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Abstract: Two-dimensional (2D) group IV metal chalcogenides are potential candidates for thermo-
electric (TE) applications due to their unique structural properties. In this paper, we predicted a 2D
monolayer group IV metal chalcogenide semiconductor γ-PbSn2(X = S, Se, Te), and first-principles
calculations and Boltzmann transport theory were used to study the thermoelectric performance.
We found that γ-PbSnX2 had an ultra-high carrier mobility of up to 4.04 × 103 cm2 V−1 s−1, which
produced metal-like electrical conductivity. Moreover, γ-PbSn2 not only has a very high Seebeck
coefficient, which leads to a high power factor, but also shows an intrinsically low lattice thermal
conductivity of 6–8 W/mK at room temperature. The lower lattice thermal conductivity and high
power factors resulted in excellent thermoelectric performance. The ZT values of γ-PbSnS2 and
γ-PbSnSe2 were as high as 2.65 and 2.96 at 900 K, respectively. The result suggests that the γ-PbSnX2

monolayer is a better candidates for excellent thermoelectric performance.

Keywords: thermoelectric properties; first principles; Boltzmann transport equation

1. Introduction

The world’s energy demand is increasing due to the development of science and
technology. Thermoelectric modules can directly convert electricity into thermal energy
for cooling and heating and can also harvest waste heat for electrical power. They have,
thus, attracted significant attention [1,2]. The performance of thermoelectric materials
is usually evaluated by the dimensionless figure of merit (ZT), which is defined as
ZT = S2σT/(κe + κl), where S is the Seebeck coefficient, σ is the electrical conductivity, T
is the absolute temperature, and κe and κl are the electronic thermal conductivity and the
lattice thermal conductivity, respectively [3,4]. The higher the ZT value, the better the effi-
ciency µ of the thermoelectric conversion. The efficiency of thermoelectric devices can reach
25% in power generation and exceed traditional refrigeration when ZT > 3 [5,6]. The defi-
nition of ZT suggests that high-performance thermoelectric devices depend on the increase
in the power factor PF = S2σ (W·m−1 K−2) and the decrease in thermal conductivity.

However, due to the Wiedemann–Franz law, there is a coupling relationship between
electronic transport coefficients, which makes it a significant challenge to improve ZT and
enhance thermoelectric performance [7]. In inorganic thermoelectric materials, the improve-
ment of the ZT value is a slow process until the paradigm of “phonon glass, electronic
crystal” was first proposed by Slack et al. [8]. This paradigm indicates that we need to
maintain the electrical conductance at a high level to maximize the ZT value while trying
to reduce the thermal conductance. Subsequently, in order to improve thermoelectric
performance, many advanced methods have been proposed, which can be divided into two
main categories, namely, phonon engineering and electronic engineering, for optimizing
phonon and electronic transport properties, respectively [5,9–14]. Phonon engineering is
focused on the modulation of lattice thermal conductivity by suppressing the mean free
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path of phonons. Electron engineering aims at the modulation of the power factor and
Seebeck coefficient under the optimum carrier concentration. This includes strain engi-
neering [15–20], doping defects [21–23], molecular junction [4,24–26], superlattices [27–29],
and heterostructures [30,31].

Two-dimensional materials with layered structures have attracted extensive attention
as efficient thermoelectric materials due to their outstanding electronic and mechanical
properties [32,33]. In addition, 2D materials exhibit great potential as thermoelectric candi-
dates due to the enhanced Seebeck coefficient resulting from the increased density of states
in proximity to the Fermi energy level [34,35]. In the past several decades, the thermoelec-
tric performance of a series of 2D materials has been theoretically predicted and samples
have been experimentally fabricated [36–38]. In particular, many group VI compounds,
such as single layers of transition metal dichalcogenides (TMDCs), MX2 (M = Mo, W, Ti,
and X = S, Se, Te), and group IV metal chalcogenides, AX2 (A = Ge, Sn, Pb, and X = S, Se, Te),
have attracted attention in recent decades due to their unique semiconducting characteris-
tics [35,39,40]. Recently, a novel class of 2D group IV metal chalcogenides, (AX)2 (A = Si,
Ge, Sn, Pb; X = Se, Te), has been theoretically predicted through ab initio calculations [41].
Dong et al. reported that the γ-SnX (X = S, Se, or Te) has high thermoelectric performance
due to the low thermal conductivity [14]. Then, Jia et al. reported high thermoelectric
properties due to strong anharmonic effects in the (PbX)2 (X = S, Se, Te) monolayer [42].
Thus, the γ-phase group IV metal chalcogenides exhibit great potential as candidates for
thermoelectric applications.

In this work, we predicted a series of 2D γ-phase group IV metal chalcogenides,
namely, γ-PbSnX2 (X = S, Se, Te), based on the crystal structure of γ-AX (A = Pb, Sn and
X = S, Se, Te). In addition, we investigated the thermoelectric transport properties using
first-principles calculations combined with the Boltzmann transport equation. The density
functional theory (DFT) has been widely used to predict the thermoelectric properties of
materials [43,44]. The results show that these materials have high power factors and low
lattice thermal conductivity, leading to a high figure of merit (ZT). The studies indicate
that these materials are potential candidates for high-temperature thermoelectric materials.

2. Computational Method

In this work, we performed first-principles simulations using the Vienna Ab initio
Simulation Package (VASP) based on density functional theory (DFT) [45,46] and using the
projector augmented wave (PAW) pseudopotential [47–50]. The generalized gradient ap-
proximation (GGA) method with the Perdew–Burke–Ernzerhof (PBE) exchange–correlation
(XC) functional was employed [51]. The total energy convergence criterion of 10−8 eV,
the force convergence criterion of 0.001 eV/Å, and the kinetic energy cutoff of 500 eV
were used to optimize the crystals [50]. A set of 15 × 15 × 1 Monkhorst-Pack k-points [52]
was used to sample the Brillouin zone. A 20 Å vacuum layer was set in the direction
of the z-axis to avoid the interaction of periodic layers along the z-axis and the DFT-D3
method was used to correct the van der Waals (VDW) interactions [53]. A hybrid functional
(HSE06) was used to calculate the electronic band properties of materials. The thermo-
electric transport coefficient was calculated by solving the Boltzmann transport equation
with the BoltzTraP package [54]. The relaxation time was calculated using the deformation
potential theory and effective mass approximation. A 3 × 3 × 1 supercell was used to
calculate the second-order and third-order force constants of the materials through the
finite displacement method. The cutoff radius of the third-order force constant was set
as the sixth-nearest neighbors. Lattice thermal conductivity was obtained by solving the
Boltzmann transport equation using ShengBTE, and a grid density of 60 × 60 × 1 k-points
was used to ensure convergence [55].
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3. Results
3.1. Structure and Stability

The monolayer γ-PbSnX2(X = S, Se, Te) can be constructed from a γ-AX (A = Pb, Sn
and X = S, Se, Te) monolayer by replacing one layer of chalcogen Pb/Sn atoms with another
layer of chalcogen Sn/Pb atoms in the middle side, resulting in a hexagonal lattice structure
with a P3m1 space group (Figures 1 and S1). The calculated lattice constants of γ-PbSnS2,
γ-PbSnSe2, and γ-PbSnTe2 are a = b = 3.96 Å, 4.11 Å, and 4.37 Å, respectively. The specific
crystal structure parameters are shown in Table 1.

(a) (b)

Figure 1. (a) Side view and (b) top view of the optimized γ-PbSnX2 (X = S, Se, Te) monolayer structure.

Table 1. Structural parameters for the γ-PbSnX2 (X = S, Se, Te). Here, a is the lattice constant, dSn−X ,
dPb−X , and dPb−Sn are the Sn-X, Pb-X, and Pb-Sn bond lengths, respectively, and h is the vertical
distance between the two outermost X atoms in Angstroms, as shown in Figure 1.

Material a (Å) dSn−X (Å) dPb−X (Å) dPb−Sn (Å) h (Å) C11 (N/m) C12 (N/m) C66 (N/m)

PbSnS2 3.96 2.64 2.68 3.58 5.49 39.5 12.9 13.2

PbSnSe2 4.11 2.77 2.81 3.51 5.52 42.7 14.5 14.1

PbSnTe2 4.37 2.97 3.01 3.46 5.59 43.5 12.7 15.4

We next verified the structural stability of the γ-PbSnX2 (X = S, Se, Te) monolayer,
including the mechanical, dynamic, and thermal stabilities. For the mechanical stability, we
used the Born criterion of 2D materials as C11 > |C12| > 0 and C66 > 0 [56]. The calculated
elastic constants of γ-PbSnX2, γ-PbSnX2, and γ-PbSnX2 were C11 = 39.5, 42.7 and 43.5 N/m,
C12 = 12.9, 14.5, and 12.7 N/m, and C66 = 13.2, 14.1, and 15.4 N/m, respectively (Figure S2).
These calculated values are given in Table 1 and satisfy the Born criterion. For the dynamic
stability, we calculated the phonon dispersion of γ-PbSnX2. Figure 2a–c shows the phonon
dispersion curve of γ-PbSnX2. Each unit cell of the γ-PbSnX2 monolayer has four atoms,
with three acoustic and nine optical branches. The phonon frequencies of the γ-PbSnX2
monolayer are all positive, indicating the dynamic stability of the γ-PbSnX2 monolayer.
They all have very low phonon frequencies and lead to a decrease in their phonon frequen-
cies as the atomic mass of sulfur group elements increases. More interestingly, an apparent
coupling occurs between optical and acoustic phonon modes in γ-PbSnX2 monolayers,
which might lead to a low lattice thermal conductivity because of anharmonic scattering.
To determine the thermal stability, we used ab initio molecular dynamics (AIMD) simula-
tions to determine the stability of γ-PbSnX2 at 900 K. A 4 × 4 × 1 supercell was used for
the AIMD simulation. The AIMD simulation results are shown in Figure 2d–f. The total
energy was almost unchanged at a temperature of 900 K for 10 ps. In addition, the structure
exhibited no obvious deformation at 900 K. The results confirm the thermal stability of
γ-PbSnX2 at 900 K. In additional, we also calculated the formation enthalpy (∆H) through:

∆H =
HPbSnX2 − HPb − HSn − 2HX

4
(1)
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where HPbSnX2 is the total energy of the γ-PbSnX2 monolayer, HPb, HSn, and HX are the
energy of a single atom (Pb, Sn, and X = S, Se, Te) of the structure.
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Figure 2. (a–c) Phonon dispersions for γ-PbSnX2 (X = S, Se, Te). (d–f) Total potential energy fluctua-
tion and structures in AIMD simulations of γ-PbSnX2 (X = S, Se, Te).

According to Equation (1), it is obvious that negative formation energies are related
exothermic chemical reactions, which imply stable products. As listed in Table S1 (in the
Supplementary Material), the formation enthalpy values of γ-PbSnS2, γ-PbSnSe2, and γ-
PbSnTe2 are −0.45, −0.37, and −0.23 eV/atom, respectively, which indicates that all the
monolayers are stable. In addition, it can be seen from Table S1 that the lighter structures of
atoms are more stable because they are more likely to form through exothermic reactions.

In conclusion, we determined the stability of materials by calculating their formation
enthalpy, mechanical stability, dynamic stability, and thermal stability. The formation
enthalpy of the material calculated using Equation (1) is negative, which indicates that the
material can release energy during chemical formation and reach a stable state. The phonon
dispersion curve can reflect the dynamic stability of the structure, indicating that the
material is dynamically stable. The AIMD simulation results can reflect the thermal stability
of the structure at 900 K, indicating that the structure can exist stably at 900 K. These results
indicate that these structures are stable.

3.2. Electronic Band Structure

Figure 3 shows the electronic band structures of the γ-PbSnX2 (X = S, Se, Te) mono-
layers calculated using the PBE and HSE06 exchange–correlation functionals. The corre-
sponding band gap values are given in Table 2. They are both indirect band gaps with a
conduction band minimum (CBM) at the high symmetry point Γ (0, 0, 0) and a valence
band maximum (VBM) between the high symmetry points Γ (0,0,0) and K (1/3, 1/3, 0).
The band gap calculated using HSE06 is larger than that calculated using PBE. It is noted
that the PBE functional often underestimated the band gap value, while the HSE functional
gave a reliable band gap value compared with the experiment. The band gaps of γ-PbSnS2,
γ-PbSnSe2, and γ-PbSnTe2 were 0.86 (1.37) eV, 0.63 (1.08) eV and 0.61 (0.98) eV, respectively.
The band gaps calculated by all the methods gradually decreased as the atomic number of
the substituted chalcogenide element (S, Se, and Te) increased. The thermoelectric charac-
teristics of the γ-PbSnX2 monolayer can be easily tuned at a suitable doping concentration
for 2D materials, according to such a moderate band gap. The band types and shapes
calculated using the PBE and HSE functionals were essentially unchanged except for the
band gap. The variable situation theory and effective mass approximation method were
used to calculate the carrier mobility and relaxation time of the material, and the band
values near the VBM and CBM were used for fitting. However, the band structure and
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shape calculated using the PBE and HSE06 functionals in the VBM and CBM were the same;
only the band gap was different. This means that the dispersion relationship between the
PBE and HSE functionals was consistent and the effective mass calculated using the PBE
and HSE06 functionals was assumed to be the same. Therefore, we used the PBE function
to obtain the effective mass and carrier mobility of these materials. The partial density of
states (PDOS) of the γ-PbSnX2 is shown in Figure 3d–f, with the valence bands closer to
the Fermi energy level. The valence bands around the Fermi level originate from the S, Se,
and Te atoms, and the conduction bands are jointly contributed by Sn or Pb, S, Se, and Te
atoms. Figure 3d–f show that γ-PbSnS2, γ-PbSnSe2, and γ-PbSnTe2 all have a very sharp
density of state peaks at the Fermi energy level attachment, where γ-PbSnS2 has a higher
density of state peaks than γ-PbSnSe2 and γ-PbSnTe2.
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Figure 3. (a–c) Band structures of γ-PbSnX2 (X = S, Se, Te) calculated using the PBE and HSE06
functionals. (d–f) Partial density of states (PDOS) of the γ-PbSnX2. The Fermi level was set as zero.

Table 2. Bandgap of γ-PbSnX2 (X = S, Se, Te) calculated using PBE and HSE06.

Material Structure Gap-Type Eg (PBE) Eg (HSE06)

PbSnS2 hexagonal (2D) Indirect 0.86 eV 1.37 eV
PbSnSe2 hexagonal (2D) Indirect 0.63 eV 1.08 eV
PbSnTe2 hexagonal (2D) Indirect 0.61 eV 0.98 eV

3.3. Carrier Mobility and Relaxation Time

We estimated the electrical characteristics of the γ-PbSnX2 (X = S, Se, Te) monolayer
using the BoltzTraP package, which is based on the semi-classical Boltzmann transport
equation. Additionally, the BoltzTraP2 package uses constant relaxation time approxima-
tion, which means the calculated results are divided by the relaxation time. Therefore,
in order to accurately calculate the thermoelectric properties of the material, the relaxation
time of the material must be obtained.

Here, the carrier mobilities and relaxation time of the 2D materials are calculated using
deformation potential theory and the effective mass approximation method [57–59]:

µ2D =
eh̄3C2D

kBT|m∗|2E1
2 (2)

τ =
h̄3C2D

kBT|m∗|E1
2 (3)
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where h̄ is the reduced Planck constant, kB is the Boltzmann constant, T is the temperature,
µ2D is the carrier mobility, and τ is the relaxation time. C2D is the elastic constant defined by

C2D = ∂2Etotal/∂ε2

S0
, where Etotal is the total energy after applying a uniaxial term (ε = ∆l/l0),

and S0 is the area at equilibrium. m∗ is the effective mass defined by m∗ = h̄2
(

d2ε(k)
dk2

)−1
;

we calculated the effective mass using vaspkit code [60]. Six discrete points were selected
in the CBM and VBM attachments for polynomial fitting, and the truncation radius was
0.015/Å to 0.01/Å. With the decrease in the truncation radius, ∆k also decreased, but the
results of the effective mass calculation were almost constant. Therefore, we believe that the
results converged, that is, smaller ∆k values would not have changed the reported effective
mass. E1 is the deformation potential constants defined by Ed = ∆E/∆ε, where ∆E is the
energy shift of the band edge of CBM or VBM with respect to the vacuum level (Figure S3).

Table 3 shows the results of the electric and hole carrier mobilities calculated with the
theory of deformation potential at 300 K. Among them, γ-PbSnS2 and γ-PbSnSe2 had a
ultra-high hole carrier mobility; in particular, γ-PbSnS2 had the highest hole mobility of
4.04 × 103 cm2 V−1 s−1, which was significantly higher than that of other two-dimensional
semiconductors, e.g., MoS2 (285 cm2 V−1 s−1) [61], SnS2 (756 cm2 V−1 s−1) [62], SnSe2
(462 cm2 V−1 s−1) [62], γ-PbX2 (780 cm2 V−1 s−1) [42], and γ-SnX2 (1364 cm2 V−1 s−1) [14].
The high carrier mobility of γ-PbSnS2 and γ-PbSnSe2 was due to a combination of a low
effective mass and deformation potential energy. The high hole carrier mobility indicates
that γ-PbSnS2 and γ-PbSnSe2 are potential p-type semiconductors. In addition, Hung et al.
showed that a high carrier mobility is one of the important parameters for screening
thermoelectric materials [63,64]. The ultra-high carrier mobility indicates that γ-PbSnX2
has excellent hole transport properties and is an excellent thermoelectric material.

Table 3. Calculated effective mass (m∗), elastic constant (C2D), deformation potential (E1), carrier
mobility (µ2D), and relaxation time (τ) for electrons (e) and holes (h) in the γ-PbSnX2 monolayer at
300 K.

Material Carrier C2D (N/m) m∗/m0 E1(eV) µ2D (×103cm2 V−1 s−1) τ (ps)

PbSnS2
e 39.5 0.22 4.92 0.476 0.059
h 0.50 1.02 4.04 1.14

PbSnSe2
e 42.75 0.18 5.52 0.654 0.067
h 0.357 2.66 1.421 0.288

PbSnTe2
e 43.55 0.23 6.52 0.256 0.033
h 0.596 4.14 0.245 0.083

3.4. Thermoelectric Properties

We investigated the thermoelectric properties of the materials in the temperature range
of 300 K to 900 K. As shown in Figure 4a–c, all three materials had a high Seebeck coefficient
at 300 K. Among them, the Seebeck coefficients of γ-PbSnS2, γ-PbSnSe2, and γ-PbSnTe2
were 1400 µV/K, 800 µV/K, and 900 µV/K , respectively, which were much higher than
those of other common 2D materials, such as SnTe (600 µV/K) [65], MoSe2 (427 µV/K) [66],
and WS2 (328 µV/K) [67]. The Seebeck coefficient of γ-PbSnS2 was higher than those of
γ-PbSnSe2 and γ-PbSnTe2. This is because γ-PbSnS2 has a higher density of state peaks
than γ-PbSnSe2 and γ-PbSnTe2 near the Fermi energy level (as shown in Figure 3), and the
Seebeck coefficient is proportional to the density of state peaks: S ∝ d(DOS)/dE. The high
density of state peaks near the Fermi energy level indicates that the material will have a
higher Seebeck coefficient. The high Seebeck coefficient indicates that these materials may
have high thermoelectric properties.
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Figure 4. (a–c) Seebeck coefficients, (d–f) electrical conductivity, and (g–i) power factor (PF) of
γ-PbSnX2 (X = S, Se, Te) as a function of carrier concentration.

Figure 4d–f show the electrical conductivities σ obtained by multiplying σ/τ by
τ, where σ/τ was calculated using the BoltzTraP package and τ is the relaxation time
calculated using deformation potential theory. The electrical conductivity of γ-PbSnX2
(X = S, Se, Te) exhibited a similar behavior at different temperatures and decreased as the
temperature increased. This was caused by the enhanced lattice vibrations and electron
scattering at high temperature. The electric conductivity of γ-PbSnX2 gradually decreased
as the atomic number of the substituted chalcogenide element (S, Se, and Te) increased.
In addition, the value of the conductivity is related to the carrier concentration. The con-
ductivity of γ-PbSnX2 was higher in the positive carrier concentration range, which shows
the characteristics of p-type semiconductors. It is worth noting that the electrical con-
ductivity of γ-PbSnX2 reached the same order (106–107/Ωm) as that of metals due to its
ultra-high carrier mobility. The high Seebeck coefficient and conductivity indicate that
they have a high power factor (PF = S2σ), which is important for thermoelectric devices.
With the Seebeck coefficient and electrical conductivity, we evaluated the power factor
(PF) of γ-PbSnX2 (X = S, Se, Te), as shown in Figure 4g–i. All three materials produced
the same trend for the power factor, which decreased with the increase in temperature.
The γ-PbSnS2 had the highest PF because of its higher Seebeck coefficient and electrical
conductivity. Moreover, the PF values of these materials were maximum in the negative
range due to their p-type properties. The PF is one of the important factors in evaluating
the performance of thermoelectric materials, so a high PF predicts that the material will
have high thermoelectric properties.

Materials with high thermoelectric properties require low thermal conductivity in
addition to a high power factor. Figure 5 shows the phonon transport properties of γ-
PbSnX2 (X = S, Se, Te). The results show that both γ-PbSnX2 have a very low thermal
conductivity, which is about 6-8 W/mK at room temperature, and the value of the lattice
thermal conductivity decreased with increasing temperature. In order to understand the
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lattice thermal conductivity of the γ-PbSnX2 monolayer, we explored the phonon-related
properties, such as the phonon group velocity and anharmonic scattering rates. As shown in
Figure 5a–c, the three acoustic phonon branches (ZA/TA/LA) become entangled and strong
coupling occurs between the optical and acoustic phonon modes, which can strengthen
the phonon scattering mechanism and, thus, lower κl . Figure 5d–f show the phonon group
velocities of γ-PbSnX2, and it can be seen that they are both low, and low group velocities
can lead to a low lattice thermal conductivity. The inverse of the phonon relaxation time
in the relaxation time approximation (RTA) is equal to the total scattering rate, which
is the sum of the isotopic scattering rate (τ1

i ), the boundary scattering rate (τ1
b ), and the

anharmonic scattering rate (τ1
a ). In general, a higher value indicates stronger phonon–

phonon scattering and a lower phonon relaxation time, which is beneficial for reducing the
lattice thermal conductivity. As shown in Figure 5g–i, the γ-PbSnX2 monolayer exhibited
high phonon–phonon scattering rates (anharmonic scattering rates) and they are relatively
close to each other. In addition, the value of the lattice thermal conductivity increased with
the atomic number of the elements (S, Se, and Te), which is mainly due to the increase
in the atomic mass and the decrease in the phonon frequency. In conclusion, the strong
coupling between phonons, lower phonon group velocities, and higher scattering rates
lead to lower lattice thermal conductivity, indicating that γ-PbSnX2 may be a suitable
thermoelectric material.
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Figure 5. (a–c) Lattice thermal conductivity at different temperatures, (d–f) phonon group velocity at
300 K, and (g–i) anharmonic scattering rates at 300 K of γ-PbSnX2 (X = S, Se, Te).

After all transport coefficients were obtained, the dependence of ZT on the carrier con-
centration of the γ-PbSnX2 monolayer at different temperatures was calculated, as shown
in Figure 6. All γ-PbSnX2 monolayers exhibited the maximum thermoelectric properties in
the positive carrier concentration range due to their higher hole mobility. The ZT values
for all three materials showed the same trend: increasing with increasing temperature.
Among them, the ZT value of γ-PbSnTe2 was lower, reaching a maximum of only 1.4 at
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900 K, which is due to its low power factor. In addition, γ-PbSnS2 and γ-PbSnSe2 reached
ultra-high ZT values of 2.65 and 2.96 at 900 K due to a combination of their low lattice
thermal conductivity and high power factor. These ultra-high ZT values for γ-PbSnX2
contribute to their low thermal conductivity along with their high power factor. High ZT
values indicate that γ-PbSnS2 and γ-PbSnSe2 are high temperature thermoelectric materials
with a good performance.
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Figure 6. (a–c) The ZT values of γ-PbSnX2 (X = S, Se, Te) as a function of carrier concentration at
300 K.

4. Conclusions

In this study, we constructed a series of γ-PbSnX2 (X = S, Se, Te) 2D monolayer material
based on γ-(AX)2(A = Sn, Pb and X = S, Se, Te) and calculated their thermoelectric proper-
ties using Boltzmann transport theory combined with first principles. The results show that
these materials are narrow bandgap semiconductors with bandgap values of 0.98–1.37 eV
according to the HSE06 functional. They have high hole carrier mobilities; in particular,
γ-PbSnS2 has a hole carrier mobility of 4.04 × 103 cm2 V−1 s−1. In addition, they all have
high Seebeck coefficients and intrinsically low lattice thermal conductivities, which are
800–1400 µV/K and 6–8 W/mK at temperatures of 300 K. The ZT values of γ-PbSnS2,
γ-PbSnSe2, and γ-PbSnTe2 at 900K were 2.65, 2.96, and 1.36, respectively. This high thermo-
electric performance indicates that γ-PbSnX2 monolayer materials are excellent thermoelec-
tric materials. Our theoretical study may help to optimize the thermoelectric properties of
such materials.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano13091519/s1, Figure S1: The structure of γ-PbSnX2 (X = S, Se, Te)
and its possible synthesis process; Figure S2: The energy-strain relationship of γ-PbSnX2 (X = S, Se, Te);
Figure S3: Calculated band energies of the CBM and VBM of γ-PbSnX2 (X = S, Se, Te) with respect to
the vacuum energy as a function of uniaxial strains. The red solid lines are linear fitting curves. The
fitted slopes are presented, which correspond to the DP; Table S1: The energy of γ-PbSnX2 monolayer
and a single atom (Pb, Sn and X = S, Se, Te) of structure, and the formation enthalpy (∆H) of γ-PbSnX2
monolayer.
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