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Abstract: Due to their reliability, affordability and high safety, rechargeable aqueous zinc ion batteries
(ZIBs) have garnered a lot of attention. Nevertheless, undesirable long-term cycle performance
and the inadequate energy density of cathode materials impede the development of ZIBs. Herein,
we report a layered CaV4O9-MXene (Ti3C2Tx) composite assembled using CaV4O9 nanosheets on
Ti3C2Tx and investigate its electrochemical performance as a new cathode for ZIBs, where CaV4O9

nanosheets attached on the surface of MXene and interlamination create a layered 2D structure,
efficiently improving the electrical conductivity of CaV4O9 and avoiding the stacking of MXene
nanosheets. The structure also enables fast ion and electron transport. Further discussion is conducted
on the effects of adding MXene in various amounts on the morphology and electrochemical properties.
The composite shows an improved reversible capacity of 274.3 mA h g−1 at 0.1 A g−1, superior
rate capabilities at 7 A g−1, and a high specific capacity of 107.6 mA h g−1 can be delivered after
2000 cycles at a current density of 1 A g−1. The improvement of the electrochemical performance is
due to its unique layered structure, high electrical conductivity, and pseudo capacitance behavior.

Keywords: aqueous; zinc ion batteries; vanadium-based cathode; CaV4O9; MXene

1. Introduction

The energy crisis and environmental pollution make the development of large-scale
energy storage systems imminent. Lithium-ion batteries (LIBs) dominate the energy stor-
age field of 3C electronics and the electric vehicle industry [1–4]. Nevertheless, the limited
resources of lithium, safety, and high cost dramatically hinder the future sustainability of
lithium-ion batteries [5–7]. Recently, aqueous zinc ion batteries (ZIBs) with lower cost, higher
security, high efficiency, and ultra-high theory capacity (820 mAh g−1) have attracted increas-
ing attention [8–10]. Yet, achieving high performance aqueous ZIBs with long-term life cycles
and high energy density remains a challenge owing to the low electrical conductivity and
structural instability of conventional cathode materials [11–15]. Currently, the widely reported
cathodes for ZIBs are mainly based on manganese- or vanadium-based oxides, Prussian blue
analogs, spinel-structured oxides, and organic materials [5,16–19]. Among those materials,
vanadium-based materials show promising because of their tremendous natural richness,
multiple valence states, and unique layered structure.

Although vanadium-based materials have made great progress in the intercalation/
deintercalation of Zn2+, such materials often suffer from slow diffusion kinetics, irreversible
phase transitions, and even structural collapse [20,21]. One of the most effective strategies
is the introduction of metal ions such as MxV2O5·nH2O (M = Zn, Ca, Mg). Metal ions in
vanadium oxides can enhance the structural stability of the host material, and thus improve
the cyclic performance [22,23]. Calcium vanadate (CaV4O9, CVO), having a typical lamellar
structure in which [V4O9]

2n−
n sheets consist of a VO5 square pyramid with shared vertices,

shows higher conductivity and specific surface area [20,24–26]. The strength of the V–O
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bond is large, can effectively mitigate structural stress change induced by the ion insertion
process, and enhance the electrochemical performance of the material. Therefore, CaV4O9
is widely used in lithium-ion/sodium-ion batteries. Wu et al. applied CaV4O9 as an
anode material in lithium-ion batteries [27]; the electrode showed both a high capacity of
more than 600 mAh g−1 with a safe average discharge potential of about 0.8 V and near-
zero volume change characteristics. Xu et al. reported CaV4O9 nanowires in sodium-ion
batteries [28], and the prepared electrodes delivered high reversible capacity, excellent
cycling, and multiplicity performance.

However, the utilization of CaV4O9 in zinc ion batteries has rarely been reported.
Recently, Du et al. prepared CaV4O9/CNTs composite film as the cathode for ZIBs using a
consecutive spray printing technique [29]. Ex situ XRD and XPS analysis results demon-
strated that the generation of amorphous V2O5·nH2O during charging, which can provide
more ion channels, speeds up charge transfer at the electrode/electrolyte interface. Huang
et al. reported an electrochemically induced in situ transformation method to synthesize
oxygen-deficient navajoite (V5O12−x·6H2O, HVOd) covered by gypsum (CaSO4·2H2O, GP)
layers using CaV4O9 as the pristine cathode material. GP facilitates the desolvation of
hydrogenated zinc ions through its hydrophilic surface and constrained tunneling [30]. Wu
et al. prepared novel hydrated vanadate (CaV8O20·3H2O) nanoribbons with graphene as
the cathode material for aqueous zinc ion batteries [31]. Ca2+ and crystal water as columns
enhance the stability of the framework and reduce electrostatic interactions with Zn2+.
However, calcium vanadate materials tend to aggregate, showing unsatisfactory cycling
stability, low specific capacity (<430 mA h g−1), and their charge storage capacity is much
lower than the theoretical capacity of V2O5 (585 mA h g−1). To address these issues, com-
positing conductive material alleviates the volume expansion. As an attractive 2D layered
metal carbide/nitride, MXenes have been considered as ideal conductive materials for de-
veloping composite electrodes with high-rates due to their unique 2D structure, abundant
surface functional groups, high electrical conductivity, and good hydrophilicity [32–34].

Herein, we report the reasonable design of the hierarchical assembled CaV4O9-MXene
(Ti3C2Tx) layered composite via a solvothermal method. CaV4O9 nanosheets are homoge-
neously loaded onto the interlayer and surface of MXene, forming a unique layered structure.
The morphology can improve the conductivity of the nanocomposites. Furthermore, the
strong interaction between grown CaV4O9 nanosheets and MXene substrates promotes fast
ion insertion/extraction of kinetics and structure stability. Investigations are also conducted
into how different amounts of MXene affected the zinc ion storage performance. The pseu-
docapacitive behavior of CaV4O9-Ti3C2Tx is further analyzed, playing an essential role in
the specific capacity contribution. Due to the benefits of the unique structural characteristics,
CaV4O9-MXene-0.1 exhibits an enhanced specific capacity of 274.3 mAh g−1 at 0.1 A g−1,
superior rate capabilities, and long cycling stability, a high specific capacity of 107.6 mAh g−1

can be delivered after 2000 cycles at a current density of 1 A g−1.

2. Experimental Methods
2.1. Materials Synthesis
2.1.1. Synthesis of Ti3C2Tx MXene

Firstly, 2 g of Ti3AlC2 MAX powder was placed in a plastic beaker containing 20 mL
of HF (49 wt%), stirred at ambient temperature for 24 h to etch the Al element in the MAX,
then the sample was washed with distilled water to pH = 7 and dried in vacuum at 60 ◦C
for 12 h to collect Ti3C2Tx MXene powder.

2.1.2. Synthesis of CaV4O9-MXene

1 mmol of Ca(OH)2 was added to a mixture of 10 mL glycerol and 10 mL water, 2 mmol
V2O5 was dispersed in 10 mL of deionized water, then 5 mL H2O2 solution was slowly
added. Stirring the two solutions separately for 1 h, afterwards it was stirred for 2 h after
mixing; finally, MXene powder was added and stirred for another 2 h. The mixture was
placed in a 50 mL polytetrafluoroethylene kettle encapsulated in a stainless-steel reactor
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and kept at 200 ◦C for 48 h. After solvothermal reaction, the CaV4O9-MXene material was
obtained using suction filtration, repeated cleaning with distilled water and ethanol, and the
material was dried in vacuum for 12 h. For comparison, the samples with different amounts
of MXene, including 0.1 g, 0.2 g, 0.3 g, were prepared, and the obtained samples were
labeled as CaV4O9-MXene-0.1, CaV4O9-MXene-0.2, and CaV4O9-MXene-0.3, respectively.

2.2. Characterizations

The prepared products were morphologically analyzed using field emission scanning
electronic microscopy (FESEM, JSM-7800F) and transmission electronic microscopy (TEM,
JEM-2100, JEOL, Tokyo, Japan). XRD pattern was performed with a powder X-ray diffrac-
tion system (XRD, Rigaku d/max PC2500, Tokyo, Japan) with Cu Kα in a range from 5◦ to
90◦. Nitrogen adsorption/desorption isotherms were determined with an Isorb-HP2 ana-
lyzer (Quantachrome Instruments, Boynton Beach, FL, USA) at 77 K with liquid nitrogen.
X-ray photoelectron spectrometry (XPS) was measured on a Thermo Scientific (Waltham,
MA, USA) ESCALAB 250Xi spectrometer.

2.3. Electrochemical Measurements

To prepare the CaV4O9-MXene cathode, the electrochemical active material (CaV4O9-
MXene) was mixed with ethynyl black and polyphenylene fluoride (PVDF) in N-methyl
pyrrolidone in a ratio of 8:1:1 by weight, then the slurry was coated on titanium foil
polished with sandpaper, while zinc foil and a glass fiber membrane (GF/D) were applied
as the anode and separator, respectively. Deoxygenated 3M Zn (CF3SO3)2 was used as the
electrolyte. Subsequently, the cathode was dried in vacuum under 60 ◦C for 12 h. CR2032
cells were fabricated using as-prepared electrodes in air. The electrochemical properties of
the cells were evaluated using a LAND battery test system (CT2001A), including specific
capacity, rate performance, and long-term cycling stability. Cyclic voltammetry (CV)
measurements were performed on a CHI 760E electrochemical workstation. Contact angle
test was performed on a JC 2000D1 contact Angle tester.

3. Results and Discussion
3.1. Structure Characterization

Figure 1a depicts the preparation process of CaV4O9-MXene composite. Firstly, MX-
ene was synthesized via a hydrogen fluoride solution etching Al atom from a MAX phase.
CaV4O9 nanosheets homogeneously anchored on MXene surface were obtained using a simple
solvothermal strategy. We prepared three samples (CaV4O9-MXene-0.1, CaV4O9-MXene-0.2,
and CaV4O9-MXene-0.3) with different MXene contents based on the mass of MXene used
(0.1 g, 0.2 g, and 0.3 g). Figures 1b–d and S1 displays scan electron microscope (SEM) images
of MXene and CaV4O9-MXene materials. As can be seen from Figure 1c, CaV4O9 nanosheets
grew uniformly on the MXene surface and were able to preserve the layer structure of MX-
ene; the morphology can enlarge the layer intervals of MXene and increase the surface area
and sites for ion storage. In addition, CaV4O9 consists of numerous interleaved ultra-thin
nanosheets forming a spherical flower structure, which may be due to the absence of MXene
substrate. In contrast, composites with a higher concentration of MXene exhibited a stacked
layered structure and full coating (Figure S1a–d).

The morphology of CaV4O9-MXene-0.1 was investigated using high-resolution trans-
mission electron microscopy (HRTEM). As shown in Figure 1e–g, it appears that the
presence of ultrathin CaV4O9 nanosheets uniformly anchored on Ti3C2Tx layers. The
crystalline lattice of CaV4O9-MXene-0.1 can be clearly seen in Figure 1f. The crystal lattice
distance was 0.24 nm, indexed to the (310) crystal plane of CaV4O9 [26]. Energy dispersive
X-ray spectroscopy (EDS) element mapping further revealed the uniform distribution of
calcium, carbon, fluorine, titanium, vanadium, and oxygen elements in CaV4O9-MXene-0.1
material (Figure 1g).
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Figure 1. (a) Schematic illustration showing the synthesis process of CaV4O9-MXene composite,
(b) SEM images of MXene, (c,d) SEM images of CaV4O9-MXene-0.1, (e,f) HRTEM images of CaV4O9-
MXene-0.1, and (g) STEM image and EDS elemental mappings of Ca, C, F, Ti, V, and O of the
CaV4O9-MXene-0.1.

To explore the microstructure of the CaV4O9-MXene cathode material synthesized
under different amounts of MXene, XRD patterns were recorded (Figure 2a). From the XRD
patterns, we found that the characteristic peaks of composites appeared at 29.8◦, 33.7◦, 43.5◦,
and 48.8◦, respectively, and no impurity was detected, showing that CaV4O9 is a purified
phase [35]. The composite showed weak MXene diffraction peaks compared with pure
MXene, which may be due to the low MXene content and the coating of CaV4O9 nanosheets
on the MXene surface. X-ray photoelectron spectroscopy (XPS) was used to analyze the
surface chemical properties and chemical states of CaV4O9-MXene-0.1. Based on the full
spectrum of CaV4O9-MXene-0.1, peaks at 346.8 eV, 517.4 eV, and 531.0 eV correspond to Ca
2p, V 2p, and O 1s, respectively (Figure S2). As shown in Figure 2b, the Ca 2p spectrum
showed two types of bands at 347.5 eV and 350.8 eV [36]. In the high-resolution V 2p
spectrum (Figure 2c), CaV4O9-MXene-0.1 showed the characteristic peak attributed to
V4+ at 515.7 and 531.4 eV, and the dominant V5+ signal at 517.2 and 529.7 eV [37]. The
surface area of CaV4O9-Mxene-0.1 was measured using the N2 adsorption/desorption
curves (Figure 2d). The results showed that the specific surface area of the composite was
20.315 m2 g−1 due to the uniform coating of CaV4O9 nanoflakes on the surface of MXene.
The adsorption and desorption curves showed that the CaV4O9-MXene-0.1 composite had
H3 hysteresis loops in the type IV isotherm [6,38], indicating mesoporous properties of
the composites.
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3.2. Electrochemical Performance

To identify the distinctive structural benefits of CaV4O9-MXene material, electrochemical
tests were carried out. Figure S3 shows the galvanostatic charge–discharge (GCD) curve of
MXene at a current density of 0.1 A g−1. As can be seen, the stable discharge capacity was
only 39 mAh g−1, and after compositing with CaV4O9, a higher specific capacity was obtained
(Figures 3a and S4). By comparing the composites with different proportions, CaV4O9-MXene-
0.1 achieved a higher specific discharge capacity of 274.3 mAh g−1 after 10 cycles, which
means that the composite may be helpful to improve the zinc storage capacity of CaV4O9-
MXene material. Notably, the low Coulombic efficiencies of the first cycle correspond to
electrolyte decomposition and SEI film formation [39]. The rate performance of the MXene
and CaV4O9-MXene cathode is compared in Figure 3b at different current densities from 0.1 to
2 A g−1. Taking CaV4O9-MXene-0.1 as an example, the discharge capacities of 271.6 mAh g−1,
267.2 mAh g−1, 254.2 mAh g−1, 232.1 mAh g−1, and 207.5 mAh g−1 can be achieved at current
densities of 0.1, 0.2, 0.5, 1, and 2 A g−1, respectively. While the current recovered back to
0.1 A g−1, the reversible capacity was covered to 260.1 mAh g−1, corresponding to a capacity
retention of 95.8%. Similarly, for CaV4O9-MXene-0.2 and CaV4O9-MXene-0.3, as the current
rate recovered after 50 cycles to 0.1 A g−1, the discharge capacity was 159.6 and 202.6 mAh g−1,
respectively. Obviously, compared with pure MXene, the composite material exhibited improved
electrochemical properties, among which the performance of CaV4O9-MXene-0.1 was the best,
in accordance with the results of galvanostatic charge/discharge test.
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vanostatic charge/discharge curves of CaV4O9-MXene-0.1 at 0.1 A g−1 in 0.2–1.6 V, (b) rate capability
of CaV4O9-MXene composite from 0.1 to 2 A g−1, (c) EIS of MXene and CaV4O9-MXene composites,
(d) the Ragone plots of CaV4O9-MXene compared with other reported cathode materials in aqueous
ZIBs, (e) cyclic performance of CaV4O9-MXene composite at different current densities.

In comparison with pure MXene, all composites displayed improved cycling properties
as shown in Figure 3e. When the current density was 0.1 A g−1, the specific discharge capacity
of CaV4O9-MXene-0.1 remained at 185.1 mA h g−1 after 100 cycles. We continued to carry
out the cycle performance test at 0.2 A g−1. After 100 cycles, the specific discharge capacity
was still 117.4 mA h g−1. When we used a higher current density of 0.5 A g−1, the specific
discharge capacity was 73.2 mA h g−1 after 300 cycles. This shows that the CaV4O9-MXene
composite exhibits good stability. The electrolyte ion and electron transport characteristics
of MXene and the CaV4O9-MXene composite were further analyzed using electrochemical
impedance spectroscopy (EIS) (Figure 3c). The semicircle observed in the high frequency
area responds to the charge transfer (Rct) impedance at the interface [40]. The Rct value of
CaV4O9-MXene was significantly lower than that of MXene, indicating faster charge transfer
in electrochemical reactions. For comparison, CaV4O9-MXene-0.1 showed smaller impedance
and better conductivity, indicating the faster kinetics characteristics of CaV4O9-MXene over
MXene. The Ragone plots are shown in Figure 3d; the delivered specific energy and power
density of CaV4O9-MXene was 888.79 Wh kg−1 at 325.56 W kg−1, and 675.93 Wh kg−1 at
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6759.3 W kg−1, which is superior than other reported cathodes in aqueous ZIBs, such as
V2Ox@V2CTx (70 Wh kg−1, 705.6 W kg−1) [34], V3O7/GO (191.8 Wh kg−1, 153.4 W kg−1) [41],
CaVO/CNTs (290 Wh kg−1, 68 W kg−1) [29], GP-HVOd (173 Wh kg−1, 7688 W kg−1) [42],
and V2O5 (310.3 Wh kg−1, 217.8 W kg−1) [43].

To determine the reaction mechanism, cyclic voltammetry (CV) curves were obtained
in initial several cycles at a scan rate of 0.05 mV s−1 in the voltage range of 0.2–1.6 V.
As shown in Figure 4a, the CV curve showed two pairs of distinct redox peaks. The
oxidation peaks were located at 0.671 V and 1.001 V, and the reduction peaks were at
0.577 V and 0.94 V, respectively. It is proved that there is a two-step reaction process in the
insertion/extraction process of Zn2+ [44]. In the following scan, the CV curve had a good
degree of coincidence, and the redox peak of CaV4O9-MXene-0.1 was almost unchanged,
which proves good stability and reversibility. At high current density (Figure 4b), the
CaV4O9-MXene-0.1 still exhibited an excellent capacity retention. When the current density
ranged from 0.1 to 7 to 0.1 A g−1, the CaV4O9-MXene-0.1 electrode showed excellent rate
performance, and CaV4O9-MXene-0.1 provided higher reversible capacities of 246.6, 185.5,
164.1, 137.4, and 130.2 mA h g−1 at 0.1, 1, 2, 5, and 7 A g−1, respectively. When the current
gradually recovered to 0.1 A g−1, 77.1% of the initial capacity was restored, indicating that
MXene can synergistically accelerate kinetics and enhance the rate capability. Figure 4c is
the comparison of cycle performance at a current density of 1 A g−1. The specific discharge
capacity of CaV4O9-MXene-0.1 in the first cycle was 221.6 mA h g−1, which can be stably
cycled for 2000 times. The cycling performances of the CaV4O9-MXene-0.2 and CaV4O9-
MXene-0.3 composites showed obvious attenuation, and CaV4O9-MXene-0.1 showed the
best cycling stability. The rate and cycling performance of CaV4O9-MXene were superior to
many reported vanadium-based cathodes (Table S1).
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(b) rate capability of CaV4O9-MXene-0.1 composite from 0.1 to 7 A g−1, (c) cyclic performance of
CaV4O9-MXene composite at 1 A g−1.

3.3. Electrochemical Kinetics

To further reveal the electrochemical kinetics of the zinc ion diffusion process and
the contribution of pseudo capacitance behavior of the CaV4O9-MXene-0.1 electrode, CV
curves in the voltage range of 0.2–1.6 V at different scan rates are provided in Figure 5a. All
CV curves showed two pairs of redox peaks with similar shape, which correspond to the
voltage plateau of the charge–discharge curves and can be attributed to a two-step reaction
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of Zn2+ in the CaV4O9-MXene lattice. Generally, the relationship between peak current (i)
and scan rate (v) can be expressed as:

i = avb (1)

log(i) = blog(v) + log(a) (2)

where i and v are current and scan rate, and a and b are variable parameters. In Formula (2),
the slopes of log (i) and log (v) can be used to calculate the value of b, which can analyze
the charge storage mechanism during electrochemical reactions [45]. When the electrode
process is controlled by diffusion, the value of b is 0.5, manifesting as the response current
proportionating to the square root of the voltage scan rate. When the electrode process is
controlled by capacitance, the value of b is one. As shown in b, the b values of peaks P1, P2,
P3, and P4 are 0.83, 0.97, 0.88, and 0.73, respectively, demonstrating that the electrode is
mainly controlled by the pseudo capacitance and, thus, has a fast zinc storage performance.
In addition, the potential-dependent capacitive behavior is identified by the previously
reported method:

i = k1v + k2v1/2 (3)

where k is a constant and the responding current (i) at a given voltage (V) is quantified as
k1ν (capacitive effect) and k2ν

1/2 (diffusion control behavior) [11]. The equation can be
transferred into the format below:

i/v1/2 = k1v1/2 + k2 (4)
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Figure 5. (a) CV profiles at various scan rates for CaV4O9−Mxene−0.1, (b) b values of anode and
cathode peak currents determined by fitting log (i) vs. log (ν), (c) CV at 0.5 mV s−1, blue shaded area
indicating capacitance contribution, (d) ratio of the contribution of capacitance and diffusion behavior
at different scan rates, (e) contact angles of an electrolyte droplet on CaV4O9-MXene-0.1 sample.



Nanomaterials 2023, 13, 1536 9 of 11

Therefore, it can be analyzed based on the linear relationship between i/v1/2 and
v1/2. From Figure 5c, the contribution of pseudo capacitance was about 54.7% at a scan
speed of 0.5 mV s−1. As shown in Figure 5d, the contribution rate of pseudo capacitance at
different scan rates was obtained. When the scan rate was 0.1, 0.2, 0.5, 1, 2, and 5 mV s−1,
the contribution was 49.6, 53.4, 54.7, 57.4, 65.4, and 97.5%, respectively. The high pseudo
capacitance control is helpful to accelerate the charging and discharging rate. A high
percentage of capacitive behavior can bring fast response kinetics of the electrodes, which
contributes to its high-rate properties. Furthermore, the contact angle of CaV4O9-MXene-
0.1 after dropping with 2 µL electrolyte reached 101.94◦ immediately, and subsequently
reduced to 26.99◦ after 10 s, indicating good wettability (Figure 5e). This facilitated the
reduction in resistance and fast Zn2+ transfer.

4. Conclusions

In summary, we designed and synthesized a CaV4O9-MXene composite through an
efficient solvothermal strategy. CaV4O9 nanosheets were uniformly anchored on the layer
and surface of MXene, which expanded the MXene layer. The expanded specific surface
area provided abundant active sites for Zn2+ storage, and the addition of MXene enhanced
the electrical conductivity. Benefiting from the synergistic effect of enhanced electron/ion
transfer and a unique layered structure, the as-obtained CaV4O9-MXene exhibited an
excellent cycling and rate performance when used as a cathode for AZIBs. Specifically, the
CaV4O9-MXene-0.1 cathode exhibited a highly reversible capacity of 107.6 mAh g−1 after
2000 cycles at a current density of 1 A g−1. It showed good rate performance with a specific
capacity of 142.9 mAh g−1, even at a high current density of 7 A g−1. Additionally, it had
excellent structural stability, high energy density, and power density (888.79 Wh kg−1 at
325.56 W kg−1). This work provides a method for the design of high-performance electrode
materials featuring layered MXene and vanadium-based materials, and creates a novel
pathway for the application of low-cost ZIBs systems.
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0.2 and CaV4O9-MXene-0.3 (c,d); Figure S2: XPS spectrum of the CaV4O9-MXene-0.1 composite;
Figure S3: Galvanostatic charge/discharge curves of MXene at 0.1 A g−1; Figure S4: (a,b) Gal-
vanostatic charge/discharge curves of CaV4O9-MXene-0.2 and CaV4O9-MXene-0.3 at 0.1 A g−1,
respectively; Table S1: The comparison of the rate and cycling performance of vanadium-based
cathodes in aqueous ZIBs. References [46–53] are cited in the supplementary materials.
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