded the aerogels during aging. On one hand,
this erosion significantly reduced the strengths of the aerogels, resulting in irreversible
shrinkage and collapse during the aging and drying processes. On the other hand, it also
explained the observation that the aerogels synthesized with lower HCl concentrations in
the alkali catalysis systems had larger pore sizes and volumes. Larger mesopore volumes
are beneficial for enhancing the thermal-insulating properties of aerogels. However, when
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the pore sizes were too large, the mesopore volumes in the aerogels decreased, bringing
about declines in their thermal-insulating properties. This was because only mesopores
smaller than the free path of air can limit air’s thermal convection. Thus, the optimal
HCl concentrations in the alkali catalysis systems in this study were established to be
0.9 mol·L−1. Furthermore, the aging temperatures significantly impacted the structures
of the aerogels in the alkali catalysis systems, which was related to the residual NaOH in
the systems. During the aging process, NaOH eroded the aerogels, and we hypothesized
that this erosion intensified as the aging temperature rose. Simultaneously, the NaOH
erosion may have generated sodium silicate or silica sol particles, which could grow
at other locations on the aerogel surfaces during the aging process. This simultaneous
erosion and aging process led to a phenomenon akin to “phase separation”, resulting in the
microstructures of the aerogels displaying agglomeration. This explained the detrimental
effects of the higher aging temperatures on the structures of the aerogel in the alkali catalysis
systems. Secondly, the aerogel synthesized with 3.0 mol·L−1 HCl in the acid catalysis
system exhibited an ideal structure and ideal properties, with its specific surface area
and pore volume reaching 1045.60 m2·g−1 and 3.10 cm3·g−1, respectively, and the median
mesopore diameter was approximately 30 nm. We hypothesized that the primary reason
for this was that in the acid catalysis systems, the sodium silicate could undergo sufficient
hydrolysis only under low pH conditions, where its rate of hydrolysis outpaced the rate of
polycondensation. On one hand, this sufficient hydrolysis ensured the framework strengths
of the aerogels, thereby reducing their shrinkage and collapse during the aging and drying
processes. On the other hand, the rate of hydrolysis outpacing the rate of polycondensation
favored the synthesis of silica aerogels with finer frameworks.

To circumvent the use of costly and inefficient hydrophobic modifiers, this study
sought to introduce methyl groups into the silica aerogels through the copolymerization of
sodium methyl silicate and water-glass, aiming to achieve their hydrophobic modification.
The findings revealed that the addition of an appropriate amount of sodium methyl silicate
successfully introduced methyl groups into the silica aerogels, enhancing their hydropho-
bicity capabilities and increasing their mesopore volumes. However, the excessive addition
of sodium methyl silicate caused the agglomeration of the aerogels. We hypothesized that
this was primarily due to the strengthening effects of the introduced methyl groups on the
overall structures of the aerogels, making them less susceptible to shrinkage and collapse
during the aging and drying processes. Given the significant difference in polarity between
methylsilicate and water, the introduced methyl groups inherently exhibited hydropho-
bicity. The excessive introduction of the methyl groups amplified the tendencies for the
solid–liquid phase separation during the transitions from water-glass hydrolysis to gela-
tion, resulting in thicker gel skeletons and larger pore sizes. Furthermore, since the methyl
groups could not participate in the formation of the Si–O networks in the silica aerogels,
this inevitably affected their structural uniformity. Thus, the mass ratio of water-glass to
sodium metasilicate of 2:1, which was employed in the synthesis of samples 7 and 12 in
this study, was a suitable ratio for synthesis. After the introduction of the methyl groups,
the specific surface area of sample 12 remains at 958.58 m2·g−1, its pore volume increased
to 4.21 cm3·g−1, and its median mesopore diameter was approximately 30 nm.

5. Conclusions

In this study, silica aerogels were synthesized by using inexpensive water-glass as the
silicon source through both acid and alkali catalysis. The silica aerogels synthesized through
acid catalysis exhibited ideal pore structures with specific surface areas of 1045.60 m2·g−1,
mesopore volumes of 3.10 cm3·g−1, and a median mesopore diameter of approximately
30 nm. To avoid the use of expensive and underutilized hydrophobic modifiers, sodium
methyl silicate was incorporated to co-polymerize with the water-glass, and the methyl
groups were successfully introduced into the silica aerogels, endowing them with high
levels of hydrophobicity. After the hydrophobic modifications, the specific surface areas of
the silica aerogels remained at 958.58 m2·g−1, with mesopore volumes that increased to
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4.21 cm3·g−1 and a median mesopore diameter of approximately 30 nm. The composite of
silica aerogels with glass-fiber mats exhibited thermal conductivity capabilities of less than
2.0 W·m−1·K−1, displaying high thermal-insulating properties.
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