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Abstract: Electron transport materials (ETMs) play a vital role in electron extraction and transport
at the perovskite/ETM interface of inverted perovskite solar cells (PSCs) and are useful in power
conversion efficiency (PCE), which is limited by interface carrier recombination. However, strategies
for passivating undercoordinated Pb2+ at the perovskite/ETM interface employing ETMs remain a
challenge. In this work, a variety of heteroatoms were used to strengthen the Lewis base property of
new ETMs (asymmetrical perylene-diimide), aimed at deactivating non-bonded Pb2+ at the perovskite
surface through Lewis acid-base coordination. Quantum chemical analysis revealed that novel ETMs
have matched the energy level of perovskite, which enables electron extraction at the perovskite/ETM
interface. The results also suggest that the large electron mobility (0.57~5.94 cm2 V−1 s−1) of designed
ETMs shows excellent electron transporting ability. More importantly, reinforced interaction between
new ETMs and Pb2+ was found, which is facilitating to passivation of the defects induced by unsaturated
Pb2+ at the perovskite/ETM interface. Furthermore, it is found that MA (CH3NH3

+), Pb, and IPb (iodine
substituted on the Pb site) defects at the perovskite/ETM interface could be effectively deactivated
by the new ETMs. This study provides a useful strategy to design ETMs for improving the interface
property in PSCs.

Keywords: electron transport material; theoretical design; Lewis base; heteroatoms; perovskite/
ETM interface

1. Introduction

In recent years, many researchers have been attracted to inverted lead halide per-
ovskite solar cells (PSCs) due to their exceptional properties, including high absorption
coefficient, long charge diffusion length, and large bandgap range [1–4]. PSC efficiency has
been significantly improved due to the rapid development of compositional engineering,
additive engineering, and interface engineering, and is now comparable to that of the best
single-crystalline silicon solar cells [5,6]. However, due to PSCs’ lower efficiency than the
theoretical efficiency limit and their poor stability when influenced by moisture, oxygen,
light, and heat, researchers are motivated to seek an alternative solution to resolve these
problems [7–11]. In addition to compositional engineering and additive engineering, devel-
oping high performance electron transport materials (ETMs) was suggested as an effective
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solution that could improve the interface properties as well as the efficiency and stability of
PSCs [12–15]. This is realized by the decreasing charge recombination from the effective
electron extraction at the perovskite/ETM interface and fluent electron transportation in
the whole device [16]. Therefore, our group was motivated to understand an effective
way to tailor the geometries of ETMs, which can improve the efficiency and stability of
PSCs. Compared with inorganic ETMs, such as TiO2, traditional organic ETMs, such
as fullerene and its derivatives [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), have
many specific advantages, for example: good electron extraction ability, simple fabrication,
good compatibility with flexible substrates, low solution-processing temperature, etc. [17].
Unfortunately, due to the high price of PCBM and its sensitivity to reaction with oxygen,
many research groups are interested in seeking alternatives to traditional organic ETMs
with high performance [18,19].

Recently, various small organic molecules have been synthesized and used as ETMs for
PSCs, including pyrazine-azaacene, naphthalene-diimide, perylene-diimide, and their deriva-
tives [20–23]. Their intrinsic advantages, such as good repeatability and high purity and
mobility, have led to their increased use in PSCs. For example, Chu’s group reported tetrachloro-
substituted perylene-diimides as new efficient ETMs. They demonstrated good charge-transport
properties and improved the stability of PSCs [24]. Sugura et al., and Zhu et al., proposed a
novel ETM, i.e., hexaazatriphenylene derivatives with high performance [25,26]. These ETMs
with nanostructures may exhibit a wide range of electrical and optical properties that depend
sensitively on both their shapes and sizes, and thus are likely to provide a new method for mod-
ifying the optical and electronic properties of organic functional materials [20–26]. In addition,
the possibility of using nanostructures in the performance of solar cells was demonstrated and
summarized in previous works [27–30].

Among a variety of smaller ETMs, PDIs (perylene-diimide derivatives) have attracted
much attention due to their use in commercially available raw materials, high electron
mobility, and stability [31–34]. Compared with symmetrically substituted structures, asym-
metrical PDIs with multifunctional groups show strengthened π-π stacking and electrostatic
and H-bonding interactions, which is beneficial for achieving high performance PSCs [35].

Moreover, a variety of solvents and additives with a heteroatom donor, i.e., nitrogen,
oxygen, and sulfur, were widely reported as Lewis bases to passivate the Lewis acid Pb2+

in perovskite photovoltaic devices [36]. It was found that these polar atoms could stabilize
unsaturated Pb2+ and improve the performance of perovskite [2,4]. Based on this concept,
silicon, nitrogen, phosphorus, oxygen, sulfur, and selenium atoms were introduced in
asymmetrical perylene-diimides, as shown in Figure 1, to design a new class of ETMs, i.e.,
PDI-Si, PDI-N, PDI-P, PDI-O, PDI-S, and PDI-Se, with improved Lewis base properties.
The designed PDIs are shown in Figure 1. The related performance of the novel ETMs
in nano-size was investigated theoretically and compared with a known ETM PDI-Ph
(Figure 1). The aim of the present work is to enhance the electron extraction/transport
at the perovskite/ETM interface and decrease the defects derived from uncoordinated
Pb2+, which can be helpful for achieving high-performance perovskite photovoltaic devices.
The different heteroatoms in the structure adjust the geometry, stability, solubility, frontier
molecular orbital property, UV-visible absorption spectrum, electron transporting, π-π
stacking, electrostatic and non-covalent interaction of ETMs, and perovskite/ETM interface
interaction.
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Figure 1. Framework of the available ETM (PDI-Ph) and designed ETMs (PDI-Si, PDI-N, PDI-P,
PDI-O, PDI-S, and PDI-Se) (own elaboration).

2. Computational Methods

Six asymmetrical perylene-diimides (As-PDIs) with different Lewis base heteroatoms
(PDI-Si, PDI-N, PDI-P, PDI-O, PDI-S, and PDI-Se) were designed and compared with sym-
metrical perylene-diimide PDI-Ph. The chemical nomenclatures of these PDIs are provided
in Supplementary Materials. In As-PDIs, heteroatom-substituted ketone is connected to one
of the active nitrogen atoms in the perylene-diimide backbone while methyl linked with
another nitrogen. The phenyl substituted on each end-nitrogen atom of perylene diimide in
PDI-Ph. The ground state geometries of the PDI derivatives were optimized by employing
hybrid density functional theory (DFT). Then, vibrational frequencies of these molecules
were calculated using DFT methods to estimate the zero-point corrections. The optimized
geometrical parameters and normal modes of frequencies were tabulated in Table S2. The
positive vibrational frequencies indicate that all optimized structures have minimal ener-
gies in potential energy surface (see Table S2). On the stable geometries of PDI derivatives,
frontier molecular orbitals and relevant electronic properties were investigated utilizing
DFT methods. It is known that suitable HOMO (highest occupied molecular orbital) and
LUMO (lowest unoccupied molecular orbital) energies are preliminary requirements for
ETMs and are the key factors for open-circuit voltage (Voc) in PSCs. In order to obtain more
accurate HOMO and LUMO energies, which depend on DFT methods, a few of the most
popular functionals, i.e., B3LYP, PBE1PBE, MPW1B95, PBE33, PBE38, and MPWB1K, were
compared together with the 6-31+G(d,p) basis set (see Table S3). It was found that B3LYP
provided the energy that was most similar to HOMO and LUMO energies of the avail-
able experimental data; this was also consistent with our previous work [37]. Therefore,
B3LYP/6-31+G(d,p) were employed to calculate the geometries and electronic properties
for all the PDIs. The ionization potentials and electron affinities with adiabatic excitations
were obtained on the basis of geometries in neutral, positive, and negative status. The sol-
vation free energy (∆G0

solv) was calculated as the energy difference of materials in gas and
solution phases with a polarizable continuum model (PCM) in the toluene solvent [38–40].
The UV-visible absorption spectrum and maximum wavelength (λmax) were obtained by
employing time-dependent density functional theory (TD-DFT). The calculations in this
part, including ground state geometries, vibrational frequencies, HOMO, LUMO, ionization
potentials, electron affinities, ∆G0

solv, and λmax for the PDIs, were carried out using the
Gaussian 09 suite of programs (a general computational chemistry software) [41].

In organic molecular materials, charge carriers generally localize on a single molecule
and randomly move to neighboring molecules through a hopping mechanism, for which



Nanomaterials 2023, 13, 1560 4 of 16

the charge hopping rate could be predicted successfully by the classical Marcus Hush
formula [42], as provided in Equation (1):

k =

(
π

λkBT

) 1
2 V2

h̄
exp

(
− λ

4KBT

)
(1)

where k denotes electron transfer rate, λ is electron reorganization energy due to geometric
relaxation in the process of electron transfer, kB is the Boltzmann’s constant, T is tempera-
ture, h̄ ( h

2π

)
, is reduced Planck’s constant, and V is electron transfer integral between two

species that are dominated mostly by orbital overlap, respectively.
Compared to inner reorganization, external reorganization contributes in a very small

manner; therefore, only the inner reorganization was calculated. The inner reorganization
was calculated on the adiabatic potential energy surface (APES) [43–45] for PDIs.

The electron transfer integral (V) was calculated by the formula provided in Equation
(2) [46,47]:

V = 〈ϕHOMO/LUMO
i |F|ϕHOMO/LUMO

f 〉 (2)

where ϕHOMO/LUMO represents the HOMO or the LUMO of the isolated molecule in the
dimer and F is the Fock operator of the dimer.

To understand the transport capacity of proposed PDIs, the carrier mobility was
calculated by the Einstein relation, as provided in Equation (3) [48]:

µ =
1

2n
e

kBT ∑
i

r2
i kiPi (3)

where n is the dimensionality of crystal, ri is the distance between neighboring molecules
in crystal, ki is charge hopping rate, and Pi is fraction of charge hopping rate as expressed
in Equation (4):

Pi =
ki

∑i ki
(4)

For the purpose of obtaining the crystal structures of PDIs, a single molecular structure
was optimized in BIOVIA Materials Studio Dmol3 model (a program utilizing DFT to sim-
ulate chemical processes and predict properties of materials both rapidly and accurately),
using GGA-PBE (Perdew–Burke-Ernzerhof) functional with an accuracy of 10−5 [49]. The
crystal structures of these molecules were then predicted in BIOVIA Materials Studio
Polymorph model (a program that can be used to predict potential polymorphs of a given
compound directly from the molecular structure) under the Dreiding force field [49]. The
most probable space groups, i.e., P1, P21/C, P212121, C2/C, and P21, were restricted during
crystal prediction. In order to estimate the interaction between proposed PDIs and the
perovskite system, the interaction energies of PDIs and the group/atom (MA, Pb, and I)
on the surface of perovskite were fully investigated using the Dmol3 program. Once these
interactions were obtained, the geometry of ETM on perovskite surface was investigated
using GGA-PBE functional in the BIOVIA Materials Studio CASTEP model (an ab initio
quantum mechanical program employing DFT to simulate the properties of solids, inter-
faces, and surfaces for a wide range of materials classes such as ceramics, semiconductors,
and metals) [49]. The density of states (DOS) and the defect formation energy of MA, Pb,
and IPb for the PDIs adsorbed on the perovskite surface were calculated. For CASTEP
calculation, the vacuum region was set to 25 Å, the quality of k-points was set to fine, and
the convergence tolerance of energy was set to 2.0 × 10−5 eV per atom. All the geometries
were relaxed until a residual force less than 0.05 eV Å−1 per atom was obtained. The
calculations in this part were performed by Material Studio 8.0 software package [49].
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3. Results and Discussion
3.1. Geometric and Electronic Structures

The optimized ground state geometries for all PDIs are shown in Figure 2. The variation of
substituted functional groups on PDI can regulate the molecular and crystal geometries. The
optimized geometries indicate that the relevant bond length and bond angle are similar in all the
PDIs molecules. It was found that the calculated dihedral angle between the phenyl ring and the
PDI skeleton in PDI-Ph was 90 degrees. In As-PDIs, the dihedral angles between PDI skeleton
and functional groups were between ~12 and ~80 degrees. The large difference in dihedral
angles of As-PDIs could be attributed to the variation of Lewis base heteroatoms. Chemical
modification in these PDIs can cause the transformation of π-π stacking and H-bonding, which
have a great influence on electron transfer performance.
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The properties of frontier molecular orbital (FMO), including the HOMO, LUMO, and
LUMO-HOMO gap, were calculated for the PDIs, as shown in Figure 3. It can be seen that
asymmetrical geometries and various heteroatoms have little effect on the distribution of
HOMO and LUMO, which mainly originate from the contribution of the PDI backbone. In
PDI-Ph and As-PDIs, the HOMO and LUMO are fully delocalized on the PDI core, respec-
tively, suggesting strong π-π intermolecular interactions, which increase the possibilities of
π-π overlap between neighboring moieties and improve carrier transfer. As suggested in
an earlier study, the experimentally measured HOMO (−5.98 eV) and LUMO (−3.92 eV)
energies for PDI-Ph are in the range of energy levels for ideal ETMs (HOMOs are below
−5.40 eV, LUMOs are between −4.20 and −3.90 eV) in MAPbI3 PSCs [50]. There is a small
difference between the calculated HOMO (−6.28 eV) and LUMO (−3.80 eV) energies of
PDI-Ph (0.30 eV for HOMO and 0.12 eV for LUMO) with experimentally measured data.
The values for designed PDIs are slightly smaller (with a deviation of 0.02~0.09 eV) than
PDI-Ph. The results indicate that designed molecules have well-matched energy levels
with MAPbI3, which may allow the electrons to transfer frequently from perovskite to
ETMs; on the other hand, holes may be prevented from perovskite to ETMs [51]. As a
result, hole-electron recombination could be largely decreased, which is beneficial for the
improvement of PSC performance. In addition, it is worth noting that the LUMO-HOMO
energy gaps for PDI-Si (2.48 eV) PDI-N (2.47 eV), PDI-P (2.47 eV), PDI-O (2.48 eV), PDI-S
(2.48 eV), and PDI-Se (2.47 eV) are adjacent to the value of PDI-Ph (2.48 eV), indicating
similar abilities to prohibit hole-electron recombination in asymmetrical and symmetrical
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ETMs. In addition, the smaller LUMO energies in As-PDIs compared to PDI-Ph explain the
better electron extraction ability and environmental stability, ascribed to the introduction of
a Lewis base heteroatom [52].

Nanomaterials 2023, 13, x FOR PEER REVIEW 6 of 16 
 

 

O (2.48 eV), PDI-S (2.48 eV), and PDI-Se (2.47 eV) are adjacent to the value of PDI-Ph (2.48 
eV), indicating similar abilities to prohibit hole-electron recombination in asymmetrical 
and symmetrical ETMs. In addition, the smaller LUMO energies in As-PDIs compared to 
PDI-Ph explain the better electron extraction ability and environmental stability, ascribed 
to the introduction of a Lewis base heteroatom [52]. 

 
Figure 3. Spatial distribution and energies of HOMO and LUMO, as well as the HOMO-LUMO 
energy gaps for studied molecules. 

To obtain further insight on the influence of heteroatoms on the property of designed 
PDIs, the UV visible spectrum was calculated on the basis of the lowest singlet-singlet 
vertical transition, as shown in Supplementary Materials (Figure S1). The maximum 
wavelengths (λmax), microscopic information about the oscillator strengths, excitation en-
ergy, electronic transitions, and main configuration for these molecules are listed in Sup-
plementary Materials (Table S4). Interestingly, all these PDI molecules show the electronic 
π → π* from S0 to S1 state, with the main contribution derived from HOMO to LUMO. 
The calculated λmax for PDI-Ph (527.02 nm) is in good agreement with the experimentally 
measured value (550 nm) [34], which provides more confidence in our theoretical meth-
ods. The λmax in absorption spectra is blue-shifted a little in designed PDIs (525.84~526.36 
nm) compared to PDI-Ph (527.02 nm), ascribing to the introduction of Lewis base heteroa-
tom in As-PDIs. Similar values were found in the λmax of As-PDIs, with a deviation smaller 
than 0.52 nm, suggesting the variation of the heteroatom in designed PDIs has little influ-
ence on the absorption maximum wavelength. 

3.2. Stability and Solubility 
As potential ETMs formed on top of the perovskite layer in inverted PSCs, new PDIs 

may protect perovskite materials from the destruction of O2 and H2O, thus leading to bet-
ter PSCs performance. To evaluate the air stability of anions and neutral molecules against 
O2 and H2O, adiabatic electron affinity (EAa) is calculated. The calculated EAa of the de-
signed PDIs and PDI-Ph are tabulated in Table 1. It can be seen from Table 1 that the EAa 
values for PDI-Si, PDI-N, PDI-P, PDI-O, PDI-S, and PDI-Se are larger than those of PDI-
Ph, indicating better stability of designed PDIs with Lewis base heteroatoms. The result is 
also consistent with the larger EAa corresponding to increased stability [53,54]. Further-
more, to express the resistance of chemical potential and the change in the number of 
electrons, absolute hardness (η) is calculated from the value of EA and the adiabatic ioni-
zation potential (IPa) (see Table 1). There is a small difference in the value of η in As-PDIs 
compared to that in PDI-Ph (<0.10 eV), suggesting their similar stability in the resistance 
of chemical potential. This investigation suggests that As-PDIs with a modified Lewis base 
heteroatom have adequate stability in the environment. 

Figure 3. Spatial distribution and energies of HOMO and LUMO, as well as the HOMO-LUMO
energy gaps for studied molecules.

To obtain further insight on the influence of heteroatoms on the property of designed
PDIs, the UV visible spectrum was calculated on the basis of the lowest singlet-singlet
vertical transition, as shown in Supplementary Materials (Figure S1). The maximum wave-
lengths (λmax), microscopic information about the oscillator strengths, excitation energy,
electronic transitions, and main configuration for these molecules are listed in Supple-
mentary Materials (Table S4). Interestingly, all these PDI molecules show the electronic
π→ π* from S0 to S1 state, with the main contribution derived from HOMO to LUMO.
The calculated λmax for PDI-Ph (527.02 nm) is in good agreement with the experimentally
measured value (550 nm) [34], which provides more confidence in our theoretical methods.
The λmax in absorption spectra is blue-shifted a little in designed PDIs (525.84~526.36 nm)
compared to PDI-Ph (527.02 nm), ascribing to the introduction of Lewis base heteroatom in
As-PDIs. Similar values were found in the λmax of As-PDIs, with a deviation smaller than
0.52 nm, suggesting the variation of the heteroatom in designed PDIs has little influence on
the absorption maximum wavelength.

3.2. Stability and Solubility

As potential ETMs formed on top of the perovskite layer in inverted PSCs, new PDIs
may protect perovskite materials from the destruction of O2 and H2O, thus leading to better
PSCs performance. To evaluate the air stability of anions and neutral molecules against O2
and H2O, adiabatic electron affinity (EAa) is calculated. The calculated EAa of the designed
PDIs and PDI-Ph are tabulated in Table 1. It can be seen from Table 1 that the EAa values for
PDI-Si, PDI-N, PDI-P, PDI-O, PDI-S, and PDI-Se are larger than those of PDI-Ph, indicating
better stability of designed PDIs with Lewis base heteroatoms. The result is also consistent
with the larger EAa corresponding to increased stability [53,54]. Furthermore, to express
the resistance of chemical potential and the change in the number of electrons, absolute
hardness (η) is calculated from the value of EA and the adiabatic ionization potential (IPa)
(see Table 1). There is a small difference in the value of η in As-PDIs compared to that in
PDI-Ph (<0.10 eV), suggesting their similar stability in the resistance of chemical potential.
This investigation suggests that As-PDIs with a modified Lewis base heteroatom have
adequate stability in the environment.
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Table 1. The adiabatic ionization potential (IPa, eV), adiabatic electron affinity (EAa, eV), absolute
hardness (η, eV), and solvation free energy (∆Gsolv, kcal mol−1) of PDIs.

PDIs IPa EAa η ∆Gsolv

PDI-Ph 7.39 2.76 2.32 −6.15
PDI-Si 7.39 2.79 2.30 −7.82
PDI-N 7.47 3.03 2.22 −7.70
PDI-P 7.42 2.79 2.32 −6.68
PDI-O 7.52 2.82 2.35 −7.11
PDI-S 7.47 2.79 2.34 −6.81
PDI-Se 7.42 2.78 2.32 −7.19

As stated in earlier studies, the good solubility of ETMs in a designative solution may
improve the performance of PSCs, which can be fabricated in solution [26]. The solubility
of the PDIs was evaluated through the solvation free energy (∆Gsolv); lower ∆Gsolv leads
to larger solubility. The ∆Gsolv was obtained from the energy variation of the PDIs in a
particular solution and gas phase. It was reported experimentally that PDIs were usually
investigated in solvents such as toluene and CH2Cl2, among others [35]. As a result, toluene
was used here for the calculation of ∆Gsolv of the PDIs. Better solubility of the material
arises from lower ∆Gsolv. As shown in Table 1, the ∆Gsolv for the new PDI material is 0.53,
~1.67 eV smaller than that of PDI-Ph, indicating better solubility with toluene.

3.3. Reorganization Energy, Transfer Integral, Transfer Rate, and Mobility

As stated in Marcus’ theory, electron reorganization energy (λelectron) is one of the
most important parameters that is used to evaluate the electron transport rate (kelectron) and
mobility (µelectron) of ETMs. Lower reorganization energy corresponds to better transport
performance. The good electron transfer ability of ETMs is vital for the improvement of
PCE (power conversion efficiency) in PSCs. Here, reorganization energies were investigated
for potential ETMs (PDI-Si, PDI-N, PDI-P, PDI-O, PDI-S, and PDI-Se) and available ETM
(PDI-Ph), which are tabulated in Table 2. The λelectron values for PDI-P, PDI-O, PDI-S, and
PDI-Se are similar to that of PDI-Ph (with a deviation smaller than 0.02 eV), suggesting
that asymmetrical geometry (versus symmetrical structure) has little effect on the variation
of electron reorganization in PDIs. However, the values of PDI-Si and PDI-N have a
greater difference (0.09 and 0.17 eV) with that of PDI-Ph, which is mainly ascribed to the
introduction of silicon and nitrogen in As-PDIs. The hole reorganization energies were
also obtained for related PDIs; these are shown in Supplementary Materials (Table S5). The
small hole reorganization energies in these PDI derivatives demonstrate that the materials
may have good hole transfer ability.

Table 2. The electron reorganization energy λelectron (eV), centroid-to-centroid distance (d, Å), electron
transfer integral Velectron (eV), electron transfer rate kelectron (s−1), and electron mobility µelectron

(cm2 V−1 s−1) for studied molecules.

PDIs d λelectron Velectron kelectron µelectron

PDI-Ph 3.86 0.27 0.18 7.56 × 1013 2.18
PDI-Si 4.56 0.36 0.13 1.42 × 1013 0.57
PDI-N 4.38 0.44 0.26 2.36 × 1013 0.88
PDI-P 5.20 0.29 0.15 4.17 × 1013 2.18
PDI-O 4.41 0.27 0.26 1.58 × 1014 5.94
PDI-S 5.83 0.29 0.17 5.36 × 1013 3.52
PDI-Se 4.33 0.27 0.19 8.43 × 1013 3.06

Other than electron reorganization energy, a key parameter to determine the electron
transfer rate and mobility for ETMs is electron transfer integral (Velectron), which is mainly
dependent on the non-local electronic coupling and the relative position of neighboring
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molecules in electron transfer pathways. On the basis of the predicted crystal geometries,
Velectron was calculated for the PDIs and provided in Table 2. As discussed in Equation (1),
a larger value of Velectron will produce more improvement in electron transfer rate. Our
calculated Velectron values for all designed PDIs are comparable to PDI-Ph (the deviation
smaller than 0.08 eV), suggesting good electron transfer ability in As-PDIs. Additionally,
the small difference in the value of Velectron in designed PDIs arises from the variation of
the Lewis base heteroatom.

As listed in Table 2, kelectrons in PDI-Si, PDI-N, PDI-P, PDI-S, and PDI-Se have the same
order of magnitude (1013 s−1) as that of PDI-Ph, while PDI-O has an even greater kelectron
(1.58× 1014 s−1), suggesting largely improved electron transfer ability of PDI-O. Correspond-
ingly, high values of µelectron (0.57~5.94 cm2 V−1 s−1) were found in the new PDIs, in the
order of PDI-O > PDI-S > PDI-Se > PDI-P > PDI-N > PDI-Si. Excitingly, increased electron
mobility was observed in PDI-O (5.94 cm2 V−1 s−1), PDI-S (3.52 cm2 V−1 s−1), and PDI-Se
(3.06 cm2 V−1 s−1) compared to PDI-Ph (2.18 cm2 V−1 s−1). The varying electron mobility of
these materials was mainly ascribed to the variation of reorganization energy, transfer integral,
and centroid-to-centroid distance between adjacent molecules in the main pathway of electron
transfer, which was strongly influenced by frontier molecular orbitals and crystal structure. The
values of hole mobility (µhole) indicate that most of the designed molecules also have good hole
transportation performance, as shown in Table S5. The results suggest that the introduction
of heteroatom-modified functional groups—especially the introduction of oxygen, sulfur, and
selenium—with methyl in PDIs, to form asymmetrical geometries, has a great impact on the
refinement of electron transfer properties.

3.4. Molecular Stacking

The crystal structures of proposed PDIs were investigated to explore the relative
positions of molecules to understand electron transporting behavior. The packing modes
of predicted crystal structures for the PDIs are shown in Figure 4. It is shown that 1D π-π
stacking was found in the crystals of PDI-Ph, PDI-Si, PDI-N, and PDI-Se while 2D π-π
stacking was found in the crystals of PDI-P, PDI-O, and PDI-S, for which the centroid-to-
centroid distance between adjacent molecules in the main pathway of electron transfer was
3.86 Å (PDI-Ph), 4.56 Å (PDI-Si), 4.38 Å(PDI-N), 5.20 Å (PDI-P), 4.41 Å (PDI-O), 5.83 Å
(PDI-S), and 4.33 Å (PDI-Se).
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To analyze the variation in packing motifs caused by chemical modification, the
electrostatic potential (ESP) maps for the PDIs were investigated as displayed in Figure 5.
For PDI-Ph, the positive potentials were mainly localized around the hydrogen and nitrogen
atoms in the PDI core while the negative potentials were primarily distributed on the
oxygen atoms in PDI core. Additional negative potentials were found on the oxygen
atoms in the functional branched groups of designed PDIs, for which stronger electrostatic
attraction could be predicted. Maximum electrostatic attraction normally emerges between
positive and negative potentials; then, π-π stacking of the crystal motifs in these PDIs
was displayed, due to the hydrogen/nitrogen (in the PDI core)–oxygen (in PDI core) or
the hydrogen/nitrogen (in PDI core)–oxygen (functional branched groups) attractions. In
PDI-Ph, the interaction between PDI cores leads to 1D π-π stacking of the crystal geometry.
Similarly, the negative potentials in functional branched chains of PDI-Si, PDI-N, and
PDI-Se are adjacent to the PDI core, which makes the attraction between PDI cores stronger
than the interaction of the PDI core with the side chain; then, 1D π-π stacking appears in
the crystal motif. However, the larger distance from the negative part in the side chain
to the PDI core exhibited in PDI-P and PDI-O, which drives the attraction between PDI
cores, is comparable with the interaction of the PDI core and side chain. As a result, 2D π-π
stacking is reasonable for the crystal structure of PDI-P and PDI-O. It is worth noting that
2D π-π stacking is also found in the crystal of PDI-S. This could be explained by the strong
positive potentials at the end of the functional side chain, which attract the negative parts
in the PDI core and side chain.
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For the purpose of obtaining more insight into the molecular packing style in the
crystal, the non-covalent interaction in the dimers with the largest transfer integral of the
studied PDIs was investigated by the analysis of reduced-density gradients (RDGs). As
shown in Figure 6, the low-gradient spikes in the left column of each molecule appear near
zero, while the isosurface images in the right column of each molecule are green. The large
van der Waals interactions in PDI-Ph, PDI-Si, PDI-N, PDI-P, PDI-O, PDI-S, and PDI-Se
lead to the crystal packing of π-π motifs. The non-covalent interaction is stronger in the
following order: PDI-S < PDI-P < PDI-Si < PDI-O < PDI-N < PDI-Se < PDI-Ph, which is
inverse to the intermolecular distance discussed earlier (molecular stacking).
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3.5. Interaction Energy

For the purpose of evaluating the interaction between these PDIs’ molecules and
perovskite, the interaction energies of selected hydrogen, double-bonded oxygen, and
different Lewis base heteroatoms (Si, N, P, O, S, or Se) in the PDIs with I− (anionic iodine),
Pb2+ (cationic lead), or MA+ (CH3NH3

+) were calculated; values are tabulated in Table 3.
The specific interaction pictures are shown in Figure 7 and Figures S2–S8. It could be
observed from the obtained data that strong interactions appeared in the PDIs with I−,
Pb2+, or MA+. It is worth noting that powerful attractions between hydrogen, double-bond
oxygen, and heteroatoms in the side chain of As-PDIs with I−, Pb2+, or MA+ are detected.
The additional hydrogen, double-bond oxygen, and heteroatoms in As-PDIs may increase
their gravitation for I−, Pb2+, or MA+. In particular, the binding energy between heteroatom
in As-PDIs and Pb2+ is in the following order: N-Pb2+ (−8.37 eV) > O-Pb2+ (−7.14 eV) >
S-Pb2+ (−7.05 eV) > P-Pb2+ (−6.70 eV) > Se-Pb2+ (−6.68 eV) > Si-Pb2+ (−6.37 eV). This
investigation may predict the good interaction of the studied PDIs, especially the designed
ones, with perovskite, when they work as ETMs in PSCs.
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Table 3. Interaction energies (eV) between selected atoms (the atomic number could be found in
Figure 7) in investigated molecules with I−, Pb2+, and MA+.

H1-I− H2-I− H3-I− O4-Pb2+ O5-Pb2+ O4-MA+ O5-MA+ X6-Pb2+ a

PDI-Ph −1.91 −1.86 −7.83 −1.26
PDI-Si −1.53 −1.56 −1.55 −6.60 −6.33 −1.32 −1.16 −6.37
PDI-N −1.90 −2.04 −2.04 −7.09 −8.40 −1.27 −1.69 −8.37
PDI-P −1.66 −1.69 −1.65 −6.84 −7.76 −1.22 −1.17 −6.70
PDI-O −1.89 −1.85 −6.79 −6.86 −1.15 −1.20 −7.14
PDI-S −1.35 −1.34 −6.49 −7.40 −1.22 −1.80 −7.05
PDI-Se −1.64 −1.66 −6.99 −7.70 −1.19 −1.64 −6.68

a X = Si, N, P, O, S, and Se.
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3.6. Interface Property

The perovskite/ETM interface properties have significant influence on the parameters
that evaluate the performance of PSCs, such as Voc (open circuit voltage), Jsc (short circuit
current density), FF (filling factor), and ultimate PCE. For the purpose of investigating
perovskite/ETM properties, the (110) surface of tetragonal MAPbI3, which is normally
used as one of the major facets in theoretical and experimental research, was employed
here. As reported, the PbI2

−- and MA−-terminations showed similar trend in the interface
structure and charge transfer behavior; PbI2

−-terminated surface was considered due to
easier adsorption [55,56].

The geometries of the ETMs adsorbed on the perovskite surface were optimized and are
shown in Figure 8. As shown in Figure 8, the PDI skeleton in As-PDIs is nearly parallel to
the perovskite surface. For PDI-Ph, the N (in the PDI backbone) interacting with Pb (in the
perovskite surface) leads to efficient adsorption of ETM on perovskite, with N . . . Pb distances
of 4.88 and 4.92 Å, respectively. For designed PDIs, in addition to the interaction of N in the
PDI backbone with Pb, additional interaction between the Lewis base heteroatom or double
bond oxygen in the side chain and Pb in the perovskite surface were found. The heteroatom
. . . Pb and double bond oxygen . . . Pb distances between new ETMs and perovskite surface,
displayed in Figure 8, were 4.12~5.22 Å and 2.50~2.75 Å, respectively. Correspondingly, the
structural modification in ETMs leads to the variation of adsorption energies (Eads), as listed
in Figure 8. The larger Eads for designed ETMs than that of PDI-Ph indicated improved
adsorption performance with the appearance of Lewis base heteroatoms Si, N, P, O, S, or
Se in the molecular functional groups. The different Eads of designed ETMs on perovskite
surface (the largest variation of 0.40 eV) explained the influence of various heteroatoms on the
interface interaction.
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The perovskite/ETM interface properties were further investigated through the anal-
ysis of density of states (DOS), as shown in Figure 9. The DOS was composed of the
contributions from perovskite and each ETM. It was found that the HOMO and LUMO
energies of ETMs are lower than the VBM and CBM of perovskite, respectively. This may
prevent the hole transfer and accelerate the electron extraction from the perovskite layer to
the ETM layer. The recombination of hole and electron could be decreased, and electron
transfer ability will be enhanced at the perovskite/ETM interface. Furthermore, it was
observed that the electron overlaps between the CBM of perovskite and LUMO of designed
As-PDIs are larger than those of perovskite/PDI-Ph, indicating enhanced motivation and
better electron injection property from perovskite to new ETMs. This suggests that the
As-PDIs with the introduction of a Lewis base heteroatom may strengthen interface electron
extraction and improve device performance.
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Figure 9. Density of states (DOS) of perovskite/ETMs with separate contributions from perovskite
and ETMs (PDI-Ph, PDI-Si, PDI-N, PDI-P, PDI-O, PDI-S, and PDI-Se).

It is known that the appearance of MA (CH3NH3
+), Pb, or IPb defect (Figure 10a) may

affect the ultimate performance of PSCs. Here, the defect formation energies of MA, Pb,
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and IPb were calculated, with PDIs adsorbed on perovskite. It is shown in Figure 10b that
large defect formation energies were obtained in all perovskite/ETM interfaces. Moreover,
with designed As-PDIs adsorbed on a perovskite surface, almost all the MA, Pb, and IPb
defect formation energies were increased compared with perovskite/PDI-Ph, suggesting
the better defect-passivation ability of new ETMs. Particularly, the defect deactivation
ability of PDI-N was significantly increased.
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formation energy of MA, Pb, and IPb in perovskite and ETM/perovskite.

In summary, the extensive analysis in the present work proved that designed As-PDIs
with a Lewis base heteroatom have enhanced electron extraction capability, good electron
transportation property (large electron mobility), and better defect deactivation ability at
the perovskite/ETM interface, indicating improved interface performance for PSCs. Such
results are encouraging and could be used as guidelines for the construction of efficient
ETMs for high-performance PSCs.

4. Conclusions

Six novel PDI derivatives were successfully designed as ETMs for PSCs using state-
of-the-art techniques. The proposed PDI molecules with asymmetrical geometries and
introduction of Lewis base heteroatoms (Si, N, P, O, S, and Se) led to greatly improved
performance as ETMs. The data obtained for these materials were compared with those of
an available ETM (PDI-Ph). Quantum chemical investigations revealed that designed com-
pounds have better stability and solubility, as well as more consistent HOMO and LUMO
energy levels with perovskite. Strong molecular interactions among the heteroatoms
and hydrogen atoms led to π-π stacking of crystal motifs in these ETMs. Greatly in-
creased electron transfer performance was found in newly designed ETMs (PDI-O, PDI-
S, and PDI-Se) compared to that of PDI-Ph, ascribed to the greater electron mobility.
Among the designed asymmetrical molecules, PDI-O has the highest electron mobility
(5.94 cm2 V−1 s−1). It is worth noting that Lewis base heteroatoms in As-PDIs greatly
improve perovskite/ETMs’ interface interaction property. Moreover, enhanced passivation
ability of MA, Pb, and IPb defects in perovskite was obtained in newly designed ETMs,
especially in PDI-N. Thus, improved perovskite/ETM interface property and device perfor-
mance could be realized by novel ETMs that have great potential for application in PSCs.
The research in this contribution is of vital importance for the design of high-efficiency
components for PSCs with the aim of promoting device performance.
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32. Perez, G.S.; Dasgupta, S.; Żuraw, W.; Pineda, R.F.; Wojciechowski, K.; Jagadamma, L.K.; Samuel, I.; Robertson, N. Solution-

processable perylene diimide-based electron transport materials as non-fullerene alternatives for inverted perovskite solar cells. J.
Mater. Chem. A 2022, 10, 11046–11053. [CrossRef]

33. Fan, Y.; Wu, F.; Liu, F.; Han, M.; Chang, K.; Zhu, L.; Li, Q.; Li, Z. A perylene diimide dimer-based electron transporting material
with an A–D–A structure for efficient inverted perovskite solar cells. J. Mater. Chem. C 2022, 10, 2544–2550. [CrossRef]

34. Yan, W.; He, Z.; Jiang, J.; Lu, D.; Gong, Y.; Yang, W.; Xia, R.; Huang, W.; Xin, H. Highly thermal-stable perylene-bisimide small
molecules as efficient electron-transport materials for perovskite solar cells. J. Mater. Chem. C 2020, 8, 14773–14781. [CrossRef]

35. Tao, J.; Zhang, J.; Song, Y.; Liu, J.; Xu, H.-J. Two asymmetrical perylene diimide derivatives: Synthesis, optical-electrochemical
properties and morphologies of self-assembly. J. Solid State Chem. 2022, 305, 122665. [CrossRef]

36. Hamill, J.C.; Romiluyi, O.; Thomas, S.A.; Cetola, J.; Schwartz, J.; Toney, M.F.; Clancy, P.; Loo, Y.-L. Sulfur-donor solvents strongly
coordinate Pb2+ in hybrid organic–inorganic perovskite precursor solutions. J. Phys. Chem. C 2020, 124, 14496–14502. [CrossRef]

37. Ran, X.; Ali, M.A.; Hu, Z.; Li, P.; Xia, Y.; Zhang, H.; Yang, L.; Chen, Y. State-of-the-art techniques on asymmetrical perylene diimide
derivatives: Efficient electron-transport materials for perovskite solar cells. J. Phys. Chem. C 2023, 127, 5114–5124. [CrossRef]

38. Cances, E.; Mennucci, B.; Tomasi, J. A new integral equation formalism for the polarizable continuum model: Theoretical
background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 1997, 107, 3032–3041. [CrossRef]

https://doi.org/10.1002/admi.202100128
https://doi.org/10.1021/acs.jpcc.1c02225
https://doi.org/10.1038/s41586-021-03518-y
https://www.ncbi.nlm.nih.gov/pubmed/34079136
https://doi.org/10.1038/s41586-021-03406-5
https://doi.org/10.1016/j.cej.2022.135410
https://doi.org/10.1021/jacs.5b08770
https://doi.org/10.1039/C7TA06900F
https://doi.org/10.1021/jacs.1c12732
https://doi.org/10.1007/s12598-017-0951-4
https://doi.org/10.1021/acsenergylett.2c00684
https://doi.org/10.1016/j.jechem.2020.08.012
https://doi.org/10.1021/acs.jpcc.0c11446
https://doi.org/10.1002/cssc.202000728
https://www.ncbi.nlm.nih.gov/pubmed/32314499
https://doi.org/10.1039/C5CS00181A
https://www.ncbi.nlm.nih.gov/pubmed/26168289
https://doi.org/10.1021/acsami.0c10996
https://doi.org/10.1038/nmat2629
https://doi.org/10.1016/j.jqsrt.2019.106573
https://doi.org/10.1038/s41598-022-09284-9
https://doi.org/10.1002/adpr.202100286
https://doi.org/10.1021/jo2001963
https://doi.org/10.1039/D2TA01321E
https://doi.org/10.1039/D1TC04176B
https://doi.org/10.1039/D0TC04241B
https://doi.org/10.1016/j.jssc.2021.122665
https://doi.org/10.1021/acs.jpcc.0c03465
https://doi.org/10.1021/acs.jpcc.2c08138
https://doi.org/10.1063/1.474659


Nanomaterials 2023, 13, 1560 16 of 16

39. Mennucci, B.; Cances, E.; Tomasi, J. Evaluation of solvent effects in isotropic and anisotropic dielectrics and in ionic solutions
with a unified integral equation method: Theoretical bases, computational implementation, and numerical applications. J. Phys.
Chem. B 1997, 101, 10506–10517. [CrossRef]

40. Ho, J.; Klamt, A.; Coote, M.L. Comment on the correct use of continuum solvent models. J. Phys. Chem. A 2010, 114, 13442–13444.
[CrossRef]

41. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.;
Petersson, G.A.; et al. Gaussian 09, Revision D.01; Gaussian Inc.: Wallingford, CT, USA, 2009.

42. Marcus, R.A. Electron transfer reactions in chemistry. Theory and experiment. Rev. Mod. Phys. 1993, 65, 599–610. [CrossRef]
43. Chen, H.-Y.; Chao, I. Effect of perfluorination on the charge-transport properties of organic semiconductors: Density functional

theory study of perfluorinated pentacene and sexithiophene. Chem. Phys. Lett. 2005, 401, 539–545. [CrossRef]
44. Ran, X.; Akbar Ali, M.; Peng, X.-Z.; Yu, G.-J.; Ge, J.-Y.; Yang, L.; Chen, Y.; Xie, L.-H. Computational studies on nitrogen (N)-

substituted 2,6-diphenylanthracene: A novel precursor of organic field effect transistor materials. New J. Chem. 2022, 46, 1135–1143.
[CrossRef]

45. Nguyen, T.P.; Shim, J.H.; Lee, J.Y. Density functional theory studies of hole mobility in picene and pentacene crystals. J. Phys.
Chem. C 2015, 119, 11301–11310. [CrossRef]

46. Zhang, S.-F.; Chen, X.-K.; Fan, J.-X.; Ren, A.-M. Charge transport properties in a series of five-ring-fused thienoacenes: A quantum
chemistry and molecular mechanic study. Org. Electron. 2013, 14, 607–620. [CrossRef]

47. Troisi, A.; Orlandi, G. Dynamics of the intermolecular transfer integral in crystalline organic semiconductors. J. Phys. Chem. A
2006, 110, 4065–4070. [CrossRef]

48. Coropceanu, V.; Cornil, J.; da Silva Filho, D.A.; Olivier, Y.; Silbey, R.; Brédas, J.-L. Charge transport in organic semiconductors.
Chem. Rev. 2007, 107, 926–952. [CrossRef]

49. Yin, K.; Zou, D.; Yang, B.; Zhang, X.; Xia, Q.; Xu, D. Investigation of H-bonding for the related force fields in materials studio
software. Comput. Appl. Chem. 2006, 23, 1335–1340.

50. Rao, H.; Ye, S.; Sun, W.; Yan, W.; Li, Y.; Peng, H.; Liu, Z.; Bian, Z.; Li, Y.; Huang, C. A 19.0% efficiency achieved in CuOx-based
invested CH3NH3PbI3-XClX solar cells by an effective Cl doping method. Nano Energy 2016, 27, 51–57. [CrossRef]

51. Gu, P.-Y.; Wang, N.; Wang, C.; Zhou, Y.; Long, G.; Tian, M.; Chen, W.; Sun, X.W.; Kanatzidis, M.G.; Zhang, Q. Pushing up the
efficiency of planar perovskite solar cells to 18.2% with organic small molecules as the electron transport layer. J. Mater. Chem. A
2017, 5, 7339–7344. [CrossRef]

52. Qin, G.Y.; Ji, L.F.; Fan, J.X.; Zhang, N.X.; Lin, P.P.; Zhang, S.F.; Zou, L.Y.; Ren, A.M. Theoretical investigations into the electron and
ambipolar transport properties of anthracene-based derivatives. J. Phys. Chem. A 2019, 123, 3300–3314. [CrossRef] [PubMed]

53. Chang, Y.-C.; Kuo, M.-Y.; Chen, C.-P.; Lu, H.-F.; Chao, I. On the air stability of n-channel organic field-effect transistors: A
theoretical study of adiabatic electron affinities of organic semiconductors. J. Phys. Chem. C 2010, 114, 11595–11601. [CrossRef]

54. Kuo, M.Y.; Chen, H.Y.; Chao, I. Cyanation: Providing a three-in-one advantage for the design of n-type organic field-effect
transistors. Chem. Eur. J. 2007, 13, 4750–4758. [CrossRef] [PubMed]

55. Tan, H.; Jain, A.; Voznyy, O.; Lan, X.; García de Arquer, F.P.; Fan, J.Z.; Quintero-Bermudez, R.; Yuan, M.; Zhang, B.; Zhao, Y.
Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 2017, 355, 722–726. [CrossRef]

56. Geng, W.; Tong, C.J.; Liu, J.; Zhu, W.; Lau, W.M.; Liu, L.M. Structures and electronic properties of different CH3NH3PbI3/TiO2
interface: A first-principles study. Sci. Rep. 2016, 6, 20131. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1021/jp971959k
https://doi.org/10.1021/jp107136j
https://doi.org/10.1103/RevModPhys.65.599
https://doi.org/10.1016/j.cplett.2004.11.125
https://doi.org/10.1039/D1NJ04197E
https://doi.org/10.1021/jp511484d
https://doi.org/10.1016/j.orgel.2012.12.001
https://doi.org/10.1021/jp055432g
https://doi.org/10.1021/cr050140x
https://doi.org/10.1016/j.nanoen.2016.06.044
https://doi.org/10.1039/C7TA01764B
https://doi.org/10.1021/acs.jpca.9b00846
https://www.ncbi.nlm.nih.gov/pubmed/30900901
https://doi.org/10.1021/jp1025625
https://doi.org/10.1002/chem.200601803
https://www.ncbi.nlm.nih.gov/pubmed/17373008
https://doi.org/10.1126/science.aai9081
https://doi.org/10.1038/srep20131

	Introduction 
	Computational Methods 
	Results and Discussion 
	Geometric and Electronic Structures 
	Stability and Solubility 
	Reorganization Energy, Transfer Integral, Transfer Rate, and Mobility 
	Molecular Stacking 
	Interaction Energy 
	Interface Property 

	Conclusions 
	References

