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Abstract: Gas-sensing technology has witnessed significant advancements that have been driven by
the emergence of graphene quantum dots (GQDs) and their tailored nanocomposites. This compre-
hensive review surveys the recent progress made in the construction methods and applications of
functionalized GQDs and GQD-based nanocomposites for gas sensing. The gas-sensing mechanisms,
based on the Fermi-level control and charge carrier depletion layer theory, are briefly explained
through the formation of heterojunctions and the adsorption/desorption principle. Furthermore, this
review explores the enhancements achieved through the incorporation of GQDs into nanocomposites
with diverse matrices, including polymers, metal oxides, and 2D materials. We also provide an
overview of the key progress in various hazardous gas sensing applications using functionalized
GQDs and GQD-based nanocomposites, focusing on key detection parameters such as sensitivity,
selectivity, stability, response and recovery time, repeatability, and limit of detection (LOD). Accord-
ing to the most recent data, the normally reported values for the LOD of various toxic gases using
GQD-based sensors are in the range of 1–10 ppm. Remarkably, some GQD-based sensors exhibit
extremely low detection limits, such as N-GQDs/SnO2 (0.01 ppb for formaldehyde) and GQD@SnO2

(0.10 ppb for NO2). This review provides an up-to-date perspective on the evolving landscape
of functionalized GQDs and their nanocomposites as pivotal components in the development of
advanced gas sensors.

Keywords: functionalized GQDs; GQDs based nanocomposite; gas sensing mechanism; improved sensing

1. Introduction

In recent years, as urban-industrial developments have accelerated, air pollution has
become increasingly severe, primarily due to emissions from industrial sources including
power plants, refineries, and other chemical factories [1–4]. The uncontrolled release or
leakage of various hazardous gases such as volatile organic compounds (VOCs), nitrogen
dioxide (NO2), ammonia (NH3), and hydrogen sulfide (H2S) can result in unhealthy
environments and the loss of human life [5–8]. Therefore, accurate and reliable detection
of toxic gases in various settings including industrial facilities, urban environments, and
healthcare facilities, is necessary for ensuring public safety and maintaining good air quality.
After the development of the first commercial gas sensor in 1962 [9], various types of gas
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sensing devices (electrochemical, infrared, catalytic, resistive, optical, photoionization, etc.)
have been developed for detecting gases using different sensing materials [10–15]. Until
now, a variety of materials such as metal/metal oxides, conducting polymers, metal organic
frameworks (MOFs), and nanocarbon materials have been explored to satisfy the demand
for gas sensors that feature high sensitivity and selectivity [6,16,17]. Among these, graphene,
which was first discovered by Novoselov and colleagues in 2004 [18], has gained significant
popularity as a two-dimensional (2D) material due to its unique characteristics. These
properties include its thin, single atomic layer of sp2 hybridized carbon, excellent thermal
conductivity, high electron mobility, semi-metallic nature, and exceptional mechanical
tensile strength [19–21]. Notably, graphene is considered as a viable gas-sensing material
due to its electronic characteristics, which are significantly influenced by gas molecule
adsorption [22]. However, the absence of an intrinsic electronic bandgap or of functional
groups in pristine graphene limits its use in gas-sensor applications [23]. Graphene’s lack
of a bandgap refers to the energy difference between the valence band and the conduction
band being nearly zero or very small [24]. For gas-sensing applications, having a bandgap
is beneficial because it allows the material to selectively interact with specific molecules,
leading to changes in its electronic properties in the presence of those molecules. In the
absence of a bandgap, pristine graphene may not exhibit significant changes in its electronic
structure when exposed to certain gases, making it less effective for gas-sensing applications.
Furthermore, in the absence of functional groups, pristine graphene may not have enough
sufficient interactions with gas molecules to produce a detectable response [25]. When
graphene, originally in a 2D form, is converted into zero-dimensional quantum dots (QDs),
it undergoes a reduction in its lateral dimensions to the nanometer range (typically between
2 and 10 nm), and its thickness is reduced to approximately 1–2 nm, resulting in the
formation of graphene quantum dots (GQDs) [18,26].

GQDs offer a combination of advantages from both their graphene and QD compo-
nents, including the 2D and quantum confinement effects [27–29]. This integration results
in several outstanding features such as remarkable optical transparency, large surface area,
unique photoluminescence, biocompatibility, minimal toxicity, high chemical stability, and
a customizable energy band gap that can suit specific requirements [30–32]. In comparison
to 2D graphene, the band gap of GQDs is readily tunable over an extensive range due to
their unique quantum limitations and edge effects [33]. Additionally, GQDs, with their
ultra-small particle size, provide an abundance of oxygen-containing functional groups, va-
cancies, and defects. These characteristics make GQDs the preferred choice for gas-sensing
applications, especially when combined with other gas-sensing materials to form p–n or
p–p heterojunctions, thereby enhancing the detection of toxic gases. Incorporating GQDs
with other materials such as metal oxides [34,35], polymers [36], and MOFs [37,38] to create
GQD-based nanocomposites with synergistic effects is a powerful strategy for enhancing
sensor performances and can lead to improved sensitivity, selectivity, stability, and tunabil-
ity. Furthermore, compared to pristine graphene, the presence of hydroxylated functional
groups in GQDs enhances their hydrophilicity and offers extensive possibilities for sur-
face functionalization [39]. Surface functionalization with organic molecules and doping
with elements such as sulfur (S), nitrogen (N), phosphorus (P), boron (B), silicon (Si), and
magnesium (Mg) significantly enhances the optical characteristics, electronic properties,
and chemical reactivity of GQDs, allowing for the fine-tuning of their inherent proper-
ties for specific gas-sensing applications [40–42]. These exceptional characteristics have
accelerated a rapid progress in the development of functionalized GQDs and GQD-based
nanocomposites, especially within a wide range of sensing applications.

Numerous researchers have recently reviewed and published findings on the chemical
and physical properties of GQDs and their synthesis methods [39,43,44]. Some of the
reviews have focused on the applications of GQDs and their nanocomposites in drug
delivery [45,46], bioimaging [46,47], wastewater treatment [48,49], food safety [50], energy
storage [51,52], and catalysis [53]. Although there are existing reviews on gas detection,
there is still a scarcity of reviews that specifically address the application of GQDs and
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their nanocomposites for toxic gas sensing. Therefore, to promote the practical use of
GQD-based gas sensors, we hereby present this review which covers an overview of
recent advancements in functionalized GQDs and GQD-based nanocomposites as toxic gas
sensors. First, we briefly explain strategies for the development of functionalized GQDs and
GQD-based nanocomposites. Subsequently, we provide an overview of the key progress in
various hazardous-gas-sensing applications using functionalized GQDs and GQD-based
nanocomposites, focusing on sensing mechanisms and key detection parameters, such
as sensitivity, selectivity, stability, response and recovery time, repeatability, and limit of
detection (LOD). Finally, we discuss the challenges and prospects of the GQD-based gas
sensors for further development and practical applications.

2. General Construction Methods of GQD-Based Gas Sensors

GQDs can be synthesized using either a top-down or bottom-up approach, depending
on the type of precursor used [54,55]. Comprehensive reviews addressing these topics
are readily available in the literature [39,46,52,56]. In this review, we briefly outline the
construction strategies for functionalized GQDs and GQD-based nanocomposites tailored
for gas-sensing applications. Researchers have actively explored strategies for tuning
the chemical properties of GQDs through elemental doping and the modification of the
functional groups on their edges and surfaces, such as hydroxyl, carboxyl, or amino groups,
with the aim of enhancing the GQDs gas-sensing capabilities [57,58]. In addition, the
functionalized GQDs are also incorporated with certain materials to meet the requirements
of specific gas-sensing applications. Table 1 summarizes the different types of GQD-based
sensors, including their preparation methods and target gases. It was observed that GQDs
can be composited with other functional materials through methods such as stirring,
coating, hydrothermal reactions, π–π stacking, chemical oxidative polymerization, and
ultrasonic impregnation.

Table 1. A summary of selected GQD-based gas sensors with different construction strategies.

GQDs Based Sensor Preparation Method Target Gas Ref.

Elemental doping N-GQDs Hydrothermal Formaldehyde [59]

Edge functionalization OH-GQDs Hydrothermal Ammonia [18]

Composite

ZnCo2O4/GQD Hydrothermal Triethylamine [60]
GQD@SnO2 Drop casting/coating NO2 [61]

MoS2/rGO/GQDs Hydrothermal NO2 [62]
CoPc–GQD π–π stacking DMMP [63]
ZnO:GQDs Drop casting/coating Ammonia [64]

Elemental doping and
composite

NGQDs/PANI Chemical oxidative polymerization Ethanol [65]
N-GQDs@SnO2 Vigorous stirring NO2 [66]
N-GQDs@ZnO Hydrothermal NO2 [67]
N-GQDs@SnO2 Ultrasonic impregnation Formaldehyde [68]

ZnCo2O4: zinc cobaltite; SnO2: tin oxide; rGO: reduced graphene oxide; MoS2: molybdenum disulfide; PANI:
polyaniline; DMMP: dimethyl methylphosphonate.

Lv et al. successfully prepared a N–GQDs@SnO2 composite by vigorously stirring pre-
synthesized N–GQDs and SnO2 to detect NO2 gas at a working temperature of 130 ◦C [66].
The sensor demonstrated outstanding detection ability (Rg/Ra = 25.3) for low-concentration
NO2 (100 ppb). Figure 1 shows the synthetic schematic diagram of N-GQDs@SnO2. Al-
though the stirring method has advantages in terms of simplicity and cost-effectiveness, it
may not provide precise control over the structure and distribution of the GQDs within the
composite. Rahul et al. also developed an N–GQDs@SnO2 composite for the detection of
NO2 gas, but they employed a different synthesis approach, namely, ultrasonic impregna-
tion [69]. This N–GQDs@SnO2 composite exhibits an enhanced response (Rg/Ra = 292)
with a short response (181 s) and recovery time (81 s) toward 100 ppb NO2 gas at 150 ◦C.
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From these reports, it can be concluded that the gas-sensing performance of the sensing
materials can be significantly influenced by the choice of synthesis method.

Ebrahimi et al. synthesized ZnCo2O4/GQD’s coral-like nanostructures using a simple
hydrothermal method that showed good selectivity for triethylamine [60]. The hydrother-
mal method offers advantages such as high particle dispersion, ease of synthesis, and
cost-effectiveness [47]. However, it often requires specialized equipment, including high-
pressure reactors and controlled temperature environments, and can be time-consuming.
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Figure 1. Synthetic schematic diagram of N-GQDs@SnO2 nanocomposites [66]. I–IV represent the
steps of the process order.

Chen et al. utilized an ultrasonic impregnation technique to synthesize well-dispersed
N-GQDs@SnO2 composites for high-efficiency HCHO detection [68]. Ultrasonic impregna-
tion is effective in achieving a uniform dispersion of GQDs within the composite matrix;
however, it may not offer the same level of control over the GQDs’ sizes and structures as
is offered by other synthesis methods, such as hydrothermal synthesis [70]. Additionally,
Jiang et al. constructed the CoPc–GQD composite as a DMMP detection sensor based
on the π–π stacking approach [63]. The π-π stacking technique is relatively simple, re-
lying on non-covalent interactions between GQDs and other materials, and it does not
involve complex chemical reactions. However, this technique can limit the stability of the
composite, especially when exposed to harsh conditions such as high temperatures [71].
Lee et al. reported NO2-responsive GQD@SnO2 nanodomes by drop-casting a GQD solu-
tion onto SnO2 nanodomes and subsequently drying it at room temperature for 24 h as
shown in Figure 2 [61]. Drop-casting is a straightforward and cost-effective technique, but
it may cause aggregation or uneven distribution of GQDs, which can affect the properties of
the composite.
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3. Gas-Sensing Mechanisms of GQD-Based Sensors

Gas-sensing mechanisms in GQD-based sensors involve several key processes that
enable the detection of and response to specific gas molecules [72]. These mechanisms can
vary depending on the type of gas and the specific configuration of the GQD-based sensor.
Some common gas-sensing mechanisms associated with GQD-based sensors are based on
the Fermi-level control and charge carrier depletion layer theory, which is explained by the
formation of heterojunctions [61,73] and the adsorption/desorption principle [62,67].

3.1. Heterojunction

In general, GQDs are frequently combined with other materials such as metal oxide
semiconductors, organic polymers, and transition metal dichalcogenides to significantly
enhance their sensing capabilities [34,35]. This enhancement arises from the distinct energy
band structures of GQDs and hybrid materials, which prompt the transfer of electrons or
holes at the interface between these components until their Fermi levels reach equilibrium
at the same energy level [74]. Consequently, heterojunctions are formed at the interface
between the GQDs and the hybrid materials, which play a crucial role in adjusting the thick-
ness of the depletion/accumulation layer and the height of the potential barrier [23,75,76].
This, in turn, alters the internal distribution of electrons among the different components
and profoundly impacts the sensing performance of the materials. When investigating
the mechanisms of GQD nanocomposites, it is imperative to primarily consider the influ-
ence of the heterojunctions. In this section, we elucidate the mechanism of GQD-based
nanocomposites through two subsections: anisotype heterojunctions (p–n) and isotype
heterojunctions (n–n, p–p).

In p–n heterojunctions, in which the n-type material has a higher Fermi energy level
than the p-type material, electrons migrate from the n-type material to the p-type material,
while the holes move in the opposite direction until their Fermi energy levels equalize [77].
This process leads to the formation of a depletion layer at the interface and the bending
of the energy bands, resulting in a potential barrier that narrows the electron transport
channel [23]. In the case of isotype heterojunctions (n–n, p–p), the phenomenon of band
bending also occurs as a result of differences in Fermi energy levels [78]. In n–n heterojunc-
tions, electrons transfer from the region with higher Fermi energy levels to the region with
lower Fermi energy levels, leading to the formation of an electron depletion layer on the
higher Fermi energy side and an electron accumulation layer on the lower Fermi energy
side [76]. Similarly, in p–p heterojunctions, holes transfer from the region with lower Fermi
energy levels to the region with higher Fermi energy levels, resulting in the formation of a
hole accumulation layer on the higher Fermi energy side and a hole depletion layer on the
lower Fermi energy side [77]. Notably, the n–n and p–p heterojunctions contribute to the
formation of an electron depletion layer and a hole depletion layer, respectively, resulting
in an enhanced sensing response and excellent response/recovery performance [79].

3.2. Chemisorption

Chemical adsorption and desorption represent prominent gas-sensing mechanisms
that exert a significant influence on most GQD-based gas sensing devices. When a gas di-
rectly interfaces with a sensor, a chemical reaction occurs, leading to alterations in electrical
signals [80]. This change can result from the presence of the target gas or from ambient
oxygen molecules. Oxygen adsorption is among the most prevalent gas-sensing mecha-
nisms and has a profound impact on most GQD-based gas sensing devices [3,14]. When
the sensor is exposed to air, oxygen molecules begin to adsorb onto the material’s surface,
initiating oxidization or reducing reactions between the atmospheric oxygen and the sens-
ing surface. These reactions give rise to substantial changes in certain electrical properties
or the resistance of the sensing material [81,82]. Depending on the operating temperature,
various oxygen ions (O2

−, O−, and O2−) are generated after capturing electrons from the
sensing materials. Consequently, changes in surface electron density leads to variations in
the conductivity or resistance of the sensing material.
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Upon exposure to reducing target gases on n-type GQD-based sensors, the electrons
captured by oxygen species are released back into the sensing material, resulting in a de-
crease in resistance [83,84]. This reduction in resistance is further confirmed by a decreased
barrier height at the interface. Conversely, when oxidizing gases are present, the electron
density decreases, causing an increase in resistance. In contrast, when reducing gases are
adsorbed onto the surface of a p-type GQD-based sensor, the hole accumulation layer
diminishes due to electron–hole recombination processes [81,85]. Consequently, the surface
resistance of the p-type sensor increases. However, in the presence of oxidizing gases,
the hole carrier concentration significantly rises due to the trapping of electrons by the
oxidizing gases, which leads to a decrease in resistance.

4. Role of GQDs for Enhanced Gas Sensing

GQDs play pivotal roles in achieving exceptional gas-sensing performances in GQD-
based sensors. In this section, we delve into an analysis of the enhanced gas-sensing
performance by elucidating the various roles that GQDs play in gas detection. Specifically,
GQDs serve four vital functions as follows: (i) Strong interaction with the target gas [34,64].
GQDs exhibit a remarkable capacity to establish robust interactions with the target gas
molecules. (ii) Formation of heterojunction [86,87]. This heterojunction formation is of
paramount importance, as it facilitates improved charge transfer and electron mobility,
thereby enhancing the sensor’s overall performance. (iii) Increased surface area [60,65].
This larger surface area offers more active sites for the adsorption and diffusion of gas
molecules. (iv) Protective layer [62]. GQDs’ shield-sensitive sensor components from
environmental factors have the ability to contribute to the sensor’s reliability and durability.
The roles of GQDs in improving the sensing performance of reported GQDs based gas
sensors are summarized in Table 2.

Table 2. The roles of GQDs in improving the sensing performance of GQD-based gas sensors.

Role of GQDs GQDs Based Sensor Target Gas Conc.
(ppm)

Operating
Temp. Sensitivity/Response Tres/Trec Ref.

Strong interaction with
analyte

ZnO:GQDs NH3 1000 RT 6047 170/80 s [64]
N-GQDs@SnO2 HCHO 100 60 ◦C 256 <12/12 min [34]

OH-GQDs NH3 500 RT 76.63% 64/69 s [18]
TiO2/af-GQDs H2S 55 RT 26.62 68/77 s [88]

Formation of
heterojunction

TiO2@NGQDs NO 100 RT ~31.1% 235/285 s [86]
B/APPH Benzene 1 65 ◦C 17.5 - [87]

Increased surface area
ZnCo2O4/GQD TEA 100 200 ◦C 6.97 45/65 [60]
NGQDs/PANI Ethanol 100 RT 0.66% 85/62 s [65]

Protecting layer MoS2/rGO/GQDs NO2 5 RT 15.2% 150/150 s [62]

Protecting layer and
heterojunction formation GQDs/SiNW NO2 10 RT ~17 - [89]

Increased surface area and
heterojunction formation

ZnFe2O4-GQDs Acetone 5 RT 1.2 <12/12 s [90]
ZnO/S, N: GQDs/PANI Acetone 0.5 RT 2 15/27 s [72]

Strong interaction with
analyte and

heterojunction formation

GQD@SnO2 NO2 5 RT 4.8 322 s/105 s [61]
N-GQDs/SnO2 HCHO 10 60 ◦C 361 330 and 30 s [68]
N-GQDs@ZnO NO2 5 100 ◦C 57 180/100 s [67]
N-GQDs@SnO2 NO2 1 130 ◦C 417 59/33 s [66]

N-GQDs/3DOM In2O3 NO2 1 100 ◦C 81.7 59/43 s [73]
N-GQDs@SnO2 NO2 0.01 150 ◦C 292 181/81 s [69]

SnO2/GQDs Acetone 1000 RT 120.6 17/13 s [91]

- CoPc–GQD NO2 50 RT 15.8 1.67/1.67 min [92]
- GQD-ZnO Ethanol 500 RT ~75 - [93]
- GQDs-ZnO Acetic acid 1 RT ~15 11/12 s [94]
- B-GQD/AL HCHO 1 65 ◦C 18 23/30 s [95]
- CoPc–HFIP–GQD DMMP 20 RT 8.4% 600/640 s [63]
- CoPc–6FBPA–GQD DMMP 20 RT 9.3% 600/620 s [63]

Conc.: concentration; Operating Temp.: operating temperature; Tres: response time; Trec: recovery time;
RT: room temperature; TEA: triethylamine; HCHO: formaldehyde; DMMP: dimethyl methylphosphonate; 3DOM:
three-dimensional ordered microporous; NH3: ammonia.

4.1. Strong Interaction with Analyte

A strong interaction with the analyte plays a crucial role in enhancing gas-sensing
performance, ultimately enabling the development of highly reliable sensors capable of
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detecting toxic gases even at extremely low concentrations [96,97]. By utilizing surface
functionalization and tailoring the electronic properties, it is possible to optimize GQDs for
specific gas-sensing applications, promoting strong interactions with target gas molecules,
and improving sensitivity [5]. Zhang et al. investigated the NO2 gas-sensing properties
of a hydrothermally synthesized N–GQDs@ZnO nanocomposite [67]. The nanocomposite
exhibited a remarkable 11.6-fold enhancement in sensitivity to 5 ppm NO2 (Figure 3),
achieving a detection limit of 0.1 ppm while also reducing the working temperature from
160 ◦C to 100 ◦C. The higher sensitivity to NO2 is attributed to the doping of electronegative
N atoms, a process in which the electron-attracting NO2 molecules preferentially bind to
the N atoms due to the basicity of the N-containing groups. This enhanced adsorption of
NO2 on the surface of N–GQDs@ZnO significantly increases the charge transfer between
the NO2 molecules and the N-GQDs’ surface.
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Figure 3. (a) Responses of ZnO and N-GQDs@ZnO (G-Z-2) to 5 ppm of different gases at 100 ◦C;
(b) Long-time stability of sensors to 5 ppm NO2 [67].

In addition to this, the introduction of GQDs to various functional groups increases
the oxygen vacancy content in the material, thereby significantly boosting the concentration
of free charges and promoting electron transfer on the material’s surface [98]. Chen et al.
demonstrated this phenomenon by developing a N–GQDs/SnO2 nanocomposite for highly
sensitive HCHO sensing, achieving a detection limit of 0.01 ppm [68]. When the N–GQDs
were attached to SnO2 nanosheets, electrons were transferred from the N–GQDs (which
have a low work function) to the SnO2 (which have a high work function), resulting in
the creation of a Schottky barrier between them. Consequently, this led to an increase
in the adsorption of oxygen molecules and the thickening of the electron depletion layer,
potentially causing an increase in resistance as compared to the pristine SnO2. The authors
claimed that the improved sensing properties of the N–GQDs were attributable to the
presence of numerous functional groups, enhanced oxygen adsorption, and the electronic
regulation of the SnO2 nanosheets [68].

4.2. Formation of Heterojunction

GQDs have the ability to create a heterojunction interface which enhances gas-sensing
performance by having different Fermi levels between two components. To achieve a strong
electrical field at this interface, the Fermi levels on either side can be aligned, enabling
the electrons to transfer from the component with a higher Fermi level to the one with a
lower Fermi level. This process facilitates charge transfer and expands the area of charge
depletion, which further improves the gas-sensing properties [74,99]. Figure 4 shows a
schematic illustration of the energy and structures of the GQD-metal oxides junction and
the electron transfer in the nanocomposite.
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equilibrium band diagram for the G/M junction. Φi is the energy barrier to the flow of electrons
(black dots) from the GQDs to the metal oxides, while ΦB is the Schottky barrier height for the
electron flow in the opposite direction. w is the extension of the depletion layer and corresponds to
the bent part of the energy bands Reproduced from [99].

For example, Murali et al. synthesized a NO gas sensor by decorating TiO2 nanoplates
with NGQDs through precursor graphitization by using a hydrothermal approach [86].
At ambient temperature, the TiO2@NGQDs hybrid demonstrated a 12.0% response to
100 ppm NO, marking a 4.8-fold increase as compared to the response of the pure TiO2
nanoplates. The improved gas-sensing capabilities of TiO2@NGQDs, in contrast to TiO2,
can be ascribed to the formation of heterojunctions between TiO2 and NGQDs as illustrated
in Figure 5. The free electrons are transferred from n-type TiO2 with a high work function
of 4.26 eV to p-type NGQDs with low work function of 2.9 eV, while the holes move in
the opposite direction, until equilibrium is achieved. Consequently, an internal electric
field is established at the interface of the TiO2 and NGQDs heterojunction, leading to
band bending in the depletion layers and increased conductivity. Apart from the p–n
heterojunction, Yumin et al. demonstrated benzene gas detection based on a boron-doped
graphene quantum dot (BGQDs)/Ag–LaFeO3 (B/APPH) p–p heterojunction [87]. In air, the
absorbed oxygen molecules can capture electrons from the surface of Ag-LaFeO3, resulting
in low resistance. Upon exposure to benzene gas, the released electrons recombined
with electron holes from the hole accumulation layer and the resistance was increased
significantly. Therefore, the presence of the p–p heterojunction between the BGQDs and the
Ag-LaFeO3 enhanced carrier transport capabilities lowered the operational temperature to
65 ◦C, maintaining a strong sensing response (17.5) and good selectivity.

4.3. Higher Surface Area

Materials with large surface areas are highly preferred for the development of gas
sensors that are compact, cost-effective, energy-efficient, and exceptionally sensitive. GQD-
based sensors featuring enlarged surface areas demonstrate superior capabilities in de-
tecting trace gas concentrations, which makes them particularly suitable for applications
demanding precision and reliability [100]. In a study by Ebrahimi et al., a ZnCo2O4/GQD
coral-like nanostructure exhibited a remarkable response (6.97–100 ppm) toward triethy-
lamine with a low detection limit of 0.43 ppm [60]. The scanning electron microscope
(SEM) images of the ZnCo2O4 and ZnCo2O4/GQDs confirmed that both nanocrystals have
coral-like shapes with porous surfaces. The ZnCo2O4/GQDs exhibited a smaller grain size
compared with the ZnCo2O4. When compared to the coral-like ZnCo2O4 nanostructure, the
composite structure of the coral-like ZnCo2O4/GQDs showcased significantly enhanced
gas-sensing properties. These improvements were attributed to their larger pore volume
(0.46 cm3 g−1) and diameter (32.1 nm) relative to the nanocrystalline ZnCo2O4.
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conversion to the oxygen ion species on TiO2; (c) the most stable configuration of NO gas adsorbed
on to the TiO2 surface; schematic illustration of the energy and structures of the TiO2@NGQDs
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(e) TiO2@NGQDs nanocomposite in air; and (f) exposure to NO. EC, EV, and EF are the conduction
band, valence band, and Fermi energy, respectively [86].

Additionally, Masemola et al. utilized an in situ chemical polymerization method to
synthesize NGQDs/PANI composite sensors [65]. These sensors exhibited a substantially
higher response, up to 23%, as compared to that of pure PANI for 100 ppm ethanol,
as demonstrated in Figure 6a. Moreover, Figure 6b illustrates that both sensors dis-
played linear responses with increasing concentrations of ethanol gas (ranging from 50 to
150 ppm). However, the NGQDs/PANI composite sensor achieved a greater response of
39%. Similar results were obtained for the real-time resistance change as a function of time
when the NGQDs/PANI composite sensor was exposed to 50–150 ppm of ethanol vapors
(Figure 6c). The incorporation of NGQDs in PANI led to enhanced sensitivity and resulted
in the lowest response and recovery times of 85 s and 62 s, respectively, when exposed to
100 ppm of ethanol. This enhancement can be attributed to the higher surface porosity
of the NGQDs/PANI composite, which provided more active sites for the ethanol gas
molecules to adhere to its surface, leading to increased gas adsorption.

4.4. Protecting Layer

Due to their chemical inertness and high stability, GQDs can serve as a protective layer
to prevent the agglomeration of metal oxide nanocomposites and the oxidation of silicon
nanowire-based gas sensors. Yang et al. prepared MoS2/rGO/GQDs ternary hybrids for the
detection of NO2 gas [62]. The aggregation of MoS2 nanoflowers weakens the supporting
effect of the rGO nanosheets and reduces the probability of NO2 gas adsorption on the
heterogeneous interface between the MoS2 nanoflowers and the rGO nanosheets, thereby
causing a decrease in gas sensitivity. To address this issue, the authors introduced GQDs to
provide nucleation sites for the formation of MoS2/rGO nanocomposites, which improved
the homogeneous distribution of the rGO and MoS2 nanosheets and prevented their
agglomeration. Simultaneously, the GQDs also acted as active sites, providing numerous
reaction sites for NO2 gas adsorption and leading to the improved gas-sensing performance
of the hybrids. In comparison to the MoS2/rGO nanocomposite, the addition of GQDs
enhanced sensitivity from 16.8% to 21.1% and from 16.9% to 23.2% when the sensor
was exposed to 30 and 50 ppm NO2 gas at room temperature, respectively (Figure 7).
Moreover, it maintained a consistent response of 23.2% even after three consecutive cycles,
demonstrating the outstanding stability and repeatability of the MoS2/rGO/GQDs hybrid.
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4.5. Enhanced Selectivity

The gas sensor’s selectivity is a crucial aspect, denoting the ability of the sensing
materials to discern and detect a specific gas within a complex mixture of various gases,
which are commonly referred to as interfering gases [5]. In this context, the “target gases”
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are those particular gases which the sensor is designed to identify and measure amidst
the presence of other gases. The doping of GQDs and the formation of composites have
a significant impact on the selective detection of target gases. Rahul et al. developed a
N–GQDs@SnO2 heterostructure that exhibits excellent selectivity toward NO2 over other
interfering gases (SO2, H2S, CO, and NH3) [69]. The sensor’s response to 1 ppm NO2 at
150 ◦C is significantly higher than its responses to other gases at the same concentration,
indicating the robust selectivity of the N–GQDs@SnO2-based NO2 sensor. This superior
selectivity is attributed to the N-doped GQDs, which possess a lower binding energy for
NO2 as compared to pristine. The N atoms incorporated into the GQDs serve as selective
active sites for NO2 adsorption, enabling the sensor to selectively detect NO2 even at low
concentrations as compared to other tested gases. Yumin et al. fabricated boron-doped
GQDs with benzene-imprinted Ag–LaFeO3 to develop a benzene sensor (BI-AL) with a
high response, good selectivity, and low operating temperature [87]. The BI–AL sensor
exhibits a highly selective detection of 1 ppm benzene at 125 ◦C despite the presence of other
interfering gases including formaldehyde, ammonia, acetone, toluene, gasoline, methanol,
and ethanol. The authors claim that several recognition cavities, complementary to benzene
in shape, size, and chemical functionality, can selectively adsorb benzene and thereby
improve the sensor’s selectivity. In their study, they mixed the benzene template (benzene)
with functional monomers (FA) to form a benzene–FA complex through hydrogen bonding.
The resulting complex was subsequently copolymerized with a large excess of crosslinker
(Ag-LaFeO3 sol). Finally, after removing the template, recognition cavities complementary
to benzene molecules were formed and exhibited a high recognition and binding ability for
benzene. This resulted in an improvement in the selectivity of the BI–AL sensor.

4.6. Synergistic Effects

The synergistic effects of GQDs with multiple roles in gas sensing offer enhanced
sensitivity, selectivity, response times, and overall performance of gas sensors as compared
to the single effect. These advancements are crucial for addressing the growing need for
accurate and efficient gas detection in fields ranging from environmental monitoring to
industrial safety. Lee et al. discovered that GQDs could establish a robust interaction with
the target gas while simultaneously forming a heterojunction to enhance electron transfer.
They reported that the GQD@SnO2 nanodome gas sensor demonstrated an improved NO2
gas-sensing performance at room temperature with an extremely low detection limit of
1.1 ppb. This enhancement is attributed to the increased adsorption energy of NO2 gases,
which is primarily influenced by the oxygen-functional groups on the GQDs, as illustrated
in in Figure 8 [61].

According to density functional theory studies, the calculated adsorption energy of
NO2 on a SnO2 surface is approximately −0.52 eV, whereas on hydroxyl groups of GQDs,
the calculated adsorption energy reaches −0.91 eV, which implies a strong interaction
between the functional groups within GQDs and NO2 molecules. Moreover, the formation
of a p–n heterojunction between GQDs and SnO2 facilitates electron transfer from the
n-type SnO2 to the p-type GQDs, expanding the electron depletion layer on the surface
and consequently leading to effective resistance modulation. Similarly, Lv et al. discov-
ered that the highly enhanced NO2 sensing behavior of the synthesized N-GQD@SnO2 is
primarily attributed to the formation of heterojunctions between N–GQDs and SnO2 [66].
Additionally, the presence of doped N atoms on the surface of GQDs provides more active
adsorption sites for NO2 due to the atoms’ strong electrophilic ability. The synergistic
effect induced by the GQDs results in an improved response to 1 ppm NO2, which is
approximately 2.2 times greater than that of pure SnO2 at 130 ◦C.
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structure; (b) the sensing mechanism of GQD@SnO2 nanodomes which shows enhanced NO2 ad-
sorption due to the GQDs; (c) the formation of an electron depletion layer with its electronic band
structure [61].

In another study, Chu et al. confirmed that GQDs played a dual role in significantly
influencing the acetone gas-sensing responses and selectivity of ZnFe2O4–GQDs nanocom-
posites at room temperature [90]. The incorporation of GQDs provided a larger specific
surface area for the ZnFe2O4–GQDs composites as compared to the pristine ZnFe2O4
composites, resulting in more active sites for the adsorption and diffusion of the acetone
molecules and fast carrier transport. As shown in Figure 9a,b, the size of the pristine
ZnFe2O4 ranged from 50 to 250 nm, which was larger than the size of the ZnFe2O4–GQDs
(20–50 nm). Figure 9c indicated that the addition of GQDs in the ZnFe2O4–GQDs composite
impeded the agglomeration of ZnFe2O4 crystals and contributed to the growth of smaller
grains. The HRTEM image of ZnFe2O4–GQDs (Figure 9d) shows the lattice spacing of the
(104) plane of graphitic carbon (about 0.194 nm), affirming the successful incorporation
of GQDs with ZnFe2O4. The resulting nanocomposite exhibited responses of 13.3 and 1.2
to 1000 ppm and 5 ppm of acetone, respectively, and demonstrated quick response and
recovery times (less than 12 s) as shown in Figure 9e.

In addition, GQDs can serve as a protective layer and form a heterojunction to enhance
gas-sensing performance. Li et al. incorporated GQDs with silicon nanowires (SiNWs) to
protect the SiNWs from oxidation and enhance the carrier interaction with analytes [89].
The silicon surface is highly susceptible to oxidation, leading to the formation of SiOx. In
such cases, the oxide layer can impede the transfer of charges between the silicon and
analyte, potentially disrupting the sensing functionality. By preventing oxidation and
preserving the integrity of the SiNWs, GQDs contributed to the improved performance of
the NO2 gas sensor. Furthermore, the GQD/SiNW heterojunction (Figure 9f) facilitated
rapid electron transfer from the composite to the absorbed NO2 molecules due to their
high electron-withdrawing ability and the abundant electron storage capacity in the GQDs
layer. Therefore, in contrast to the bare SiNW array, the GQD/SiNW sensor demonstrated
exceptional sensitivity for detecting trace amounts of NO2 (as low as 10 ppm) at room
temperature. The authors demonstrated that GQDs not only protected the SiNW array from
oxidation but also improved the electron interactions between the detector and analytes,
benefiting both the response and recovery processes during detection.
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Figure 9. (a) The SEM image of pure ZnFe2O4; (b) the SEM image of ZnFe2O4–GQDs; (c) the TEM
images of ZnFe2O4–GQDs; (d) the HRTEM images of ZnFe2O4–GQDs; (e) The response of the
ZnFe2O4–GQDs composite to acetone (1000, 500, 250, 100, 10 and 5 ppm) at room temperature;
(f) Energy band diagram of the GQDs/SiNW heterojunction. Figure 9a–e were adapted from [90]
and Figure 9f was adapted from [89].

5. Performance of GQD-Based Gas Sensors

The following subsections highlight some of the works conducted by various re-
searchers in the detection of different types of gases. The gas-sensing performances of
graphene, GQDs, and other nanoparticle (NP)-based sensors for various gases are discussed.
Table 3 presents comparisons of these sensors based on pivotal electrochemical gas-sensing
parameters including sensitivity, response and recovery times, operating temperature, and
detection limits.

Table 3. The gas-sensing performances of graphene, GQDs, and other NP-based sensors.

Gas Sensor Target Gas Conc. (ppm) Operating Temp. Sensitivity/Response(Ra/Rg) Tres/Trec Ref.

Ce/SnO2
NO2

1 140 ◦C 42.15 - [101]
Pt-MoSe2 20 RT 7.79 32 s/- [102]
GaN QDs 100 RT 52.23% 47/119 s [103]

ZnO@CNF
NH3

50 RT 12.3% 5/18 s [104]
CuO/ZnO 1 RT 1.59 2.3/2.1 s [105]

SnO2/WSe2 5 RT 87.07% 24/40 s [106]

CeO2/ZnSnO3 Ethanol
100 200 ◦C 219.2 12/22 s [107]

ZnO−Au 50 200 ◦C 159 - [108]
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Table 3. Cont.

Gas Sensor Target Gas Conc. (ppm) Operating Temp. Sensitivity/Response(Ra/Rg) Tres/Trec Ref.

GR/In-ZnO
HCHO

10 RT 1891% - [109]
Co-SnO2 30 90 ◦C 163.44 652/475 s [110]

NiS/Ni-ZnO 10 RT 330% 39.4/40.7 s [111]

Au/SnO–SnO2

H2S

100 240 ◦C 85.27% 22/63 s [112]
CuO-ZnO 1 200 ◦C 83.98% 9/160 s [113]
Zn-SnO2 1 70 ◦C 0.35 96/123 s [114]

GQD-
SnO2QNP/ZnO 0.1 RT 15.9% 14/13 s [115]

Au@Co3O4

Acetone

10 250 ◦C 27.05% 233/280 s [116]
Fe–ZnO 100 365 ◦C 105.7 - [117]

In2O3/ZrO2 100 260 ◦C 60.38 1/41 s [118]
Ru-doped SnO2 100 250 ◦C 340 0.58/8.4 s [119]
Zn2SnO4/SnO2 100 250 ◦C 20.16 97/315 s [120]

5.1. Detection of NO2 Gas

Zhang et al. developed a SnO2/graphene nanocomposite, denoted as SnO2–Gr–2, for
the detection of NO2 gas [121]. The monolayer graphene was prepared using the chemical
vapor deposition method and subsequently decorated with SnO2 through a drop-casting
and vacuum annealing process. The SnO2–Gr–2 sensors exhibited a sensitivity nearly four
times that of the pure graphene sensor, and they achieved an almost 11-fold reduction in
recovery time, as depicted in Figure 10a–c, respectively. Pristine graphene is characterized
by longer recovery times (3702 s) due to the strong adhesion of NO2 molecules to its surface.
The hybridization of graphene with SnO2 not only promotes the rapid desorption of NO2,
resulting in shorter recovery times (338 s), but also creates more active adsorption sites for
NO2 at the SnO2–graphene heterojunction. This, in turn, leads to a rapid change in electrical
conductivity, ultimately enhancing the sensing performance. In another study, Lee et al.
successfully decorated SnO2 with GQDs (GQD@ SnO2) for enhanced NO2 gas detection
over a wide operating temperature range from room temperature to 150 ◦C [61]. The GQD@
SnO2 nanodome exhibited a notable response to 5 ppm NO2 gas ((Rg/Ra) − 1 = 4.8) at room
temperature, while the pristine SnO2 nanodomes showed no response, as demonstrated
in Figure 10d. Furthermore, a 30-times higher response to NO2 was obtained at 150 ◦C as
compared to the pristine SnO2 nanodomes. Additionally, the GQDs decoration significantly
improved the recovery time, reducing it from 1247 s for the bare SnO2 nanodomes. The
GQD decoration achieved these enhancements by increasing the potential barrier between
the nanodomes through the enlargement of the electron depletion layer. This amplification
of the gas response was further aided by the formation of a p–n heterojunction between the
GQDs and the SnO2 surface, which improved charge transport and electrical properties. In
comparison to the graphene-based NO2 gas sensor discussed earlier, this study demonstrated
that GQDs with discrete band gaps can effectively enlarge the electron depletion layer on the
surface. This enlargement leads to highly sensitive NO2 sensing with an ultralow detection
limit of 1.1 ppb and quick recovery times (105 s).

5.2. Detection of HCHO Gas

Chen et al. studied the HCHO gas sensing performance of pure ZnO and a graphene-
doped ZnO composite (G–ZnO–2) synthesized by an in situ method [122]. Compared
to the bare ZnO, the G–ZnO–2 exhibited excellent HCHO sensing properties such as
a higher response to 100 ppm HCHO gas (Ra/Rg = 12), faster response/recovery time
(10 s/29 s), and good selectivity at an optimal working temperature of 200 ◦C. In the G–
ZnO–2 composite, the graphene acted as an electron acceptor to increase the depletion layer
of ZnO. Therefore, compared with the pure ZnO, the composite showed a larger change in
resistance and reduced the response time. In addition, the high electrical conductivity of
the graphene and its strong electronic interactions with ZnO promoted the effective transfer
of electrons, thereby enhancing the sensing performance. Other research has investigated
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the utilization of mesoporous ultrathin SnO2 modified with N–GQDs (N–GQDs/SnO2) for
HCHO detection [63]. With the addition of 1.00 wt% N–GQDs, the response (Ra/Rg) of
the SnO2 gas sensor increased from 120 to 361 at 60 ◦C for the detection of 10 ppm HCHO.
Different functional groups on N–GQDs, including carboxyl and amino groups, provided
more adsorption sites for gas molecules and tuned the electrical conductivity and electron
transport properties of the material. When the N–GQDs and SnO2 nanosheets contacted
each other, electrons were transferred from the low work function (N-GQDs = 5.22 eV)
to the high work function (SnO2 = 5.32 eV), and a Schottky barrier was formed between
the N–GQDs and SnO2. Consequently, the electron concentration in the N–GQDs/SnO2
increased, enhancing its gas-sensing performance. Compared to the previously discussed
G–ZnO–2 nanocomposite, the N–GQDs/SnO2 demonstrated several noticeable results,
including a higher response to 10 ppm HCHO with a sensitivity that was three times
higher than that of the pristine metal oxide at a lower operating temperature (60 ◦C) and a
lower detection limit of 0.01 ppm. The enhanced sensing properties of the N–GQDs were
attributed to the abundant functional groups on its surface, larger adsorption sites, and
efficient electronic regulation to SnO2 nanosheets.
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Figure 10. Response curves to different concentrations of the sensors’ NO2 based on (a) graphene
and (b) SnO2–Gr–2; (c) the response and recovery times of the sensors [121] and resistance curves
for 5 ppm NO2 as a function of operating temperature for (d) pristine SnO2 nanodomes and (e) a
GQD@SnO2 nanodome-based gas sensor [61].

Zhang et al. combined AL with B–GQD to enhance the HCHO gas-sensing proper-
ties [95]. The operating temperature decreased from 90 ◦C to 55 ◦C with the incorporation of
the GQDs into AL. Moreover, rapid response times (20–35 s) and recovery times (30–130 s)
were achieved as the HCHO concentration increased from 1 to 30 ppm. The -COOH func-
tional groups on the surface of the B–GQD ionized into COO- and H+, which then reacted
with HCHO gas to form electrons, thus increasing the gas response (Rg/Ra) as shown
in Figure 11a. When the B–GQD was hybridized with AL, the B–GQD formed a bridge
between the AL grain boundaries, facilitating electron transfer when exposed to HCHO
gas molecules and resulting in an enhanced response (Figure 11b).
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5.3. Detection of NH3 Gas

Srivastava et al. explored the NH3 gas-sensing properties of pure few-layer graphene
(PFLGr) and boron-doped few-layer graphene (BFLGr) nanosheets through a low-pressure
chemical vapor deposition method [123]. The response values for the BFLGr and PFLGr
sensors were 8.92% and 2.64%, respectively, for 32 ppm of gas as shown in Figure 12a,b. This
result implies that boron doping in graphene improves the interaction of the nanosheets
with the NH3 gas molecules. The response time for the BFLGr sensor was 0.85 s, which
is much less as compared to the undoped PFLGr sensor (3.56 s) shown in Figure 12c,
while the recovery times for the sensors were 36.31 s and 48.24 s, respectively. It can be
clearly seen from Figure 12d that the BFLGr sensor exhibits high repeatability over three
response–recovery cycles. The higher adsorption energy for NH3 on BFLGr (−0.50 eV)
is attributed to the strong interaction between the electron-deficient boron atom and the
electron-offering N atom of the NH3 molecule as compared to that of PFLGr (−0.24 eV).

Indium et al. fabricated a new ternary nanocomposite based on the conducting
polymer PANI, hollow In2O3 nanofiber, and N–GQD as a NH3 gas sensor using in situ
chemical oxidative polymerization [124]. The response of the PANI/N–GQD/hollow In2O3
nanofiber sensor, with a 20 wt% loading of N–GQD-coated hollow In2O3 nanofiber, reached
15.2 when exposed to 1 ppm NH3, marking an increase of over 4.4 times as compared to
the PANI sensor (Figure 12e). This ternary composite sensor has demonstrated exceptional
sensitivity in NH3 detection within a concentration range of 0.6 ppm to 2.0 ppm at room
temperature, a crucial capability for the early detection of hepatic or kidney diseases
through human breath analysis. The highly sensitive detection of low concentrations of
NH3 can be attributed to the p–n heterojunctions formed between the p-type PANI and n-
type N–GQD-coated hollow In2O3 nanofibers. Notably, the PANI/N–GQD/hollow In2O3
nanofiber sensor outperforms the previously described PFLGr and BFLGr sensors in NH3
sensing at room temperature. This superior performance can be attributed to the presence
of oxygen-containing defects and the extensive special surface area of N–GQDs, which
enhance the contact sites with PANI and provide a considerable number of adsorption sites
for NH3 gas.
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Figure 12. Response vs. time plots for (a) PFLGr and (b) BFLGr for 16 to 256 ppm of NH3; (c) response
and recovery plot for the BFLGr sensor for 32 ppm of NH3; (d) repeatability plot for BFLGr for
256 ppm of NH3 [123]; (e) the response curves of the PANI polymer matrix, 20 wt% PANI/hollow
In2O3 nanofiber, and 20 wt% PANI/GQD/hollow In2O3 nanofiber composites with an exposure of
1 ppm NH3 at room temperature [124].

5.4. Detection of H2S Gas

Shao et al. developed a GQD-decorated hierarchical SnO2 quantum NPs (SnO2QNP)/
ZnO nanostructures via a self-assemble strategy for the detection of H2S gas [115]. In
comparison to bare ZnO and SnO2/ZnO sensors, the GQD–SnO2QNP/ZnO sensor demon-
strated a significantly elevated response (S = 15.9 for 0.1 ppm H2S) and a rapid re-
sponse/recovery time (14/13 s), along with notable selectivity toward H2S over other
interfering gases. This enhancement is primarily contributed to the strong synergistic effect
and p–n heterojunction between the p-type GQD and the n-type SnO2 and ZnO, effectively
amplifying the resistance variation due to the change in oxygen adsorption. The combined
effects of GQD/SnO2QNP/ZnO heterointerfaces contributed to the improvement of the
selectivity of the sensors, indicating considerable potential for non-invasive exhaled diag-
nosis. Hsu et al. prepared CuO-doped ZnO nanofibers (CuO/ZnO NFs) using a sol-gel
method and an electrospinning method for H2S gas-sensing studies [113]. At 200 ◦C, the
CuO/ZnO NFs exhibited a higher gas response (83.98%) when exposed to 1 ppm H2S
compared to that of the pristine ZnO NFs (25.79%), with good recovery and reproducibility.
During the oxidation–reduction process, when the CuO-doped ZnO gas sensing materials
are exposed to the air, the oxygen molecules can easily adsorb onto the surface and cap-
ture free electrons to form O2

− species. The O2
− species can then effectively react with
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the contacted H2S gas molecules, thereby facilitating the gas-sensing performance of the
CuO/ZnO NFs.

5.5. Detection of Ethanol Gas

Rahimi et al. Drop-casted GQDs synthesized through the pyrolysis of citric acid, onto
a ZnO nanorod (ZnO NR) thin film to enhance the sensitivity of ZnO NR toward ethanol
gas [93]. It was observed that the sensitivity of the GQD–ZnO NR thin film (approximately
75%) is significantly higher than that of the bare ZnO NR thin film (around 10%) when
exposed to 500 ppm ethanol gas. The authors proposed two major roles of the GQDs
contributing to this enhancement: (1) GQDs could promote the adsorption of oxygen and
ethanol gas molecules, and (2) GQDs could provide a path for transfering electrons by
providing interconnections among the ZnO nanorods. Due to their high electron mobility,
GQDs can facilitate the transport of charge carriers, thus improving their gas sensitivity. Lei
et al. incorporated Au with ZnO to optimize and enhance the electron transfer efficiency
of the mesoporous ZnO nanospheres during sensing of ethanol gas [108]. The prepared
Au–ZnO nanosphere demonstrates its highest response to ethanol (approximately 159 for
50 ppm) at 200 ◦C. The enhanced sensor performance is attributed to the open mesopores
and the textured surface of the hybrids which facilitate the adsorption and desorption of
ethanol molecules on the sensing layers. The addition of Au nanoparticles produced more
activated oxygen species on the surface of the mesoporous ZnO, which could adsorb more
ethanol molecules to participate in the catalytic reaction. Therefore, the strong spillover
effect of the Au nanoparticles increases the electron transfer rate and promotes surface
catalytic oxidation, contributing to the improved performance of the sensor. Moreover, the
authors compared the gas-sensing performance of the ZnO–Au that was synthesized using
different methods. The optimal responses obtained for the mesoporous ZnO−Au prepared
by NaBH4 reduction, photoreduction, and H2 reduction are 107, 159, and 65, respectively.
This suggests that the size of Au nanoparticles can be easily tuned by changing reduction
strategies, and that the size effect plays a crucial role in gas sensing, thereby influencing
various catalytic activity and grain aggregation.

5.6. Detection of Acetone Gas

Chu et al. prepared SnO2/GQDs nanocomposites via the solvothermal method to
detect acetone vapor [91]. They observed that a strong response to 1000 and 0.1 ppm
acetone reached 120.6 and 1.3, respectively, whereas the response of pure SnO2 to 1000 ppm
acetone was only 2.3. The authors proposed that the improved response could be attributed
to the establishment of a heterojunction between the SnO2 and GQDs. The incorporation
of GQDs into the SnO2 matrix notably enhanced the electronic conduction within the
composite. Additionally, the defects and oxygen-containing groups present on the surface
of GQDs served as effective adsorption sites for acetone gas molecules, thereby amplifying
the responses of the SnO2/GQDs composites. Lu et al. employed a facile ZnSn(OH)6-
sacrificial template method to fabricate mesoporous hollow Zn2SnO4/SnO2 microboxes
for acetone gas sensing [120]. Compared with the pure SnO2 sensor, the Zn2SnO4/SnO2
sensor displayed not only a two times higher response (20.1) toward 100 ppm acetone
but also excellent selectivity and stability at the optimal operating temperature of 250 ◦C.
The enhanced sensing performance can be mainly attributed to the heterojunction formed
between the SnO2 and Zn2SnO4 and the unique “mesoporous hollow structure”. Due to
the higher conduction band edge potential of the Zn2SnO4 as compared to that of SnO2,
electrons from the Zn2SnO4 migrate to the conduction band of the SnO2 until the system’s
Fermi level reaches equilibrium. This process results in the separation of charges at the
interface, providing more electrons to oxygen than pure SnO2 would. Consequently, a
more noticeable change in resistance occurs, leading to an enhanced gas-sensing response.
Moreover, the distinctive “mesoporous hollow structure” offers significant advantages
for promoting acetone gas diffusion within the Zn2SnO4/SnO2 sensor, leading to more
efficient absorption of acetone molecules on both sides of the porous shell of Zn2SnO4/SnO2
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microboxes. This enhances their reactivity at the surface level, consequently improving
gas sensitivity.

6. Current Challenges of GQD-Based Gas Sensors

Over the past few years, researchers have achieved some advancements; however,
GQD-based gas sensors still face significant challenges in terms of industrial manufac-
turing and the mitigation of air pollutants. Although GQDs show promise in terms of
sensitivity, improving their sensitivity to trace levels of target gases is an ongoing challenge,
particularly for applications requiring ultralow detection limits. Furthermore, gas-sensing
stability is an important index for practical gas sensors. Addressing the influence of en-
vironmental factors, such as humidity, temperature, and interference from other gases
on the sensor’s performance is critical for the reliable operation and long-term stability
of GQD-based sensors. In particular, high humidity can lead to the absorption of water
molecules on the surface of the sensor, potentially altering its electrical properties and inter-
fering with the gas-detection process. Prolonged exposure to environmental factors, such
as humidity and temperature fluctuations, can affect the long-term stability of GQD-based
sensors, which may lead to sensor drift or degradation. The development of encapsula-
tion techniques, protective coatings, and robust housing for GQD-based sensors can help
to maintain their performance and extend their operational lifespan, especially in harsh
environments. Finally, bridging the gap between research and commercialization, as well
as establishing standardization protocols for GQD-based gas sensors, are essential for these
sensors’ widespread adoption in industrial and consumer markets. Addressing these chal-
lenges is fundamental for unlocking the full potential of GQD-based gas sensors for various
applications, including environmental monitoring, industrial safety, and healthcare.

In addition, NPs also exhibit limitations in gas-sensing applications. One significant
limitation is their susceptibility to agglomeration because NPs tend to cluster together,
affecting their dispersibility and, consequently, the uniformity of the sensing material.
This aggregation can lead to decreased surface area and hinder effective interaction with
gas molecules, impacting the sensor’s overall performance. Additionally, issues related
to stability, reproducibility, and the potential toxicity of certain nanoparticles can pose
challenges in long-term and widespread use for gas-sensing purposes. Addressing these
limitations is crucial for advancing the effectiveness and reliability of nanoparticle-based
gas sensors.

7. Conclusions and Future Perspectives

Increasing urban population, industrial emissions, and vehicle exhaust emissions are
the primary sources of air pollutants that regularly harm the natural environment. It is
essential to monitor these air pollutants continuously to prevent damage to human health
and environmental deterioration. Effective, existing monitoring instruments, however,
tend to be time-consuming, expensive, and seldom-employed for real-time monitoring. In
recent years, significant research has been conducted within the scientific community to
develop an ideal environmental sensor, bridging the gap between theoretical concepts and
practical implementation. In this review, we have focused on the latest developments of
GQD-based gas sensors, along with the construction methods of sensing materials. The
sensing mechanisms of GQD-based gas sensors are presented, and the roles of GQDs in
enhancing gas-sensing performance are comprehensively discussed. The quantum confine-
ment behavior and electron modification of GQDs have become significantly appealing,
particularly when compared to graphene. Although research on GQD-based gas sensors
has made significant progress in recent years, additional efforts are needed to improve the
key detection parameters, such as sensitivity and selectivity.

To enhance the performance of GQD-based gas sensors, it is crucial to determine their
optimal sizes and shapes. For instance, increasing the surface-to-volume ratio by tailoring
the morphology of the sensing materials can effectively boost the specific surface area.
The incorporation of GQDs with noble metals, other oxides, polymers, and metal-organic
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frameworks can enhance selectivity, sensitivity, thermal stability, and response and recovery
times. Consequently, the proper selection of dopants and additives can effectively reduce
cross-sensitivity to environmental factors, such as humidity, and ultimately improve the
overall sensing performance. Furthermore, it is essential to emphasize the significance
of simulation-based theoretical investigations, such as density functional theory, in order
to advance our understanding of the sensing mechanisms. This deeper understanding
will facilitate the development of GQD-based gas-sensor compositions that offer enhanced
precision for tuning their properties, resulting in substantial improvements. Moreover,
researchers should extensively explore the potential of GQD-based sensors for human
volatomics-based noninvasive, painless, and point-of-care disease diagnosis and health
monitoring. Surprisingly, research on GQD-based gas sensors for human health monitoring
is scarce, making it a subject worthy of further investigation. In addition, incorporating
neural networks and artificial intelligence (AI) into GQD-based gas sensors is an exciting
prospect in the field of gas sensing. The incorporation of neural networks and AI algorithms
has the potential to revolutionize the way GQD-based gas sensors function. These advanced
technologies offer real-time data analysis, pattern recognition, and adaptive response
mechanisms, ultimately leading to improved accuracy, sensitivity, and selectivity. We
hope that this review provides guidance for future research on functionalized GQDs and
GQD-based nanocomposites for gas sensing applications.
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