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Abstract: Heteroepitaxial growth of high Al-content AlGaN often results in a high density of thread-
ing dislocations and surface hexagonal hillocks, which degrade the performance and reliability of
AlGaN-based UVC light emitting diodes (LEDs). In this study, the degradation mechanism and
impurity/defect behavior of UVC LEDs in relation to the hexagonal hillocks have been studied
in detail. It was found that the early degradation of UVC LEDs is primarily caused by electron
leakage. The prominent contribution of the hillock edges to the electron leakage is unambiguously
evidenced by the transmission electron microscopy measurements, time-of-flight secondary ion mass
spectrometry, and conductive atomic force microscopy. Dislocations bunching and segregation of
impurities, including C, O, and Si, at the hillock edges are clearly observed, which facilitate the
trap-assisted carrier tunneling in the multiple quantum wells and subsequent recombination in the
p-AlGaN. This work sheds light on one possible degradation mechanism of AlGaN-based UVC LEDs.

Keywords: UVC lighting emitting diodes; aluminum gallium nitride; reliability; hillock; threading
dislocations; current leakage

1. Introduction

Over the past few years, AlGaN-based ultraviolet light-emitting diodes (LEDs) emit-
ting between 260 nm and 280 nm (near-UVC) have the potential to supersede conventional
mercury lamps in sterilization and disinfection fields, due to their various advantages
of miniaturization, short switch times, low operation power, and environmental friendli-
ness [1–4]. Especially, the worldwide spread of the SARS-CoV-2 virus has further raised
demands for improving the performance and reliability of UVC LEDs to boost market
penetration [5].

However, so far, the lifetime of UVC LEDs can only reach a few thousand hours [1,6]. The
degradation of UVC LEDs is closely attributed to a high density of threading dislocations
(TDs) [7,8], the generation, and the diffusion of point defects [9,10]. In fact, since large
lattice mismatches and thermal-expansion-coefficient mismatches between the AlGaN
films and the substrate typically lead a stress accumulation [11], the formation of massive
micron-scale hillocks on the AlGaN surface for strain relaxation has been proposed as
an important origin in device degradation [12,13]. The rough hexagonal hillock defects
and resultant in-plane phase separation due to weak surface migration of Al atoms on the
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surface have been demonstrated to degrade the luminescence of AlGaN multiple quantum
wells (MQWs) and monochromaticity of the LEDs [14,15]. It has also been confirmed
that the local overheating caused by the current leakage around the hillock led to an
abrupt catastrophic degradation of the LEDs after a long-time constant current stress [12].
Furthermore, the growth kinetics of the hillocks is believed to affect the migration of
both TDs and point defects, which also impacts the incorporation of impurity adatoms
around the hillocks [16,17], further enhancing the non-radiative recombination component
and deep-level luminescence, which then decreases the quantum efficiency of the UVC
LEDs. Nevertheless, these hillock-related degradation mechanisms for the UVC LEDs
remain unresolved.

In this work, the impurity/defect behavior and degradation mechanism of the UVC
LEDs, in close relation to the hexagonal hillocks, have been intensively investigated. The
significant optical degradation of UVC LEDs during the early stage of aging is found to be
strongly related to electron leakage. The electroluminescence (EL), current–voltage (I–V)
measurement, transmission electron microscopy (TEM), time-of-flight secondary ion mass
spectrometry (Tof-SIMS), and conductive atomic force microscopy (C-AFM) results reveal
that the hillock edges contribute most to the electron leakage, which involves substantial
dislocations bunching and impurity segregation at the hillock edges.

2. Experiment

The UVC-LED samples were grown on a c-plane sapphire substrate by metal-organic
chemical vapor deposition starting with a 4 µm thick AlN buffer layer, followed by 300 nm
thick AlN/Al0.85Ga0.15N superlattice (SL) transition layers, and then, 3 µm thick AlGaN
films with step-graded Al mole fractions from 0.75 to 0.5. The active region consisted of
five-loop Al0.4Ga0.6N/Al0.52Ga0.48N MQWs. The p-side comprised a 25 nm thick Mg-doped
Al0.6Ga0.4N electron blocking layer (EBL), a 50 nm thick p-AlxGa1−xN (x from 0.4 to 0)
grading layer, and a 10 nm thick p-GaN contact layer on the top. After epitaxial growth and
chip-processing, the UVC LED clips were flip-chipped mounted at a size of 500 × 250 µm2.
The schematic production procedure of the UVC LED sample is displayed in Figure 1. In
order to investigate the degradation behavior during accelerated aging of the LEDs, the
devices were submitted under a constant current of 100 mA (current density ~190 A/cm2)
at room temperature for 4 h. To explore the impurity/defect behavior associated with
hillocks, a 400 nm thick Si-doped n-Al0.43Ga0.57N film was grown separately on a similar
3 µm thick AlGaN template.
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Figure 1. The schematic production procedure of the UVC LED sample.

The cathodoluminescence (CL) mappings, in combination with scan electron mi-
croscopy (SEM), was carried out by FEI Quanta 400 FEG with a Gatan MonoCL3+ system at
room temperature, under an acceleration voltage of 10 kV. The EL spectra of the LEDs were
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collected by an MPI CORPORATION U-P2 system with an integrating sphere. The electri-
cal degradation of the LEDs was investigated by a KEITHLEY semiconductor parameter
analyzer. The micro-Raman scattering was carried out by LabRAM HR in a backscattering

geometry and Z(XX)
−
Z configuration at room temperature, with a 532 nm Ar+ laser beam

as an excitation source focusing on the (0001) surface of n-AlGaN sample, which keeps
the incident and back-scattered polarization photons parallel. The charge-coupled-device
camera was used for recording the Raman spectrum by detecting the E2 (GaN-like) and
A1(LO) photon modes. The cross-sectional bright-field TEM images were measured with a
200-kilovolt Talos F200X STEM.

The impurity depth profiles of C, O, and Si of n-AlGaN sample were detected by ION
Tof.SIMS5-100 system. For the Tof-SIMS measurement, Cs+ incident ions were applied to
sputter the surface of the n-AlGaN sample at 45◦ and a Bi+ liquid metal gun was used for the
analysis. The sputtering rate was equipped with 82 nm/h and the sputtering depth almost
penetrated the n-AlGaN layer on the top. The depth and lateral resolution were less than
1 nm and 100 nm, respectively. The morphology and corresponding current images of the
n-AlGaN sample were acquired by operating Dimension ICON AFM in contact mode with
a Pt-coated tip and tunneling amplifier module. We deposited a Ti/Al/Ti/Au electrode
on the sample surface, which was connected with the metal substrate using a silver paste,
to form the Ohmic contact. It was interfaced with the tip-to-sample Schottky contact to
compose an external current circuit. The tip scanned over one hillock structure at a rate
of 0.5 Hz, and a forward 5 V bias, which meant a negative sample-to-tip voltage (−5 V)
for the n-type sample was applied across the hillock. The current image was recorded by
tunneling the amplifier module.

3. Results and Discussion
3.1. Carrier Overflow in the Initial UVC LED

Figure 2a shows the SEM image of the p-side surface of the initial UVC LED, from
which several hillocks with a diagonal ranging from submicron to several micrometers
can be observed. The density of hillocks on the surface is ~1.6 × 105 cm−2. These surface
hillock defects are caused by the accumulated compressive strain during the AlGaN growth
and also the spiral growth induced by TDs [17]. Figure 2b gives the panchromatic CL
image of one representative hillock. The hillock down-edges are dark in the CL images,
indicating the presence of high-density point defects or dislocations that act as non-radiative
recombination centers. Monochromatic spatially resolved CL images were further taken to
observe the emission distribution around the hillock at wavelengths 274 and 297 nm. As
shown in Figure 2c,d, the monochromatic CL maps obtained at the lower energy (297 nm)
and higher energy (274 nm) are almost complementary, providing the evidence that the
in-plane phase separation exists in AlGaN, with the hillock top-edge and the hillock-free
area showing a non-uniform light emission and composition inhomogeneity.

As shown in Figure 3a, the electroluminescence (EL) measurements of the initial UVC
LED were carried out at different injected currents. The emission peak between 250 nm
and 300 nm shows an asymmetry, which can be identified as a dominant emission Peak1
at 274 nm and a lower energy emission Peak2 at around 297 nm. In combination with the
CL results in Figure 2c,d, Peak1 in the EL spectra originates from the native luminescence
in the hillock-free areas, while Peak2 corresponds well to the intrinsic emission at the
hillock top edges. Moreover, it was noticed that a broad emission band (Peak3) centered
around 330 nm gradually appears as the current increases. Several physical processes
might be involved in the emission of Peak3: (i) the deep-level recombination in the active
region [18], (ii) the field-enhanced carriers escaping to the last barrier, and then, deep-level
recombination [19], (iii) the carriers overshoot across the EBL to p-AlGaN layers, and
then, recombination [20], (iv) the trap-assisted tunneling (TAT) of carriers into the EBL or
p-AlGaN, and the subsequent deep-level transitions [10,21,22].



Nanomaterials 2023, 13, 1562 4 of 11Nanomaterials 2023, 13, x FOR PEER REVIEW 4 of 11 
 

 

 
Figure 2. (a) SEM image of the p-side surface of the initial UVC LED surface. (b) Room temperature 
panchromatic CL image of one representative hillock under an acceleration voltage of 10 kV. Mon-
ochromatic spatially resolved CL images of the same hillock area were acquired at (c) 274 nm and 
(d) 297 nm. 

As shown in Figure 3a, the electroluminescence (EL) measurements of the initial UVC 
LED were carried out at different injected currents. The emission peak between 250 nm 
and 300 nm shows an asymmetry, which can be identified as a dominant emission Peak1 
at 274 nm and a lower energy emission Peak2 at around 297 nm. In combination with the 
CL results in Figure 2c and d, Peak1 in the EL spectra originates from the native lumines-
cence in the hillock-free areas, while Peak2 corresponds well to the intrinsic emission at 
the hillock top edges. Moreover, it was noticed that a broad emission band (Peak3) cen-
tered around 330 nm gradually appears as the current increases. Several physical pro-
cesses might be involved in the emission of Peak3: (i) the deep-level recombination in the 
active region [18], (ii) the field-enhanced carriers escaping to the last barrier, and then, 
deep-level recombination [19], (iii) the carriers overshoot across the EBL to p-AlGaN lay-
ers, and then, recombination [20], (iv) the trap-assisted tunneling (TAT) of carriers into 
the EBL or p-AlGaN, and the subsequent deep-level transitions [10,21,22]. 

 
Figure 3. (a) EL spectra of the initial UVC LED at different injected currents. (b) The intensity ratio 
between the dominant emission (Peak1) and lower energy emission (Peak3). (c) Correlation between 
the emission intensity of Peak1 and injected current. 

Figure 2. (a) SEM image of the p-side surface of the initial UVC LED surface. (b) Room tempera-
ture panchromatic CL image of one representative hillock under an acceleration voltage of 10 kV.
Monochromatic spatially resolved CL images of the same hillock area were acquired at (c) 274 nm
and (d) 297 nm.

Nanomaterials 2023, 13, x FOR PEER REVIEW 4 of 11 
 

 

 
Figure 2. (a) SEM image of the p-side surface of the initial UVC LED surface. (b) Room temperature 
panchromatic CL image of one representative hillock under an acceleration voltage of 10 kV. Mon-
ochromatic spatially resolved CL images of the same hillock area were acquired at (c) 274 nm and 
(d) 297 nm. 

As shown in Figure 3a, the electroluminescence (EL) measurements of the initial UVC 
LED were carried out at different injected currents. The emission peak between 250 nm 
and 300 nm shows an asymmetry, which can be identified as a dominant emission Peak1 
at 274 nm and a lower energy emission Peak2 at around 297 nm. In combination with the 
CL results in Figure 2c and d, Peak1 in the EL spectra originates from the native lumines-
cence in the hillock-free areas, while Peak2 corresponds well to the intrinsic emission at 
the hillock top edges. Moreover, it was noticed that a broad emission band (Peak3) cen-
tered around 330 nm gradually appears as the current increases. Several physical pro-
cesses might be involved in the emission of Peak3: (i) the deep-level recombination in the 
active region [18], (ii) the field-enhanced carriers escaping to the last barrier, and then, 
deep-level recombination [19], (iii) the carriers overshoot across the EBL to p-AlGaN lay-
ers, and then, recombination [20], (iv) the trap-assisted tunneling (TAT) of carriers into 
the EBL or p-AlGaN, and the subsequent deep-level transitions [10,21,22]. 

 
Figure 3. (a) EL spectra of the initial UVC LED at different injected currents. (b) The intensity ratio 
between the dominant emission (Peak1) and lower energy emission (Peak3). (c) Correlation between 
the emission intensity of Peak1 and injected current. 

Figure 3. (a) EL spectra of the initial UVC LED at different injected currents. (b) The intensity ratio
between the dominant emission (Peak1) and lower energy emission (Peak3). (c) Correlation between
the emission intensity of Peak1 and injected current.

A plausible candidate for the origin of Peak3 is the overflow of the carriers from the
MQWs towards the p-side, due to its presence only at higher injected currents, which
can also be demonstrated by the variation in the intensity ratio between Peak1 and Peak3
(IPeak1/IPeak2), as the injected current increases. As shown in Figure 3b, the intensity ratio
increases at first, then, tends to saturate at 5 mA and subsequently decreases, verifying a
growing trend in the electron-escaping probability from the active region at higher current
levels. In fact, as shown in Figure 3c, the quasi-linear dependence of the dominant emission
(Peak1, 274 nm) on the injected current has clearly evidenced that the classical band-to-
band transition dominates the emission of Peak1 [23]. Therefore, Peak3 at high injected
currents is considered to result from the carriers overflow rather than from the deep-level
recombination in the active region, as mentioned in processes (i) and (ii) above.
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3.2. Electron Leakage in the Aged UVC LED

To further clarify whether the overflow of the carriers was brought by weak barrier
confinement (iii) or TAT (iv), the current–voltage (I–V) measurements of the initial and
aged UVC LEDs were performed. As shown in Figure 4a, three current regions can be
identified in the I–V curves: region1—the forward bias region below the threshold voltage
(from 0 V to 3.5 V); region2—the reverse bias region; region3—the high-forward bias region
(above 3.5 V). It is obvious that both the reverse leakage and forward subthreshold current
remarkably increase after stressing for 4 h under a constant current of 100 mA.
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forward subthreshold current and optical power on aging time.

We further established the corresponding physical models for the three regions above,
as shown in Figure 3b. For region1, the forward subthreshold current was typically caused
by TAT, that the traps in the MQWs or EBL could assist electrons from escaping towards
the p-side, which can be modeled as the superposition of an ideal diode and a parallel
resistor [24] (process1 in Figure 4b). We found in Figure 4a that the forward subthreshold
current already existed before stress, indicating the presence of TAT-related defects within
the as-grown AlGaN MQWs. Therefore, it can be inferred that trap-related electron leakage
was the main cause of the parasitic emission of Peak3 in Figure 3a. The increase in the
forward subthreshold current after stress is mostly related to the activation of these as-
grown defects. With the L–I curves measured on the UVC LEDs during stress (Figure 4c),
Figure 4d shows the dependence of the forward subthreshold current and optical power of
the LED on the aging time. With increasing aging time, the subthreshold current rapidly
increases, while the optical power dramatically decreases. Thus, it can be concluded that
the significant degradation of UVC LEDs in the early stage of aging is primarily caused by
electron leakage.

However, as shown in Figure 4c, it is noteworthy that the optical power decreases
more significantly and the slope of the logarithmic L–I curve changes from 1 towards
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2 at the lower injected currents (<10 mA) during stress. This indicates that the stress
leads to a rise of non-radiative recombination centers, with a resultant rise in the non-
radiative recombination component [25,26]. Thus, the optical degradation is not only
related to the electron leakage but also involved in the non-radiative recombination. The
enhanced non-radiative recombination is probably associated with the point defects in the
active region, which will induce an increase in the reverse leakage current, as exhibited in
Figure 4a. Process2, in Figure 4b, clarifies the dominant reverse parasitic leakage paths,
with trapped electrons transitioning from the p-side valence band to the n-side conduction
band by the thermal activation and multistep tunneling through deep-level states [27].
Additionally, process3 (Figure 4b) corresponds to the diffusion-recombination current
under the thermionic field in a high-forward bias (region3 in Figure 4a). The slight drop in
driving voltage after stress is attributed to the decrease in the p-side contact resistivity [28]
or the activation of Mg acceptors in p-AlGaN [10].

To study the origin of the electron leakage, we compared the normalized integrated CL
spectra in the hillock area on the UVC LEDs before and after stress. As shown in Figure 5,
the weak parasitic peak at 260 nm in the CL spectra originated from the band-to-band
transition of the underlying n-AlGaN. The dominant emission includes the main peak at
274 nm and a weak shoulder at 297 nm, corresponding to the emission from the hillock-free
area and hillock top-edges, respectively. The additional broad emission band at 410 nm
typically originates from the deep-level recombination, which is involved in (VI I I)

3− and
VI I I complex related transitions of n-AlGaN [29]. A careful comparison between the CL
spectra and EL spectra (Figure 3a) revealed the absence of the emission centered around
330 nm in the CL spectra. This also illustrates that the parasitic emission at around 330 nm
in the EL spectra is mainly attributed to the electron leakage into the p-side, under the
electric field, since CL excitation only occurs along the penetration path with the emission
intensity closely related to the layer thickness. Moreover, it is interesting that the near-band
emission intensity of the CL spectra remains stationary after stress, while the intensity
of the shoulder at 297 nm exhibits an obvious drop. Since the lower energy emission of
297 nm is from the hillock top edges, as shown in Figure 2d, it is considered that the electron
leakage is closely related to the hillock top edges.
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3.3. Electron Leakage at the Hillock Edge

In order to investigate the contribution of the hillock edges to the electron leakage,
micro-Raman scattering, TEM, Tof-SIMS, and C-AFM measurements were performed on
samples with n-AlGaN on top. As plotted in Figure 6a, the Raman spectrum of photons
of the n-AlGaN sample displays the E2 (GaN-like) mode at about 604.9 cm−1. It has been
reported that the phonon frequency of unstrained thick Al0.55Ga0.45N (average Al content
of our sample) was located at 598.5 cm−1 [30]. The relationship between the E2 (GaN-
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like) phonon frequency shift ∆ω and the effect of biaxial stress σxx can be formulated as
follows [31]:

σxx =
∆ω
2.56

(1)

In contrast to the unstrained Al0.55Ga0.45N layer, the frequency right shift of our sample
indicates the existence of a compressive stress of 2.5 GPa in the epitaxial layers.
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Figure 6. (a) Raman spectrum of the n-AlGaN sample. Cross-sectional TEM images of a hillock in the

n-AlGaN sample taken with the diffraction vector (b) g = 0002 and (c) g = 10
−
10. Cross-sectional

TEM images of (d) position1 and (e) position2 showing the evolution of hillock and dislocations.

Such a large total compressive stress has been partly released by the generation of
hillocks and dislocations. Figure 6b,c show the bright-field TEM images of one hillock

with g = 0002 and g = 10
−
10, respectively, from which dislocations with Burgers vectors of

type a and (a + c) are mainly distributed in AlGaN layers. It can be seen that the AlGaN
layer on the SL transition layers presents a sharp interface in the pre-growth stage, yet
then, roughens by forming hillock grains as the total strain energy increases with thickness.
As shown in position1 (Figure 6d), grain1 and grain2 have been gradually generated to
relax the compressive strain. As the grain grows, the dislocations would bend towards the
side facet of the grain (see yellow arrows), leading to substantial TDs bunching at the step
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edges. It is noteworthy that the grain coalescence has produced a larger hillock, the center
of which corresponds to the grain boundary and generates a large number of fresh TDs
due to the inherent twist or tilt of adjacent grains [11]. These newly formed TDs that are
the channel of strain relaxation will cause leakages and finally affect the reliability of the
device. As shown in position2 in Figure 6e, the further growth of the hillock would also
drive the TDs bending and bunching towards the side facet due to the mirror force, which
is consistent with the area of the lower luminescence and higher leakage.

The impurities incorporation of C, O, and Si is also found to correlate very well with
the hillock. As shown in the Tof-SIMS mappings in Figure 7a–c, impurities are found to
segregate around the hillock edges. On the one hand, the strain field of TDs that bunch at
the hillock edges can promote impurities to incorporate around [16]. On the other hand,
the impurity incorporation should be kinetically favored at the hillock edges due to their
abundant dangling bonds [32]. Moreover, the edge-type dislocations that are the primary
dislocations bunching at the hillock edges can also provide additional dangling bonds [33].
Therefore, it can be presumed that more point defects are introduced at the hillock edges,
locally favoring the formation of parasitic leakage paths.
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and position B in (e).

The C-AFM was employed to further investigate the role of impurity segregation on
the local electrical property. The surface morphology and corresponding current mappings
of the hillock in a 5 V forward bias are displayed in Figure 7d and e, respectively. Under
forward bias, the dark region in the current mapping proves higher current conduction
at the hillock edges. To avoid the influence of topographic contrast on the real current
signals, the local I–V curves were taken from position A at the hillock edge and position B
in the hillock-free area. As shown in Figure 7f, position A conducts rapidly at a forward
bias higher than 1 V and shows an obvious leakage current at reverse bias, while position
B has poor electrical conductibility, further evidencing that substantial conductive and
leakage centers exist at the hillock edges. These high conductive and leakage centers are
considered to be related to the impurities and TDs at the hillock edges, which lead to a
rise in trap states in the MQWs and EBL, effectively enhancing the TAT process at the
hillock edges. During the early aging of UVC LEDs, the activation of these point defects
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promotes an increased electron leakage, explaining the rise in the forward subthreshold
current (Figure 4a) and the optical degradation of the hillock top edges (Figure 5).

In fact, several groups have reported the transition mechanisms for the parasitic
emission centered around 3.7 eV in AlGaN, including the conducting band to Mg-related
deep levels [22], and V3+

N to neutral Mg-acceptors [34] or valance band [35]. Since the
bandgap energy of the Al0.60Ga0.40N EBL and p-Al0.40Ga0.60N layer is 4.84 eV and 4.28 eV,
respectively, considering the binding energy of V3+

N state in Al0.60Ga0.40N and Al0.40Ga0.60N
is around 0.7 eV and 0.6 eV [36], respectively, while the binding energy of Mg-related
acceptors is 0.3 eV–0.4 eV in AlxGa1−xN (x from 0.27 to 0.7) [34], we can speculate that
the luminescence around 3.7 eV in this work is mainly from the V3+

N to the valance band
transition in the p-AlGaN.

4. Conclusions

In conclusion, the hillock-related degradation mechanism of 274 nm in UVC LEDs was
investigated. It revealed that huge compressive stress can be the driving force for the hillock
generation, and further growth of the hillocks will promote the TDs bending and bunching
towards the side facet due to the mirror force. The impurity segregation of C, O, and Si
around the hillock edges was verified by the Tof-SIMS mappings. Both the TDs bunching
and impurity segregation at the hillock edges that permeate the MQWs and EBL region can
act as the primary leakage paths by enhancing the trap-assisted-tunneling and subsequent
radiative recombination in the p-AlGaN, leading to the optical degradation of the UVC
LEDs. This work shed light on one possible degradation mechanism of AlGaN-based
UVC LEDs.
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