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Abstract: Nanotechnology has allowed for significant progress in architectural, artistic, archaeological,
or museum heritage conservation for repairing and preventing damages produced by deterioration
agents (weathering, contaminants, or biological actions). This review analyzes the current treatments
using nanomaterials, including consolidants, biocides, hydrophobic protectives, mechanical resistance
improvers, flame-retardants, and multifunctional nanocomposites. Unfortunately, nanomaterials
can affect human and animal health, altering the environment. Right now, it is a priority to stop
to analyze its advantages and disadvantages. Therefore, the aims are to raise awareness about the
nanotoxicity risks during handling and the subsequent environmental exposure to all those directly or
indirectly involved in conservation processes. It reports the human–body interaction mechanisms and
provides guidelines for preventing or controlling its toxicity, mentioning the current toxicity research
of main compounds and emphasizing the need to provide more information about morphological,
structural, and specific features that ultimately contribute to understanding their toxicity. It provides
information about the current documents of international organizations (European Commission,
NIOSH, OECD, Countries Normative) about worker protection, isolation, laboratory ventilation
control, and debris management. Furthermore, it reports the qualitative risk assessment methods,
management strategies, dose control, and focus/receptor relationship, besides the latest trends of
using nanomaterials in masks and gas emissions control devices, discussing their risk of toxicity.

Keywords: cultural heritage conservation; nanomaterials; nanotoxicity; prevention measurements;
spraying; brushing; cleaning; personal protection equipment; control banding; international regulations

1. Introduction

Today, nanotechnology has become the primary alternative for progress in fields
as diverse as electronics, aeronautics, telecommunications, energy, pharmaceuticals, and
biomedicine. Its achievements in the construction and fine art sectors have allowed for
progress in new techniques that include nanotechnology to improve the properties of
materials and increase their quality.

One of the main problems in different materials, such as those used in construction,
ceramics, or fine arts, is to stop the deterioration process, repair, or prevent future wear
due to aggressive external agents, which ultimately lead to its destruction. Most of these
materials come from samples of cultural heritage interest. Their destruction prevents the
preservation of their characteristics, which can have fatal consequences over time, leaving
an irreparable historical void [1,2].

With the arrival of nanotechnology in recent decades, the construction [3], museum,
archaeology, and arts [4] saw the opportunity to solve this significant problem [1,5–7]. It
1was the opportunity to use based nanomaterials with consolidating [1], water repellent [8–10],
biocidal [11,12], or fire retardant [13] properties [14]. Over time, different research has
reported the progress in specific fields of cultural heritage conservation [1,15–20].

Nanomaterials 2023, 13, 1454. https://doi.org/10.3390/nano13091454 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano13091454
https://doi.org/10.3390/nano13091454
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-8755-8191
https://orcid.org/0000-0003-2600-3552
https://orcid.org/0000-0001-9967-2824
https://doi.org/10.3390/nano13091454
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano13091454?type=check_update&version=2


Nanomaterials 2023, 13, 1454 2 of 74

Despite its success, in recent years, it has been facing a new urgent problem: its
toxicity [21]. Over the years of investigation on the risks of nanotoxicity, international
organizations have led to creating committees, special bulletins, and databases to report
the results of toxicological tests and updated cases about the mortality rates and new
diseases linked to nanomaterials’ contact with the human body and, generally, with living
beings [22–26]. However, updating reports on the ecotoxicity risk of nanoengineering
materials with specific physicochemical properties is essential. Among them, it is urgent to
consider that their interaction could lead to critical genetic modifications affecting entire
populations in areas close to industrial or mining plants or ecological changes in the soil or
water supply, rivers, or wetlands [27–29]. These sceneries imply a high risk for the fauna,
flora, and, therefore, agriculture or pisciculture products, ultimately affecting the food
chain or the water in surface and underground deposits [30,31].

Usually, the operators and personnel involved in conservation activities must be
aware of the risks they are exposed to. Nanomaterials are generally handled under the
same conditions as any other product. A high potential risk appears when ignoring
ventilation, body protection, appropriate handling requirements, and waste management.
Brushing, spraying, and immersion are the most common ways to apply nanomaterials in
conservation works [32]. In addition, sometimes the surfaces must be polished or ground.
Direct contact with nanomaterial emissions might harm the operator and all those who are
in the surrounding regions. For instance, during a procedure involving spraying, there is
a risk of toxicity due to the ease of inhalation through the nasal way. The air and water
transport dispersion would easily affect living beings. In addition, the current release
of security regulations for the operators’ protection, the handling of nanomaterials, and
derived waste [33,34] do not reach the different specialized groups regarding this subject.
In some countries, security during the handling or storage of nanomaterials is not considered
a priority, mainly due to gaps in relevant information about standard protocols that guarantee
adequate protection measures [35–37]. Moreover, the situation is aggravated because the same
operators or managers reject protecting themselves, underestimating the hazard [3].

Within the variety of nanoproducts applied in conservation processes, reports indicate
toxicity risks, such as those that occur with single or multi-walled carbon nanotubes
(SWCNT and MWCMT), silica, zinc oxide, and metals such as silver or hybrid compounds
that could be highly toxic if there are not necessary prevention measures [38,39]. As
an example, one of the most relevant cases is the use of nano titanium dioxide, with
multiple applications in sectors as diverse as cosmetics [40], dentistry [41], food [42], and
photovoltaic energy [43], improving its photocatalytic and self-cleaning functions when
combined with ZnO [44]. Over the years, the assessment of its toxicity has gone from
being an inert nanomaterial for human and ecosystem health to becoming a highly toxic
nanomaterial [45]. For instance, as early as 2012, questions began to be raised about whether
using sunscreens with nanometric titanium dioxide was safe for health, as they penetrated
through the skin [46]. Progress in research on the subject has determined that even a
minimal amount does not prevent systemic oxidative stress [47] and that its inhalation
can have carcinogenic effects [48]. Moreover, its accumulation due to creams debris also
alters beaches where aquatic organisms are highly affected [45,49]. There is a risk of oral
ingestion in lip balms [50].

Given that nano titanium oxide is highly toxic, as evidenced by the progress in research,
and considering that its use in the heritage conservation sector is quite extensive as a biocide
and self-cleaning nanomaterial [1], it is expected that constant exposure is one of the most
outstanding examples of why it is necessary to take preventive measures. This protection
would also apply to the different potentially harmful nano products.

Due to the importance of this subject, the present review seeks to bring the advances
in the field of the conservation of construction materials, ceramics, archaeology, and fine
arts, many of them cataloged as cultural heritage using nanomaterials, as well as to identify
the possible risks of nanotoxicity, informing about its correct handling throughout all
the stages of the process. Additionally, it provides information about the issue’s state
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regarding nanomaterials’ toxicity and prevention norms or those aspects that require
further investigation or clarification.

In this way, it seeks to raise awareness among the personnel involved while handling nano-
materials regarding the risk of exposure to nanomaterials and their effects on the ecosystem,
intending that the information provided serves as a basis for current and future generations.

2. Deterioration of Cultural Heritage Materials

The main mechanisms directly affecting the historical materials are those produced by
environmental [51] or anthropic [52] action. These factors increase the deterioration caused
by aggressive agents that destroy architectural, sculptural, archaeological, paleontological,
or pictorial materials [53–57].

Among the anthropic factors that most contribute to the deterioration of cultural works
are those produced by the emission of toxic gases emitted by vehicles in urban areas, whose
particles can be deposited on surfaces, causing dark spots that end up conducing to aesthetic
damage [58], as shown in a site placed in front of a museum (Figure 1). The constant
emission of these products into the environment could turn out to be uncontrollable.
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Figure 1. Deterioration of a sculpture and the façade of a museum by urban pollution agents.

Various factors control the adhesion to the surface, mainly of a structural nature.
That is why highly porous surfaces turn out to be more susceptible to the deposition of
particulate material. Despite the variety of materials used in architecture and sculptures,
their susceptibility to deterioration is different. While some materials deposit on the surface,
others can penetrate through areas of weakness, leading to their delamination. Likewise,
the effect of acid rain can cause constant damage to materials, which acts in the same
way by precipitating mineral salts that contribute to the loss of consolidation and the
modification of the surface [59–61]. Similarly, the emissions produced by proximity to
industrial areas [62] can transport compounds that, when deposited on the surface, cause
similar alterations to the surface [63], in addition to the increase in pathological processes
such as cardiopulmonary disorders [64].

However, different factors must be considered in the interaction between contaminants
and the exposed surface. For example, the mineralogical and textural composition of the
material is one of the main factors determining the susceptibility to the entry of external
material. Within the extrinsic agents, there are a series of pollutants of atmospheric origin
from both natural and anthropic sources of pollution [65]. Atmospheric pollutants (SO2,
NOx, COx, CFC, CH4) and suspended particles [66], together with water, constitute some
of the agents of deterioration that are more aggressive for stone materials, causing the
degradation and alteration of minerals due to physical rupture and disaggregation, affecting
the porous system [67]. The processes resulting from this interaction between extrinsic and
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intrinsic agents derive from degradation mechanisms such as dissolution, precipitation,
recrystallization, or hydrolysis, involving mineralogical changes and textural properties of
the materials and a physical loss of material and, therefore, of the historical and cultural
value of heritage elements. A classic example is the emission of SO2 produced by vehicles,
which, when in contact with stone surfaces of calcium or magnesium carbonates, such as
those of buildings or sculptures built with limestone, reacts by generating crystallizations
of gypsum [68]. This hydrated calcium sulfate confers a dark hue on the material. However,
the action of SO2 is not exclusively on stone surfaces (walls of buildings, sculptures). It
can also affect other essential pieces, such as museum objects of historical value. Among
them, SO2 decreases the alkaline reserve in historical paper due to the uptake of the sulfuric
acid formed, which depends on the local relative humidity. There is a strong interaction
between diffusion, absorption, and the reaction of contaminants with the type of paper or
the metallic ions of the ink, depending on the thickness and texture of the document [69,70].

To remedy this, nowadays, the use of consolidating [71–74] and self-cleaning prod-
ucts [75] based on nanomaterials is widespread, and its mission is to restore the lost
cohesion to confer protection against the diverse aggressive agents [16]. However, the
effectiveness of these products depends on the surface characteristics, properties, and
product–substrate compatibility, and improper selection of the nanomaterials may cause
irreversible damages after the treatments [75].

In addition to the anthropic factors, within the natural processes, two agents contribute
to deterioration; one of them is the biological action, and the other is the water. Figure 2
shows one example of this behavior in a monument surrounding a lake, where humidity
conditions and biological action cause changes in porosity and its consequent fracturing
until the loss of cohesion. This is even more true when, throughout the year, temperature
changes increase the water action on the surface.
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Water is one of the primary agents of deterioration. Circulating through the porous
surface dragging compounds that affect the material’s chemistry and react with its con-
stituents is highly susceptible to causing additional damage. One of them is the action
of cycles of freezing and thawing, in which changes in the state can give rise to stresses
within the material, causing disintegration between grains, with a consequent increase in
their porosity, finally reaching collapse [76]. The interaction between the rock’s minerals and
highly soluble compounds dragged by the water, in specific conditions of pH or temperature,
can generate the precipitation of salts. These salts generally occur in crystalline forms whose
growth induces the fracturing of the surface, which in turn creates aesthetic modifications [77].
Quite evident examples are those pieces of underwater interest, highly deteriorated by their
prolonged exposure to water and loaded with chemical compounds in the solution [54].

In the case of biodeterioration, the organisms adhere to the surfaces, helped by the
porosity and roughness of the material [78]. These microorganisms can alter the material’s
porosity [79] while providing chemical compounds that contribute to the precipitation of



Nanomaterials 2023, 13, 1454 5 of 74

salts and therefore alter the texture and composition of the substrate. These new salts, such
as those produced by polluting agents, crystallize inside the pores, generating tensions
in the material to increase its deterioration. Likewise, organic and inorganic compounds
can react with each other, leading to in situ phase transformation processes [80], which
contribute to aesthetic and structural changes in the substrate [81]. Similarly, the action of
plants on the surface of the monuments causes damage depending on the type of species.
Its roots adhere to the surface, taking advantage of areas of weakness, which cause tensions
that lead to the loss of cohesion of the substrate. Likewise, plants produce organic chemical
compounds that, by occupying the pore spaces, easily lead to chemical reactions such as the
extraction of calcium ions or other elements from the substrate, consequently accelerating
the deterioration process [82].

Among many factors of deterioration, one of the most unexpected is that produced by
the fire action in monuments or museum pieces. A rise in temperature causes the structure
to break by heating, giving way to the alteration of the material [83–86]. The damage caused
can be weighed with applications of coatings based on fire-retardant nanomaterials [87,88].

Background of the Nanotechnology in Cultural Heritage Conservation

The application of nanotechnology for the conservation of historical heritage has evolved
as its various properties, synthesis methods, and characterization equipment became known.

The beginnings of restoration work with nanomaterials started around 2001, led by the
University of Florence Italy. In its first phase, the focus was the restoration of deteriorated
pieces of pictorial value due to the aggressive action of polluting elements deposited on
their surface, which can produce damage that may be irreparable [89]. Likewise, the same
group restored ancient galleons attacked by water and chemical compounds through wood
restoration. In the same way, successful results include restoring and conserving wall
paintings of archaeological value that were highly affected by high humidity and sudden
changes in temperature over the centuries [89].

The first generation opted for the use of simple materials, most of them oxides and
hydroxides that, when reacting on the surface, managed to cover the material with a
protective layer. This was when consolidants based on mostly metal hydroxides compatible
with the substrate started to apply as the primary source in the restoration work [90,91].
These include the well-known alkali and alkaline earth metal hydroxides of Ca and Mg. It
consists of modifying the porosity and filling the fractures within the material, applying
nanomaterials with a similar composition to the substrate [92,93]. Nowadays, there is a
constant interest in improving the efficiency of consolidant nanomaterials by trying different
synthesis techniques [71,73,94,95] and studying the effects of specific physic-chemical and
environmental conditions [96–98]. Another alternative was the use of water-based micelles
and microemulsions (neat or combined with gels) for the removal of accidental contaminants
and polymers used in past restorations of works of art and calcium hydroxide nanoparticles
for controlling the damages produced by acidification in wall painting, paper, and wood [99].

Due to the success achieved in repairing and cleaning surfaces, many of them on canvases,
sculptures, ancient wood, or architectural monuments, its objective was expanded towards a
new challenge: how to control the effect of deterioration caused by biological action [100,101].
It was then time to design or apply nanomaterials already being used in medicine, such as
nano-titanium oxide [100,102], nano-silver [103], or nano-Zn oxide [104] or nano-compounds
mixtures [105–108]. The most frequently used biocidal nanostructured materials can produce
a protective layer due to their photocatalytic power, favored by the specific properties of the
nanomaterial [109]. This topic has continued to advance along the years with new ecofriendly
strategies for controlling colonization on cultural heritage materials [12,110–113].

Fortunately, its effectiveness was relevant since nanomaterials with specific properties
and combinations began to be designed in which the photocatalytic action and self-cleaning
effectiveness would be the first objective to control [114,115].

In the same way, another possible risk, such as that caused by fire, needs more atten-
tion to prevent its deterioration [86]. It was the moment when materials such as magnesium
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hydroxide [116] or nanoclays [117] started to be used. For instance, in the event of a tem-
perature rise, magnesium hydroxide acts as a fire-retardant protective layer [1]. The new
generation of fire-retardants use combinations of different compounds such as magne-
sium hydroxide carbon nanotubes [118] or polymeric composites with traditional flame-
retardants [119]. In many cases, the trend is looking for ecofriendly nanocompounds [120].

Considering that water is one of the primary agents of deterioration, the new goal was
to apply waterproofing agents [95]. Among the possible candidates, silicon oxides in their
amorphous variety began to apply by covering the surface with a hydrophobic protective
layer [95].

As observed over time, the action of this type of nanomaterial needed reinforcement
to make it more effective. In the case of SiO2, the trend was using mixtures with polymeric
materials and gels with nanoparticles [121] that exert their action inside, causing in situ
polymerization [122]. For instance, applications of silica nanoparticles and polymers on
marble surfaces get to protect against water action, modifying the roughness of the deterio-
rated material [9,123].However, the mixture of organic commercial products such as siloxanes
with nanoparticles of SiO2, Al2O3, SnO2, and TiO2 may produce color changes and aesthetic
damage, as reported in marble surfaces [124]. Nowadays, research about suitable polymers is
a topic for improving their effectiveness and avoiding these damages [125]. Despite the pros
and cons, new strategic nanomaterials can avoid additional damage on the surface [126].

The use of nanomaterial treatments gradually gave way to new trends, such as the
beginning of composite materials with multifunctional properties. This was when materials
with consolidating/fire-retardant or biocides/consolidating/hydrophobic properties began
to be applied to solve several problems simultaneously [127]. Because of their interaction,
the new mixtures gave rise to new compounds with different structures and stabilities.

New designs of nanomaterials started to attain specific properties, morphologies, sizes,
and degrees of crystallinity more frequently, creating the need to evaluate these charac-
teristics according to the environmental conditions, type of solvent, and concentration or
reaction time. Synthesis methods that are bottom-up, such as sol-gel, hydrothermal, and
colloidal, or breakdown, such as mechanical grinding or laser-based [128,129], began to
interest researchers in achieving the most suitable treatment properties [94,130,131].

From this moment, the new stage of nanotechnology came to solve the problems
in diverse fields. The construction field saw the opportunity to include nanomaterials
for coatings isolative [132] and in the design of cement [133,134], concrete [135,136], or
mortars [137–139] to improve their specific properties. Nanomaterials also began to apply
to soundproof surfaces [140,141], thermal insulators [142], inhibitor coatings against corro-
sion [143], or salt attacks [144]. In addition, its application for restoring old stained-glass
windows obtained better-quality glasses and ceramics [145].

The opportunity also came to museums, where paleontological pieces, sculptures, old
paper books, and archaeological, anthropological, or cave art value pieces saw nanotech-
nology as a great ally. Specifically, the deterioration of paints due to the effect of salts or
the accumulation of dirt onto the surface by airborne pollutants, which may conduce to
aesthetic damages, required more effective cleaning [89,146]. Likewise, old ships started to
be restored successfully [89].

Lastly, the new generations of nanomaterials are advancing vertiginously, coming to
use nanocomposites [147–150], clay nanotubes [151], or single- and multi-walled carbon
nanotubes [152–154]. Within the wide range of nanocomposites, protective nanocoatings
include different compounds in specific combinations with consolidant properties for
applications in stone (limestone, marble) [149], cellulose-based materials (papyrus, old
paper, and wood) [150], or archaeological alloys [143].

Details about different nanocomposites with specific properties for the protection of
different substrates [148] include, for example, combinations of Titanium oxides in mixtures
such as TiO2-Paraloid 72 (Cu-Zn alloys pieces) [155], hybrid compounds of siloxane with
nanosilica-siloxane (water repellent) [156], nano Ca(OH)2 (marble) [157], TiO2-SiO2 in the
form of tetraethylorthosilicate (Theos) for marble [158], or TiO2-SiO2- polydimethylsiloxane,
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also known as PDMS (limestone) [159]. Likewise, their mixtures include combinations of
ZnO-TiO2-Paraloid 72 (pottery), hydroxyapatite-Theos-PDMS for applications in sandstones,
or silicon-based compounds with calcium oxalates for stone consolidation [147].

With all these advances, it has been possible to solve problems due to the advantages of
nanomaterials, in which the increase in the surface area achieves better efficiency compared
to those of a larger size and similar composition [160].

However, the effectiveness of these treatments requires considering various factors
such as the application technique [161,162], concentration [163], time [164], tempera-
ture [165,166], or relative humidity [75,96].

Another concern is the deterioration of underwater interest pieces by their prolonged
exposure to water, loaded with chemical compounds in the solution. Several treatments
including nanomaterials such as TiO2, ZnO, and Ag nanomaterials dispersed in siloxane
wax showed promising results against colonization in underwater marble, resulting in
TiO2-Ag being more effective than ZnO nanoparticles [167]. There are alternatives, such
as preparing bio-antifouling mortars, including Mg (OH)2 nanoparticles, to increase the
resistance both in seawater exposure and laboratory samples [168].

The application of different nanostructured compounds with a tubular morphology, such
as SWCN and MWCN, is an excellent opportunity for various cultural heritage applications.
The unique hollow structure of CNT confers high mechanical, thermal and electrical conduc-
tivity (bulk resistivity ~3.8 × 10−4 m in a CNT sheet). Moreover, CNTs are chemically stable
because their carbon atoms form sp2 covalent bonds in the form of a honeycomb [169].

Among their mechanical properties, their high tensile strength/stiffness, which is
better than that of any metal, stands out [170]. The elastic resistance is superior, so CNT
can be bended, twisted, kinked, and buckled without damage [170]. Other advantages are
the thermal conductivity of MWCNT being higher than that of SWCNT, both exceeding the
diamond. MWCNTs thermal properties are similar metallic properties which confer better
thermal properties when included in the polymer composite [169].

They also have high hydrophobicity and high protection against photo-degradation
depending on the number of walls, which are helpful in the absorption process of other
nanomaterials [153].

Nowadays, the industry takes advantage of these properties for manufacturing pho-
tocatalysts with thin layers of MWCNT, which is an opportunity for conserving works of
art [152]. The remarkably light and robust properties and their electrical conductivity turn
out to be beneficial for creating efficient heat surfaces to quickly guarantee ultra-stable
temperatures for large surfaces and short heating and cooling times. Thus, the research
focuses on innovative and highly accurate mild and flexible heating devices for conserving
various pieces of cultural heritage [171].

Furthermore, advances in synthesis techniques include graphene for wall paint-
ing [172] and stone protection [173]. Diverse synthesized routes allow for obtaining
different shapes including tubular nanotubes, nano-rods, nano-needles, or nanowires
of different compounds such as titanium oxide [174] or Zn oxide [171]. In the case of
Zn Oxide, the combination with silver has managed to progress in the field of photocat-
alysts with biocidal action [153,175]. The new fire-retardant generation includes carbon
nanotubes mixed with different nano-compounds with fire-retardant properties. Among
them, nowadays, the most common combinations are nanocomposites with metal oxides,
MWCNT-nanoclays [176], graphene, sepiolite nanorods, nano-cellulose, fullerene [176], or
CNT-magnesium hydroxide [118].

There is a broad potential in using CNT to protect museum pieces, such as pho-
tographs [177], based on bio-inspired applications, such as applying the mechanism that
geckos (reptiles) have on their feet to adhere firmly to surfaces. This property is due to the
elastic beta-keratin nano-hairs on their feet and toes, which collectively generate a strong
enough van der Waals force to hold the animal to an opposing surface while simultaneously
disengaging at will [178].
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Within the field of dry adhesives, the new trend is using this type of structure. When
applying this type of product, it is possible to achieve strong adhesion in the normal and
shear directions under stress, with low peel resistance, which offers the possibility of easily
removing it from fragile surfaces during treatment and using it as a mounting adhesive [177].

Studies have been conducted on vertically aligned carbon nanotubes that resemble
adhesive hairs on gecko feet, with additional superior mechanical, chemical, and electrical
properties, proving to be a promising candidate for advanced fibrillar dry adhesives [178].
However, its effectiveness depends on the packing density and the roughness of the
vertically aligned CNT surface [179]. Research in this regard emphasizes that increasing the
roughness of the matrix surface strengthens adhesion in the normal direction but weakens
it in the cutting orientation [179].

The interest in controlling the microclimatic conditions in different places with her-
itage value is a topic that has progressed over the years. Among the diverse techniques,
hygrometry and infrared thermography result in no invasive procedures for controlling
moisture, which is very useful in conservation procedures [180]. Advances in incorporating
sensors capable of detecting changes in local humidity and temperature have allowed
for controlling their action in architectural and archeological sites and museum pieces
susceptible to deterioration [181]. Nowadays, another application of nanotechnology in
museums is to control corrosion produced by gaseous corrosive agents existing in the
indoor environment due to the combustion of fuel fossils, nitrogen oxides, plants, or au-
tomobiles [182],—for instance, the use of resistive gas sensors to detect NO2 made up of
single-walled carbon nanotubes mixed with ZnO (SWCNT/ZnO) deposited on a sapphire
substrate. Investigations report that this configuration has high stability but that NO2 detec-
tion highly depends on the microstructure’s changing matrix and the composite material’s
preparation conditions [182].

3. Risk of Toxicity during Handling with Nanomaterials in Conservation Procedures

One of the main risks when working on heritage conservation is the one that occurs
due to handling products that include nanomaterials. There are three modalities: spray,
brush, and immersion [161,162]. In the last case, when the piece is restored, it can be moved
from the site and placed on a solution rich in nanomaterials for the impregnation by capillary
rise. However, among the mechanisms of entry into the body, it is essential to consider the high
risk that occurs during application by spraying these nanomaterials [183–185]. The inhalation
route is the body’s most exposed part in this procedure. However, the possible risk of access
through the skin is not ruled out [186,187], mainly on the face, hands, and arms during
routine treatment, in addition to admission through the eyes due to a possible splash or
through the ear when the dispersion in the environment is high [188,189]. Exposure using
the broaching technique is also crucial to consider. In this procedure, the nanomaterials
remain on a brush in the solution, and contact with the skin can occur accidentally. That is
why it is essential to take the appropriate protection measures, such as gloves, which, as
described below, must comply with the regulations, be highly resistant, be not very porous,
and have resistance to contact with liquid solutions (aqueous, alcoholic, or gels) that can
eventually react with the glove, exposing the skin. In addition, since nanomaterial solutions
remain in the brush, any contact with surfaces in the laboratory or the handling area leaves
the nanomaterial exposed, which ultimately increases its risk of dispersion to surrounding
places, including the hazard for the personnel, living beings, or the environment.

Another means by which there is a high risk of internalization is during cleaning
procedures due to the release of nanoparticles into the environment and the operators’
exposition to the dust emitted. In the same way, it happens in techniques for synthesizing
nanomaterials, in which the handling of both reagents and the particulate nanomaterial
leaves the operators highly exposed, in addition to the people in charge of waste manage-
ment and those who are in the same work area. These risks increase during the synthesis
by breakdown methods, which minimize particles by mechanical grinding [190,191] or
laser techniques [192].
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4. Interaction of Nanomaterials with the Human Body

The dispersion of nanomaterials in the environment can affect the ecosystem because
the particles can travel through the air and deposit in water and soils, affecting differ-
ent living beings, such as aquatic and terrestrial organisms, fauna, and microbiota [193].
Environmental studies indicate the necessity of analyzing parameters that could affect
nanoparticles’ properties and their toxicity, such as transport or movement mechanisms in
air, land, and water and their diffusion capacity (e.g., aerodynamics, filtration in porous
media such as soil, dissolution/dispersion in aqueous media), agglomeration, wet and dry
deposition, or their gravitational properties [194].

Just as they can cause environmental contamination, they can also be incorporated
into the human body and animals due to their fine size [195,196]. There are several routes
of entry, the main ones being ingestion, aspiration through the respiratory system, tear
ducts, ear canals, or skin contact [197]. For these reasons, the risk differs depending on
how it is applied. For example, in the case of consolidation or protective treatments, using
a brush or spray might generate different particle emissions, which can enter the body
depending on the type of exposure.

4.1. Critical Particle Properties

According to studies to date endorsed by international organizations on toxicity such
as the European Commission [198], several parameters are crucial when analyzing toxicity.
The main one is the particles’ size, which is greater than the smaller size. In addition,
currently, another criterion to consider is the morphology of the particles, including the
aspect ratio [199], the flexibility, the degree of agglomeration/aggregation [200], and the
effective surface area [198]. Other critical parameters are the chemical composition and
solubility [201]. Regarding this last point, it is necessary to consider the persistence and
analyze its water solubility, whether high, medium, or low, and its resistance to breaking.
Furthermore, it is essential to consider its dustiness degree, referring to the developed dust
that remains in the air, analyzing whether it can be high in the case of fine dust, medium in
the case of crystalline particles, and low for non-friable solids or pellets [198].

On the other hand, based on the data reported about the toxicity of nanomaterials,
it is essential to analyze aspects in more detail. For example, critical studies insist that
there are a series of criteria to consider when assessing toxicity risks depending on the
exposure, dose, bioavailability, bio-persistence, bioprocessing, bio-modification, and bio-
clearance of nanoparticles or nanofibers [202]. Studies even criticize the omission of some
critical considerations, leading to misinterpretations and, thus, contradictory results due to
poor nanoparticle physicochemical properties characterization in both in vitro and in vivo
tests [201,203]. Therefore, there is a necessity of broadening the research about the effect
of different specific parameters on the nanomaterials’ toxicity degree, as, in many cases, it
may give rise to partial conclusions.

4.1.1. Particle Properties

The particle size, morphology, and specific surface area are the main criteria considered
that contribute to its toxicity in the same way as its degree of agglomeration or aggregation.
However, when referring to “agglomeration” and “aggregation,” it is essential to note that
both terms’ assumptions are indiscriminately used, which leads to confusion. According to
the European Commission 2013 [198], agglomerate means “a collection of weakly bound
particles of aggregates where the resulting external surface area is similar to the sum
of the surface areas of the individual components”, and aggregate means “a particle
comprising strongly bound or fused particles.” On the other hand, the British Standard
regulation of 1991 refers to an agglomerate as “an assembly of particles rigidly joined
together as by partial fusion, sintering or by growing together” and to an aggregate as “an
assembly of particles which are loosely attached to each other” [204]. Subsequently, the
UK NanoSafety Partnership Group (UKNSPG) assumed the classification of the European
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Commission [205]. Many authors refer to the old British concept [206,207], while others
prefer the European one [208].

For practical purposes, the possibility of emitting particles into the environment de-
pends on the cohesion degree between the primary particles. It is crucial to consider that
aggregated/agglomerated nanoparticles behave differently in transport and reactivity with
the environment depending on their own characteristics. Depending on the compaction
degree and the specific properties of the primary nanoparticles, their toxicity may increase
when released into the environment [207]. In this sense, a series of forces govern the
particle interaction known as van der Waals (vdW) attractive and double-layer electrostatic
(EDL) [207]. This behavior can generate these forces when handling powders, resulting
in caking, lumping, or the local accumulation of electrostatic energy [209]. Models of the
interaction of particles in suspension conclude that the sum of the vdW attractive and EDL
forces determines whether the particles adhere or repel. In this sense, is is essential to
consider the attachment efficiency, also known as the sticking coefficient, which consists of
the probability that two particles attach [207] and can be explained by an Ostwall ripening
process where nanoparticles tend to grow at the expense of smaller particles, increasing
their dimensions [210]. Furthermore, the large specific surface area makes nanoparticles
have a lower thermodynamic stability and tend to agglomerate over time because of their
high free surface energy compared to that of larger particles [210]. However, the conduct
of suspended particles is dependent on the shape, size, composition, structure, or macro-
molecules [207]. Based on these factors, the emission of particles into the environment
could change and, therefore, the risk of toxicity could too. In addition, it is necessary to
consider the relationship between the tensile strength and packing density [211]. Experi-
ments regarding agglomerates of titanium dioxide and black carbon powders found that
the vdW force can be modified depending on the existing water on the particle surfaces in
the form of adsorbed layers or liquid bridges [211].

Reports about the agglomeration of nanoparticles and their effect on health indicate
how the state of agglomeration can cause diseases. For example, internalized silver nanopar-
ticles can lead to thrombus formation in blood vessels, which leads to thrombosis [212,213].
In addition, other authors focus on its impact on the ecosystem, pointing out how the
increase in the agglomeration of silver nanoparticles can decrease their ecotoxicity [208].
On the other hand, studies on agglomerated titanium oxide nanoparticles indicate that the
size of the agglomerate influences DNA damage, it being more significant when its size
is more prominent. The same authors emphasize the need to establish a protocol during
the solution preparation procedure, insisting on increasing the sonication time to reduce
the size of the agglomerates [214]. In the case of carbon nanotubes, studies indicate that a
high level of agglomeration results in inflammatory processes such as those observed in
the spleen and liver [215].

Depending on the synthesis method, the particles present different specific properties
and, therefore, differences in the behavior during the internalization process. Likewise,
each morphology has unique free energy compared to alternative forms in a constant
ratio of surface to volume [216]. Criteria such as the type of solution (aqueous, alcoholic,
concentration), the pH of the medium inside the body, and the solubility of each one of
the chemical compounds condition their internalization and can vary significantly. Many
works report the formation of several shapes, such as spheres, rods, flower-like shapes,
cubes, plates, shells, or chiral geometries, which affect, in different ways, both the living
beings and the environment, depending on the synthesis method [217].

With the advancement of research in the field of toxicity, there is a tendency to study
dependency morphology. For instance, within the different nanocomposites used in con-
servation, studies on nanosilver analyze how morphology affects the degree of toxicity.
Studies using different silver nanoparticles confirm that the degree of toxicity depends on
the morphology. Thus, toxicity could be higher in the ionic state, followed by spherical
particles, being lower and similar between cubic and prismatic particles [218]. Particles
with a low aspect ratio could be more toxic than particles with a high aspect ratio [218].
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However, it can not only be generalized that the toxicity of spherical particles is more signif-
icant, considering that many of them come from the aggregation of primary nanoparticles
with different morphologies that form spherical superstructures [216]. Depending on the
synthesis method, they can result from the aggregation of nanorods, ovoids, or nanofibers.
In this sense, it is possible to obtain spherical shapes by the aerosol route of Ti oxide [174],
nano SiO2 [219], or Zn oxides from sol-gel [220].

Considering that the particles with the lowest aspect ratio are those that are spherical,
within this type, a comparison between iron nano oxides indicates that rod-like particles
are more toxic than spherical ones [221]. In the same way, studies on nano-hydroxyapatite
found that plate- and needle-shaped nanoparticles caused the death of a higher proportion
of cells than spherical and rod-shaped nanoparticles [222]. Changes in the morphology and
particle size lead to a change in the surface area and, therefore, in their degree of toxicity [221].

In addition, some studies talk about controversies in the toxicity assessment, pointing
out the importance of analyzing the aspect ratio, taking into account its dependence length,
as reported in studies of the nanotoxicity of TiO2 nanofilaments [223]. Specifically, nanobelts’
assessments indicate a higher degree of toxicity in TiO2 particles > 15 µm than in smaller
ones [224].

Many studies discuss the possibility of developing different morphologies depending
on the precursors and experimental conditions using the same synthesis method. For ex-
ample, nanostructured ZnO particles obtained by hydrothermal synthesis can have different
aspect ratios, particle sizes, or surface areas, developing shapes such as nanoplates, nanorods,
tubules [225], or nanowires [226]. Similarly, by modifying the manufacturing routes, it is possi-
ble to obtain a wide variety of morphologies, as reported in nano-hydroxyapatite (Calcium-
phosphate hydrate) [227]. Therefore, toxicity may vary depending on its specific characteristics.

Other cases are essential to analyze, such as applying nano alumina additions in
Paraloid B72 coatings on old metal substrates, which has been proven to be effective for
their protection against processes that generate the material’s corrosion [228]. However,
it is crucial to consider that its cytotoxicity may vary according to the morphology [229].
For example, a possible emission of alumina during handling can differ depending on its
specific properties. For instance, spherical particles can reach the brain, thymus, and lungs,
depending on the dose. At the same time, smaller or larger nanorods can occupy the liver,
kidney, heart, lung, and thymus. Furthermore, long aluminum nanorods can induce a
stronger inflammatory response than short nanorods [229].

4.1.2. Differences in Surface Roughness

Among the morphological properties of nanomaterials, apart from the shape and
size, one of the properties that most influence their toxicity is the roughness of the surface.
For example, spherical particles can have a smooth or rough edge that will intersect with
the cell depending on the roughness. For example, some studies analyze how flower-like
shapes have more toxicity than those with smooth-edged spheres, causing cell membrane
disruption, as reported in human endothelial cells [230] However, there are differences in
damage depending on the termination of the sharp surfaces. In this sense, it is crucial to
consider that particles can develop corners with rounded edges depending on the specific
manufacturing process or undergo a change internally during the dissolution process due
to interaction with body fluids. This is the case of rod-like particles, whose toxicity is lower
than that of the prism, sphere, or needle shapes, as observed in several studies [231,232].

4.1.3. Nanofibers

Nanofibers are one of the cases in which toxicity could be more aggressive in a similar
way as asbestos. As explained above, its degree of toxicity depends on its aspect ratio.
However, the fibers’ internalization, regardless of their composition, can be randomly
distributed so that they generate a new roughness according to the different orientations
of the fibers [233]. Neurological studies explain that nanofibers can affect cell generation
and modify their growth patterns, as observed in neural stem cells [234]. The nanofibers’
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disposition can affect the neural stem cell elongation and neurite growth in the aligned
nanofibers’ direction [234]. In particular, nanofibers mimic the structure of the fibrous
components of the neural extracellular matrix [234]. However, the aggregation is sometimes
favorable for reducing the toxicity of individual fibers depending on the local environmental
conditions or the assembly in which they are supported, such as those used in reinforcing
polymeric matrices that, with the degradation process, can release fibers towards the
environment, affecting living beings and the ecosystem [235]. Among the factors, it is
essential to consider both flexibility and rigidity. Although the fibers are more or less
flexible, they can access the respiratory and circulatory systems of animals and humans
through different routes. Thus, fibers and particles can obstruct the air passage and reach the
blood, which causes thrombi, leading to cardiovascular or lung diseases [236]. However, in
the case of fibers, rigidity is a crucial parameter that controls their degree of aggressiveness.
Typical cases are the risks of exposure to SWCNT or MWCNT, which pose differences in
their rigidity, SWCNT being less rigid and more easily aggregated [237]. Nevertheless,
new advances in research about SWCNT/MWCN toxicity insist on the need to mitigate its
hazard during the manufacture, handling, and applications of these materials [237].

4.1.4. Physical Chemical Properties

One factor that significantly influences nanomaterials’ toxicity when internalized is
their chemical composition. The local reaction depends on a series of factors inherent
to the local pH of the internal environment or the surface charge of the nanoparticles,
the positively charged ones being more toxic since they enter cells more quickly than the
negative and neutral ones [238]. In this sense, it is essential to keep in mind the difference
in the ionic solubility of the different compounds, which change according to the dispersion
media properties being different between aqueous and organic solvents [239]. There are
other parameters to consider regarding the solubility of inorganic nanoparticles, which
tends to increase in acidic solutions, such as gastric fluids [201]. The recommendation of
experts pointed out that their solubility should be essentially checked for toxicity evaluation
following oral exposure [201]. According to the reports, metallic silver and insoluble silver
compounds are more toxic than soluble compounds of the same composition [240]. The
solubility between SiO2, ZnO, and TiO2 is different, so TiO2 is insoluble, followed by
SiO2, unlike ZnO, which is highly soluble in weak acids and makes it very susceptible
to corrosion [241]. However, in the case of TiO2, the solubility of the main polymorphs
(rutile and anatase) is different. Experimental studies report that the rutile solubility in water
is relatively low compared to that of anatase at 20–320 ◦C [242], but anatase is soluble in
hydrofluoric acid (HF) [243,244]. Therefore, it is expected that, when coming into contact with
different non-aqueous solutions due to internalization, the behavior may vary depending on
the structure of each nanostructured compound and the type of acid solution.

Furthermore, specific studies carried out on tubular cells identified that solubility is
one of the factors that can affect them to a greater or lesser degree, as was observed in
comparisons between nanoTiO2, ZnO and CdS, being more significant when the solubility
was higher, as observed in ZnO and CdS, which led to destabilization in the lysosome [245].

As reported by studies, ZnO is highly soluble and concentration-dependent, and a dose
increment facilitates the release of Zn+ with the subsequent direct or indirect induction of
oxidative stress [246]. Therefore, it is necessary to consider that the toxicity will be different.

4.1.5. Structure and Defect

The degree of structural disorder is the least considered aspect when evaluating the
toxicity of nanomaterials, it is necessary to consider that, due to the different types of
synthesis and experimental conditions, there may be different degrees of disorder in the
nanomaterials obtained. An example is that of Mg(OH)2, which depends on the synthesis
method, such as sol-gel, hydrothermal, or colloidal routes. They can generate differences
in morphology, preferential orientations, particle size, and homogeneity [247]. Even in
hydrothermal-type or solvothermal processes, a change in the concentration of the reagents
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can lead to a high degree of defects [247]. The degree of defects (vacancies, stacking faults,
twins, or dislocations) favors crystallization or surface roughness development, affecting
cells. Few articles stop analyzing defects as factors that increase toxicity; however, studies
report the toxicity of SWCNT or MWCNT [248], In addition, observations made in silver
compare the effect of morphology, indicating that the plate-type forms developed more
defects, unlike the spherical or nanorod forms [249]. However, it is impossible to generalize
in this case, since analyzing the specific synthesis conditions used and the subsequent
heat treatments is crucial. Other results talk about the existence of defects in complex
nanoparticles of TiO2 formed by rutile-anatase-brookite, which alter the surface charge
affecting its environmental behavior [207].

Furthermore, when the nanoparticles have several phases with different symmetries
or compositions, the stress generated at the phase boundaries produces dislocations, which
ultimately modify the particle’s compaction and the external surface. One of the most cited
cases that have given rise to conflict is interference between the rutile and anatase phases.
Some authors maintain that anatase is more toxic than rutile [250], and others maintain the
opposite [251]. In these cases, it is necessary to analyze the structures and the degree of
disorder at the atomic level, the presence of defects, and the subsequent modification of
their surface. It may be the most forgotten among all the toxicity measurement parameters.

4.2. Deposition Mechanisms of Nanomaterials

The interaction of nanomaterials with the human body has similarities with other
processes, which facilitate the understanding of their behavior. For example, within them, it
is possible to associate the human body with its different organs, tissues, or cells as if it were
an ecosystem. Nanomaterials behave differently in an acid or a local alkaline environment,
depending on the specific characteristics, affecting the nanoparticles so that they will
continue to transform inside them before and after the cell phagocytosis. Furthermore,
primary nanomaterials behave like gases, have a rapid diffusion capacity, travel long
distances, and show low sedimentation rates [252]. Once nanomaterials have entered the
airways, they are deposited based on different deposition mechanisms. Diverse access
routes to the organism will reach the different organs and interact locally with the different
tissues or cells. The access routes are nasal, olfactory, ophthalmic, oral, and dermal [253].

The following section explains the main effects that can occur from continuous or
eventual exposure to nanomaterials during routine procedures in conservation work.
Table 1 summarizes the access route and internalization mechanisms into the human body.

4.2.1. Access through the Nasal Route

The nasal route stands out among all the access routes to the body. Once the particles
enter the nasal passage, they reach the respiratory tract and the brain through the olfactory
nerves (Figure 3). However, understanding the mechanism of entry into the body through
the respiratory tract has raised a great challenge over the decades. The particle size
stands out among several critical parameters. According to the studies, the mechanisms
responsible for the deposition of particles in the pulmonary airways during the inspiratory
phase of a breath at tidal volume are diffusion, interception, impaction, and electrostatic
attraction [254–256]. However, there are differences between the diverse input mechanisms
depending on the particle size. For example, the transport of microparticles depends
mainly on inertial impaction and sedimentation, while that of nanoparticles depends
mainly on diffusion [257–260]. Specifically, the mechanisms of deposition by the inhalation
of aerosol particles smaller than 10 microns are inertial impaction, gravitational settling,
and diffusion [192,254,261]. Coarse particles (>3 µm) mainly deposit by impaction due
to abrupt changes in the direction of the airflow that occurs in the mouth (or nose) and
the upper respiratory tract, including the pharynx, larynx, trachea, and bronchial region.
Gravitational settling is most efficient in the narrow, randomly oriented ducts and air
spaces further down in the lungs (bronchiolar and alveolar region) [254].
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Electrostatic deposition in humans and animals is common from aerosols, which
generate considerable charge depending on the particle size [262,263]. For instance, many
industrial processes generate electrostatically charged nanoparticles [264], which increase the
number of inhaled particles deposited in the lung. Moreover, the electrical charge is the key
to understanding the behavior of nanoparticle aerosols and their effects on health [265]. Its
attraction occurs due to the opposite charge between the particle and the respiratory tissue
surface. In this sense, the charge–mass relationship of the particle governs the strength of this
attraction, which is most effective when the particle size decreases. For example, in the human
respiratory system, based on the International Commission on Radiological Protection, ICRP
1994 model [266], it was possible to determine that for the atmospheric nanoparticles with a
size between 6 nm and 30 nm and which are negatively charged, the Brownian deposition
mechanism predominates [267]. Likewise, a change in the polarity of the nanoparticles—for
example, from 16 nm to 30 nm—significantly increases alveolar deposition in terms of surface
area. This increase maintains a plateau of up to 150 nm [267].

Translocation is the mechanism of entry into the body of nanomaterials [268]. These can
cross biological barriers and reach areas of the body other than the entry route, depending on
their solubility [269]. For instance, in the case of the inhalation route, they cross the pulmonary
alveolar epithelium, reach the interstitial areas, and reach the circulatory system, distributed
throughout the body [270] (Figure 4). Another example is that the nanomaterials captured at
the nasal level can access the brain via the olfactory nerve (Figure 5).

Although the electrostatic charge plays a crucial role in the internalization of nanoma-
terials through the respiratory tract, translocation is the dominant factor in the dispersion to
other organs, such as the circulatory system, the brain, or from the lungs to the blood [268].

There is interest in understanding the mechanisms of translocation to other organs.
While extensive studies focus on understanding the immediate consequences of exposure
to these materials, the long-term effects of potential translocation to secondary and even
tertiary organs still need to be better understood [271]. Advances regarding the toxicological
effects in secondary organs report oxidative stress, inflammation, cytotoxicity, and the
dysfunction of cellular and physiological processes [272]. In this sense, it is essential to
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consider specific characteristics of nanomaterials such as the charge, size, lipophilicity,
or protein absorption [268]. However, as knowledge on the subject advances, conflicts
begin to appear, which some authors highlight, insisting on the need to delve into the
physiological impact [268]. In addition, others emphasize the need to develop in vivo and
ex vivo models to know the relationship between the structure of nanomaterials and the
penetration capacity [269]. However, according to the experts, current in vitro models have
advantages and disadvantages, making it difficult to address nanomaterials’ interactions
with various biological barriers [269].
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affect the fetus.
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Specific cases carried out in the alveolar area comment on a high degree of vulnerability
due to the absence of mucociliary clearance and a fragile air–blood barrier, which can
facilitate the translocation of particles to secondary organs [254]. However, its movement
also depends on the particle’s properties. For instance, it is not the same if the particles
are fibrous since they can be oriented along the respiratory tract until they collide with
the bifurcations, where they will finally be deposited, obstructing the passage of air [273].
In this case, the fiber length may be the predominant metric determining the toxicity of
bio-persistent fibrous nanoparticles [274]. This occurs with the carbon nanotubes (CNT)
and carbon nanofibers (CNF), whose dimensions and high aspect ratio could be similar to
those of the highly pathogenic asbestos fibers [275].

Several deposition models endorsed by the International Commission on Radiological
Protection (ICRP) and multiple-path particle dosimetry (MPPD) report the dependence of
the particle size on the deposition region [276]. For example, the deposition of particles with
a particle size between 5 and 7 nm would predominate in the bronchial region, 10–50 nm
in the alveoli, 1 nm (80%) in the nasopharyngeal, or 8–10 microns would deposit in the
extra-thoracic and 75% on the nasopharyngeal region. However, there are intersection
zones at 300 nm or 1 nm. Particles larger than 300 nm would have a lower probability
of deposition in the bronchial region. In the case of 1 nm, 80% would correspond to
nasopharyngeal, 20% would correspond to the bronchi, and 0% would correspond to the
alveoli [276]. However, in all these models, it is crucial to consider how the intrinsic toxicity
can be affected by agglomeration and by the aggregation size [199]. For instance, singles
or agglomerated particles could affect the pulmonary pathways differently, generating
inflammatory reactions after intra-tracheal instillation [200].

Although many of these models are semi-empirical, it is crucial to consider other
experts’ opinions that parameters such as the breathing pattern, particle characteristics,
flow dynamics, and morphological structure affect pulmonary deposition, including age,
sex, and health status [254].

However, among the particle properties, it is crucial to consider parameters such as
relative humidity or temperature because the inhalation of particles changes according to
dry or wet environments [254].

4.2.2. Access to Circulatory and Cardiovascular Systems

Once the nanoparticles enter the respiratory tract, they can reach the gas exchange
zone, where the air–tissue–blood barrier between the alveolar wall and the capillaries is
thin (Figure 4). At this site, there are greater possibilities for nanomaterials to reach the
blood through the alveoli, which, within the different parts of the respiratory system, are
the most exposed to environmental exposure, unlike the bronchi, which have a mucociliary
layer that eliminates particles deposited in the lungs [197]. In addition, the nanoparticles can
also translocate to the lymphatic system and distribute along the body organs by both systems
(Figure 4). In the case of pregnant women, they can reach the placental barrier and cross it with
the risk of affecting the fetus’s brain and modifying its DNA [197]. When the nanoparticles
reach the cardiovascular region, they can alter vascular endothelial cells, thus affecting the
dynamics of vascular tone, impairing endothelial function, and finally affecting the hearth,
with risks of myocardial infarction, hypertension, arrhythmia, and thrombosis [277,278].

4.2.3. Access to the Brain through the Olfactory Way

Within the translocation mechanisms, it is crucial to mention the case of nanomaterials
that reach the brain pathways. The olfactory nerves perceive the nanoparticles on the
outside that run towards the interior of the neurons (Figure 5). This accumulation can have
significant neurosensory consequences, leading to diseases such as Alzheimer’s [279]. For
example, iron- rich particles from vehicle emissions and those produced in industrial processes
can lead to oxidative stress. This type of nanoparticle dispersed in the air due to pollution
causes brain injuries primarily in dogs due to their high content of olfactory nerves [280].
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4.2.4. Access through the Eyes and Tear Ducts

The incorporation of nanoparticles into the brain can also occur through the eye
(Figure 6). Different irritating nanoparticles, in addition to affecting the different parts
of the eye (iris, macula, retina, lens), gain access through the optic nerve. For instance,
silver nanoparticles or multiwall carbon nanotubes (MWCNT) could cause increased cell
apoptosis and oxidative stress. Experts point out that iron nanoparticles could cause retinal
detachment, internal bleeding, and age-related macular degeneration. Similarly, exposure
to ZnO could cause an increase in retinopathies [281]. In the case of silver and TiO2
nanoparticles, they could translocate into the central nervous system though eye-to-brain
pathways, which could induce neuroinflammation [282].
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4.2.5. Effects of Nanoparticles in the Eyes

Studies carried out by experts point out the importance of keeping in mind the
effects of the contact of nanomaterials with the eye, pointing out that although there
are barriers that prevent the access of materials to the eyeball, the smaller the size of the
nanoparticles, the greater the contact with the ocular surface [281]. According to the experts,
the main area where nanomaterials deposit is in the cornea, where they remain for a longer
time, depending on their specific characteristics, exceed the ocular surface’s barriers, and
reach the retina [283] and the eye’s posterior segments (Figure 6). A size dependency
determines the speed and quantity of nanomaterials susceptible to internalization through
this route. Specifically, the migration through the epithelial barrier can cause cytotoxicity
and inflammatory responses [284]. These same nanoparticles can induce cellular toxicity
and a systematic immune response that also affects the lens, the retina, the optic nerve,
and the macula [284]. Therefore, it is essential to consider that the internal contact between
the tear duct and the nasal cavity is as dangerous as if the incorporation were through
the nose. Thus, it could finally reach the brain and the central nervous system [285],
with the consequent internalization through the different routes as it happens when they
access the nose. For instance, recent compilations about access to metallic nanomaterials
highlight how eyes are vulnerable to zinc oxide, silver, or TiO2 [285]. In the cases of TiO2
nanoparticles, the same authors report damages such as apoptosis induction, cell growth
inhabitation, and induced excessive ROS generation, which ultimately led to irreversible
cell damage and death [285,286].
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4.2.6. Oral Access and Gastrointestinal Region Interactions

The gastrointestinal access route is the one with the highest internalization risk (Figure 7).
However, the differences in the solubility of nanomaterials and the effect of pH are criteria
for determining their dispersion and incorporation into different cells. A detailed study of
the effects on the gastrointestinal tract [287] highlights that, for example, the pH is lower in
the stomach (7–8) compared to in the small intestine (6.5–7) and the colon (7–8). The same
authors comment on the various factors, highlighting the dependence on the size and
charge of the nanoparticles, which condition their translocation, leading to Chron’s disease,
ulcerative colitis, and cancer in extreme cases depending on the dose and composition of
the nanomaterials [287]. For example, TiO2 between 25 and 80 nm causes inflammation
in stomach cells. In the case of the ZnO particles, they point out that ingestion produced
intestinal obstruction due to the aggregation of the particles and intestinal and stomach
inflammations. In the case of nano SiO2, the toxicity of amorphous nano SiO2 is less than
that of crystalline. There is more significant contact between the particles and the cytoplasm,
when the organelle membranes of the epithelial cells of the esophagus rupture. However, it
is necessary to deepen the effects of SWCNT and MWCNT [287].
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Access to the Liver

The liver stands out among all the organs for being the body’s detoxifier. Nanoparticles
interact with liver cells, modifying their structure and functions (Figure 7). The reports
indicate microhemorrhages and severe necrosis caused by silver; liver inflammation due to
the cellular infiltration of TiO2 by oxidative stress due to mitochondrial changes and fibrosis;
and karyopyknosis due to ZnO, leading to apoptosis and necrosis due to irreversible
chromatin condensation in cells. In all cases, its risk is cumulative and dependent on the
concentration [288].

4.2.7. Access to the Urinary Track

The kidneys are among the most affected organs since the nanoparticles from the
blood supply are eliminated, being very susceptible to toxic metals (Figure 8). However,
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their accumulation depends on the nanoparticle size, the surface, and the type of cell
they access (glomerular or tubular) [289]. In addition, metal particles can increase the
formation of reactive oxidative species (ROS), producing oxidative damage, the induction
of antioxidant enzymes, and apoptosis [289], which affects different cells depending on the
specific solubility of the metal [245].
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In all cases, the toxicity increases depending on the concentration of the nanomaterials
and their solubility [202,290].

There is a high risk of forming urinary calculi due to the supersaturation, which favors
the crystals’ nucleation, being equally feasible with their aggregation and continuous
growth until they form stones [291].

4.2.8. Access through the Skin

The access of nanoparticles through the skin, typically through the pores of hair
follicles and wounds, is mainly controlled by the particle size (Figure 9). Thus, particles
smaller than 10 nm can enter, causing cell damage, unlike particles larger than 30 nm.
Phagocytosis and endocytosis can lead to erythema, edema, and eschar formation [292].
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Table 1. Access routes of nanomaterials into the human body.

Access Route Translocation Mechanisms Affected Organs

Nasal

1. Inhalation and transfer to the
pulmonary region

2. Access to the alveolar epithelium
3. Access to interstitial areas
4. Access to the circulatory system and

distribution throughout the body

Nose, pharynx, larynx, trachea, lungs:
bronchiolar and alveolar region [270,276]

Access to circulatory and cardiovascular
systems

1. Nanomaterials reach the blood through
the alveoli

2. Translocation to the lymphatic system
and distribution along the body organs
by both systems

3. Translocation to the placental barrier

Hearth, cardio-pulmonary organs, lymphatic
system, placentary blood vessels, and fetus body
in pregnant women [197].

Access through the olfactory way Translocation through the olfactory nerves to
the brain Brain [279,280]

Access through the eyes and tear ducts
1. Access to the cornea and retina
2. Translocation to the central nervous

system through the optic nerve

Eyes: Retina and cornea [283]
Brain and central nervous system [281,282]

Oral and gastrointestinal region interactions

1. Access through the mouth
2. Migration from the esophagus to the

stomach
3. Translocation to the liver, pancreas and

intestines (large and small)

Gastrointestinal organs
Stomach, liver, pancreas, large and small
intestine [287]

Access to the urinary track
1. Translocation through the blood to the

kidneys
2. Migration to the urinary bladder

Kidneys, urinary bladder [289]

Access through the skin Internalization through the hair follicles pores
and wounds Epidermis, dermis, sweat gland [292]

5. Diagnostic Tools

Particle size determination is one of the most important criteria for determining the
degree of the toxicity of nanoparticles. The main techniques used are Dynamic Light
Scattering (DLS), Zeta Potential (ZP), Atomic force microscopy (AFM), and Transmission
Electron Microscopy (TEM). Each of these techniques has its advantages and disadvantages.

5.1. Particle Size Measurement by Optical Methods

The particle size distribution obtained by the DLS technique consists of measuring
the fluctuation of light caused by the displacement of particles due to Brownian motion,
assuming an optical model based on spherical particles. DLS is useful for measuring
isolated, low-polydispersion, highly homogeneous, and non-agglomerated particles in
low concentrations [293]. In this sense, ISO 22412:2017 specifies the application of DLS
to calculate the hydrodynamic particle size average and the size distribution of mainly
submicrometric-sized particles, emulsions, or fine bubbles dispersed in liquids. On the
other hand, DLS is also referred to as “quasi-elastic light scattering (QELS)” and “photon
correlation spectroscopy (PCS)”, being PCS the technique used to estimate the particle
size [294]. However, some experiments report how the requirements of dilution and homog-
enization procedures for obtaining the DLS measurements strongly affect the aggregation
state, producing a higher apparent fraction of individual nanoparticles and underestimat-
ing the presence of aggregates inherent to the material [223]. These conditions rule out its
usefulness for measuring rectangular-shaped particles, including all those nanomaterials
iforming filaments or nanotubes, agglomerated particles, and a high concentration [223].
Even an increased concentration can increase agglomeration; then, the recommended re-
liable measurements are only at dilute concentrations (typically 50–100 µg/mL) [295]. In
most cases, it is unlikely to meet these requirements, even more so in the case of assessing
the toxicity of nanomaterials.

The particle size measurement by the zeta potential (ZP) method is carried out by
applying an electric field through the sample and calculating the velocity that the particle
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acquires per unit of the applied electric field by using the laser doppler velocimetry (LDV)
technique [296]. The LDV method measures the electrophoretic mobility of the particles
by calculating the ratio between their velocity and that of the applied electric field. The
advantages of the LDV technique include having a wide dynamic range (10−4 to 105 cm/s),
not causing any interference, or not being affected by variations in density and temperature.
However, one of its disadvantages is the low signal/noise ratio, producing a weak scattered
light intensity. In addition, it requires a light wavelength alignment and sometimes seed
particles to increase the signal-to-noise ratio, besides being expensive [297]. However,
the zeta potential measurement depends on the pH concentration and conductivity of
the dispersion medium [298]. The ZP values could become more positive in acidic pH or
negative in a basic pH [299]. Furthermore, experts recommend measuring the pH before
and after the measurements in different concentrations and considering the dispersion
medium’s composition [296]. A study comparing the DLS and ZP methods highlights the
advantages and disadvantages. Among the disadvantages, it stands out that neither of the
two methods can perform measurements in high concentrations. It is impossible to predict
the behavior of NP in blood since they do not function in this medium [295].

5.2. Morphological, Chemical, and Structural Properties by Microscopic Techniques

Among the microscopic characterization tools, atomic force microscopy (AFM) and
transmission electron microscopy (TEM) techniques are the most recommended.

The atomic force microscope (AFM) can detect forces of the order of nano-newtons.
When tracking a sample, it continuously records the topography using a sharp, pyramidal,
or conical probe or point, magnifying surface features up to one hundred million times
and producing three-dimensional images of the surface. The properties and dimensions
of the cantilever and sharp tip play an essential role in determining the resolution of the
AFM. Unlike the conventional high vacuum TEM technique, the microscope allows for
the characterization of samples in air or fluid environments, making it possible to analyze
the diverse type of samples in their native state [300]. This advantage is beneficial in cell
characterization [301] since it facilitates the analysis of the cell–nanoparticle interaction.
Among its disadvantages, the mounting of samples may be challenging, resulting in
difficulty in adjusting the sample perfectly perpendicular to the tip, which causes some tilt
that is absent on the sample surface. Other sources of artifacts include thermal drift and
non-linearity in the scanner [302].

Transmission electron microscopy in the TEM (Transmission electron Microscopy)
and STEM (Scanning Transmission Electron Microscopy) modalities under high vacuum
conditions is a tool that allows for characterizing nanoparticles morphologically, chemically,
and structurally, directly on each particle. Morphological details allow for differentiating
if the particles are agglomerated or aggregated. It is possible to measure their thickness
within the agglomerates and identify primary particles that constitute the aggregated
particles. The complementary techniques, energy dispersive X-ray spectroscopy (EDS) and
energy loss X-ray spectroscopy (EELS), allow for determining the chemical composition.
The electron diffraction technique allows for the determination of the crystallographic
structure of the compound. In addition, in high-resolution TEM (HRTEM) and high-
resolution (HRSTEM) equipment, it is possible to observe the image on an atomic scale. It
provides information about the local degree of defects and structural information through
the Fourier transform (FFT) technique [303]. However, it is essential to determine the
most appropriate voltage conditions to avoid damage by the electron beam due to high
voltage effects in highly reactive compounds, producing phase changes, dehydration,
or amorphization of the nanomaterial [304]. Another modality of Transmission electron
microscopy is Environmental Transmission Electron Microscopy (ETEM), which allows for
studying the samples directly exposed to gas or liquid environments [305], and cryoTEM,
for studying the nanomaterials’ behavior in low-temperature conditions. These tools provide
possibilities for investigating in situ chemical reactions and understanding both the interaction
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of fast electrons with gas molecules and the effect of the presence of gas on high-resolution
imaging [306]. Details of the recent characterization techniques are found in [307].

6. Main Applications of Nanomaterials in Protection and Restoration Processes and
Risks of Toxicity

The following section describes the existing data on the applications and toxicity
of the main nanomaterials used in conservation work on materials, divided, according
to their function, into consolidating self-cleaning and biocidal, water-repellent, and hy-
drophilic (fire-retardant) nanomaterials. Table 2 summarizes the detailed information on
its application and the main toxicity risks reported.

6.1. Consolidant Nanomaterials

The use of nanostructured hydroxides of different chemical elements has become the
primary tool for treating materials in restoration and conservation [308,309]. Among them,
calcium hydroxides (Ca(OH)2), magnesium hydroxides (Mg(OH)2), Calcium phosphate
hydroxides, and strontium hydroxides (Sr(OH)2) are pretty common [89,310].

6.1.1. Calcium Hydroxide

In the case of the treatment of stone materials, an essential aspect is to define a nano
product with the most outstanding compatibility with the substrate [311]. That is why it is
recommended to use calcium hydroxides for the consolidation of limestone and marble-
type materials [94,312] or magnesium hydroxides for dolostone [1]. In these cases, it is
crucial to bear in mind that an unwise choice or an excess of nanomaterial can lead to
changes in the aesthetics of the surface due to mineralogical reactions [313] that give rise to
reactions such as the dedolomitization of dolostone or dolomitization in limestone [314]. In
all cases, the recommendation is to consider the concentration of calcium hydroxide and
the concentration and type of solvent used [312,315].

Calcium hydroxide crystallizes on porous surfaces and cracked areas. Due to the
effect of the reaction with ambient CO2, a carbonation reaction is produced [316,317],
leading to phase transformation processes that give rise to different polymorphs of calcium
carbonate, which crystallize in pores and fractures, achieving an improvement in the
consolidation of calcareous materials [163,318,319]. These calcium carbonates differ in their
crystallinity and symmetry depending on the relative humidity conditions, which can be
beneficial or lead to adverse effects on their effectiveness as a consolidant. For instance,
in low-relative-humidity conditions, carbonation is slowed down or is null, leaving signs
of the formation of amorphous carbonate when exposed to humidity close to 50% [320].
With the increase in relative humidity [321], and over time [164], the transformation of
calcium hydroxide to calcium carbonate polymorphs, calcite, vaterite, or aragonite is
expected. Aragonite crystallizes in highly humid environments, generally associated with
the unstable vaterite phase [320]. The more stable phase, calcite, can appear when the
humidity is close to 55% [321]. Reported studies show that consolidation differs depending
on the crystallinity or the kind of polymorph present [322,323]. For instance, amorphous
calcium carbonate studies report how it can significantly improve the surface strength,
compressive strength, and weather ability in calcareous materials, with a slight influence
on water vapor permeability [324].

Advances in nanostructured calcium hydroxide synthesis techniques seek to obtain
nanostructured materials capable of transforming to calcium carbonate in a short time [325–327].
At the same time, they manage to be effective traps of environmental CO2, and the acceleration
of the carbonation process with the formation of the most stable and effective phase, known as
calcite, speeds up and improves the effectiveness of nano-compounds [328,329].

However, different morpho-structural properties of nanostructured calcium hydroxide
occur depending on the synthesis technique and, hence, the growth of calcium carbonate
polymorphs with different morphologies or particle sizes. Among them, aragonite generally
crystallizes, developing prismatic or acicular forms that can become harmful in cases of
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dispersion into the environment. In the same way, an excess of calcium could produce high
calcium calcite, which behaves similarly. Apart from its effectiveness as a consolidant, due
to its structure and easy carbonation, calcium hydroxide is quite effective in capturing CO2
from the atmosphere [330,331].

Another critical issue to resolve is the deterioration produced in wood, canvas, or old
paper. Therefore, to solve this problem, it is necessary to modify the pH by deacidifying it
by applying calcium hydroxide nanoparticles [332].

Toxicity: Alkali materials, including calcium hydroxide, magnesium hydroxides, and
calcium oxides or mixes, can cause dermatitis, severe skin burns [333], or eye injuries [334],
also affecting the upper airways [335], the nanostructured calcium hydroxide being slightly
more toxic than the larger varieties [335]. Previous studies report how accidental ingestion
can damage DNA by generating free radicals and conducing genomic instability through
ROS generation that can affect the liver, brain, and bone marrow tissues [336]. The in-
ternalization of Ca(OH)2 by ingestion can increase the blood pH, which can cause organ
damage [335]. Among them, high doses of calcium hydroxide might produce dentinal
tissue destruction in that leads to chronic inflammation and necrosis [337]. On the other
hand, occupational reports indicate how calcium carbonates that are derived from calcium
hydroxide can induce pulmonary diseases in workers [338], even more so when the particle
size decreases nanomaterials [339].

6.1.2. Magnesium Hydroxide

Magnesium hydroxide has been proven to be an efficient consolidant in Magnesian
rocks such as dolostone, a calcareous rock rich in Mg and Ca [340]. At the same time, reports
indicate its high compatibility with the human body and the environment. Studies on the
restoration process of old paper apply magnesium hydroxide nanocoatings on cellulose
fibers with different refining degrees. The surface modification with Mg(OH)2 nanoparticles
induces an increase in the pH of the sheets to slightly basic values (around pH 8), facilitates
the inter-fiber bonding, and additionally enhances the smoothness of the sheets [341].

Toxicity: In the same way as calcium hydroxide, intense and continuous exposure can
cause skin burns and eye injuries [342]. Studies report that it has low toxicity, although
its high toxicity turns out to be unstable depending on the local pH conditions. There is
a concentration-dependent risk of toxicity in values higher than 625 µg/mL, as observed
in specific conditions, which could be dependent on its solubility [343]. The same study
using colloidal nanoparticles indicates that the release of OH− or Mg2+ ions can induce
its toxicity. However, cytotoxic properties can occur, coinciding with the formation of a
nanoparticle crust [343].

6.1.3. Calcium Phosphates

Hydroxyapatite (Ca5(PO4)3(OH)) is the main mineral used among the calcium phos-
phates. It has recently been used in consolidation processes of different materials, mainly
in limestone, chalk stone, stucco, and marble or for restoring fossil pieces due to its low
solubility compared with calcium hydroxide and calcium carbonate [344], which facilitates
the filling of pore spaces and fractures, achieving an improvement in its cohesion [345].
Fluctuations in pH modify the stoichiometry of the crystallized phases [346,347], producing
different hydrated phases within the apatite group. which may coexist and crystallize
during the consolidation process, depending on the hydration degree of the nanomaterial.
Brushite (CaHPO4·2(H2O) is one of them, and it is frequently identified during consoli-
dation treatments [348]; its crystallization is highly dependent on the pH and the starting
Ca/P ratio [348]. In this sense, several consolidation treatments report the hydroxyapatite-
brushite coexistence, such as those crystallized during the in situ electrochemical synthesis
of sandstone, which appears to fill the pores [345]. Several reports identify the coexistence
in calcareous rocks, as observed in limestone after a treatment using poultices [348].

Toxicity: Calcium phosphate has different toxicity than Ca and Mg hydroxides, mainly
due to its very low solubility. Its internalization can increase intracellular calcium con-
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centration after endosomal absorption and lysosomal degradation [349]. The tendency of
hydrated forms such as hydroxyapatite is to deposit in the urinary system, contributing to
the formation of kidney stones. Its interaction with renal epithelial cells leads to oxidative
stress due to its entry by endocytosis and accumulation in lysosomes, which produces
inflammation and cell necrosis. Furthermore, the inhalation and subsequent entry into the
bloodstream during high doses and prolonged exposures can lead to adverse effects [349].
Studies have shown that particles of a smaller size, with a higher specific surface area and
a longer aspect ratio, are more toxic [232]. However, the comparison between the effects
of various morphologies on toxicity indicates that internalization is more significant in
small spheres, followed by needles and rods, with plates being the least toxic. In all cases,
toxicity is a combination of the specific surface area, particle size, and aspect ratio as the
main criteria [232]. Concerning Brushite, reports identify the increase in nephropathies in
patients with nephrolithiasis [350].

Calcium Carbonate Phosphates and Other Ion Substitutions

Within the apatite group, in addition to existing hydrated phases, other ion substi-
tutions can occur due to solid solution intrusion processes or substitutional solid solu-
tions [351], the most common being fluor apatite and chloroapatite, with different variants
depending on the content of F/OH/Cl ions [351]. On the other hand, substitutions of
(PO4)3

− anions by (CO3)2
−, (BO3)3

−, SiO4)4
−, (VO4)3

−, and OH by CO3 or BO2 can
occur [352]. In addition, non-stoichiometric Ca/P substitutions are frequent in biomineral-
ization processes, where the calcium content can increase, and, at the same time, carbonate
ions appear in high amounts [351,353]. All the possible mineralizations present differ-
ent symmetries [354] and crystallinity degrees [355] in minerals of the apatite group of a
geological type, synthetic minerals, or minerals modified by biological origin [356].

On the other hand, it is possible to replace the Ca cations with other elements in the
apatite lattice, such as Ag, Cu, Fe, Zn, Co, Mn, Na, K, Mg, Sr, Pb2+, Mn2+, or rare earth [357].

Incorporating different elements into the apatite structure makes it possible to ob-
tain nanostructured compounds that are very useful in bone or enamel regeneration, as
occurs with the incorporation of Zn ions, turning out to be, in addition to consolidating,
effective antibacterial ions [357]. In the same way, the incorporation of silver is promis-
ing, although the antibacterial effectiveness can vary depending on whether it is carried
out by ion exchange or coprecipitation [357]. In addition, the substitutions also include
hydroxyapatite-carbonate structures, typical of samples of biological origin, defined as “car-
bonated apatites” and classified as type A, where CO3 is replaced by (OH)−, type B, where
the anions (CO3)2

− can replace both (PO4)3
− and (OH)−), and type AB, corresponding to

a mixture of A and B [357]. For these reasons, the minerals of the apatite group of type B
are also quite attractive for heritage conservation treatments, as observed in coatings with
consolidating purposes [358]. The incorporation of silver, strontium, barium, potassium, or
zinc to the type B compound demonstrated good adherence and an improvement in the
mechanical resistance of the stone material in freeze–thaw tests [358].

Toxicity: Similar to the patite hydrated phases, there is a greater risk of stone for-
mation with these compounds in the kidney [359,360]. This area has a higher risk due to
the accumulation of highly carbonated apatites [357,361]. However, one of the main topics
of debate so far is to determine to what extent the carbonation level of apatites could be
one of the factors responsible for urinary tract infections [362]. However, it is necessary to
consider that carbonate and bicarbonate ions are present in physiological fluids [362], which
come from membrane vesicles secreted by various cells, including vesicle matrices (a type of
extracellular vesicle) [359]. Specifically, vesicle matrices, due to their nanometric size, turn out
to be mineralization nucleation agents due to an increase in the concentration of calcium and
phosphates [359], leading to ectopic calcifications, with a greater probability of an increase in
arthritis processes and arteriosclerosis in addition to kidney disease or hyperlipidemia [359].

On the other hand, there are toxicity risks when incorporating different elements
in the mineral series of the apatite group. Many of them correspond to trace elements,
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which exert their effect in transforming the mineralogical phases, being able to modify the
morphology of the crystals [363]. Among the most studied in terms of toxicity are zinc, iron,
and strontium, in which pathological calcifications have been identified [363]. Specifically,
the studies on Zn in the apatite network of biological origin indicate an association with
osteoarthritis, osteoporosis, and kidney stones [363]. However, determining whether or
not Zn occupies the apatite lattice is still under debate. However, fundamental advances
using crystallography have helped to clarify this dilemma [363]. Specifically, pathological
calcifications of apatite studied by X-ray absorption revealed that Zn did not occupy the
apatite network but appeared outside [363]. Finally, the authors pointed out that this
location could affect details such as crystalline morphology and its degree of toxicity, which
could be a key parameter in pathological calcifications of oligo-elements [363].

6.2. Protective Treatments Using Hydrophobic Coatings
Amorphous Nanosilica

One of the most widely used nanomaterials in surface protection processes against
water action is SiO2 in its amorphous variety with a short-range order structure. Its
hydrophobic properties demonstrate high efficiency by depositing layers of amorphous
nanosilica on substrates exposed to the action of aqueous substances [10,18]. In wood
treatments, it can reduce swelling and helps to prolong the wooden structure. Due to
its specific properties, several studies report its use for fire resistance, self-cleaning, and
scratch resistance without producing aesthetic changes in the material [1].

Toxicity: Amorphous silica nanoparticles can induce cytotoxicity and genetic or epige-
netic alterations in humans due to the impact of the nano silica/bio-systems interface on the
cellular and biochemical processes [364]. During the conservation processes, there is a risk
due to inhalation that can generate inflammatory processes in the lung submucosal cells
in specific doses and particle sizes around 10 nm. Around this particle size, the induced
ROS leads to apoptosis, decreasing cell survival SiO2 [364,365]. Moreover, as observed in
spherical particles, its penetration, translocation and deposition are all affected by their
properties, such as the size, shape, or surface properties [219]. Some studies emphasize that
its toxicity depends mainly on its specific surface rather than the aggregation degree [366].

6.3. Self-Cleaning and Biocides

Biological action is one of the most outstanding deterioration agents, affecting build-
ings, mural paintings, canvases, papers, or archaeological pieces. The interaction of fungi
and bacteria with the substrate leads to textural and compositional modifications of the
material that finally cause its decay. The most commonly used antibacterial and antifungal
agents are TiO2, ZnO, Ag, and MgO, which, in their nanometric version, achieve successful
results [367]. In the case of metal nanoparticle applications with microbial properties,
statistical analyses report that silver is the most studied and reported metal (63%), followed
by copper (9%), zinc (9%), gold (8%), iron (6%), magnesium (3%), platinum (1%), titanium
(1%), and vanadium (1%) [368]. Partly, the economic cost associated with gold and platinum
limits their synthesis and application [368].

6.3.1. Titanium Dioxide

Titanium dioxide is a photocatalyst widely used as nanocoating for controlling biode-
terioration and serving as a self-cleaning agent against pollution [369,370]. Among the
different isomorphs of TiO2, the anatase phase displays the highest photocatalytic perfor-
mance [27]. A surface treated with titanium dioxide can keep clean by the action of sunlight
and rainwater based on its photocatalytic and super hydrophilic properties [371]. At the
same time, TiO2 can become self-disinfecting against pollutants that break the contaminants
into water and CO2 in the presence of light. Gradually, the adsorbed organic dirt decomposes
by TiO2’s photocatalytic property, while organic contaminants and dust are removed with
rainwater due to TiO2’s superhydrophilic properties. However, its effectiveness depends on
the lighting conditions, the amount of rain, or the dirt accumulation rate [371].
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The photocatalysis process causes oxidizing reagents, which conduct the decompo-
sition of many organic substances that deposit on or form on surfaces [372]. The biocide
action occurs when a treated surface with the anatase phase of titanium dioxide is exposed
to UV light and responds by accelerating the oxidation process and eliminating organic
matter such as fungi and algae [373].

On the other hand, to improve the photocatalytic performance, the photoelectro-
chemical technique, a fusion between electrochemistry and photocatalysis, improves the
antibacterial efficiency, as observed in TiO2 nanowires, whose antibacterial efficiency is ten
times higher than that of the traditional photocatalytic method [374].

Toxicity: The main risk in conservation processes occurs during materials management.
Reports indicate that the generation of oxidative stress caused by internalized nanoparticles
into the mammalian cell produces inflammation, cytotoxicity, damage in the DNA [375],
and carcinogenic effects by inhalation [48]. The structure of TiO2 polymorphs plays a role
in its toxicity degree, so many studies report that the anatase phase is more toxic than
rutile [376]. Comparing both phases under UV light excitation, the most inactive catalytic
materials (rutile) could be less cytotoxic than similarly sized anatase nanoparticles. In
addition, in any case, it is essential to consider that the higher the toxicity, the greater the
ability to generate reactive oxygen species under ultraviolet lighting [251,376]. Furthermore,
the particle size could play an important role such that bigger particles behave differently,
and their toxicity could be higher in the rutile phase compared with the anatase phase in
particles around 200 nm when they are in the absence of photoactivation [251]. Specific
studies talk about eventual access by the oral way, and the continued ingestion of TIO2
could have the same risk as that observed in food-grade TiO2 by maternofetal transfer
in pregnant women, which is a reason why the authors recommend the need for the risk
assessment of chronic exposure to TiO2-NPs during pregnancy [377]. Other studies report
the risk of pulmonary damage during work in indoor paints, including nanoTiO2, by
the eventual release of TiO2 nanoparticles powder, conducting inflammation and DNA
damage [378]. Furthermore, many works of art have white pigments based on TiO2 in oil
paintings, which could be a risk during restoration processes [379,380].

6.3.2. Zinc Oxide

One of the main properties of Nano Zn oxide is controlling the biodeterioration
processes by inhibiting microbial-fungal attacks and forming a protective surface layer to
enhance its durability due to its photocatalyst properties [381]. However, as in all cases, its
effectiveness depends on specific physic-chemical characteristics. For this reason, researchers
frequently focus on improving them by changing the synthesis conditions [107,382].

Toxicity: The primary use of ZnO is as a sunscreen for the skin. However, studies
indicate that it can be located in the first superficial layers of the stratum corneum [383],
increasing its penetrability by wounds and burners’ skin or accumulating in the hair
follicle [384]. Although prolonged exposure to ZnO is not frequent in material conservation
procedures, experiments carried out with sunscreen report how the release of Zn ions from
ZnO could reach the blood [385]. The route of entry of the biocide through the skin can be risky
without adequate protective equipment. Its toxicity increases depending on the nanomaterial’s
dose, the type of solvent, the concentration, and the specific properties. Furthermore, several
studies talk about the risks after internalization including neurotoxicity [386], hepatic and
embryonic kidney cells cytotoxicity, oxidative stress, and genotoxicity [387].

6.3.3. Silver

Nowadays, the applications of silver nanoparticles include sectors as diverse as
medicine, [388], diagnostic bio-sensors [389], the pharmaceutical industry [390,391] en-
vironmental remediation [392], electronics [393], agriculture [394–396], forestry [397], food
packaging [398,399], and the automotive industry [400]. In the field of heritage conservation,
silver is a highly employed nanomaterial against the biodeterioration affecting different
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materials of cultural heritage [12,401], such as its use in limestones [402], sandstones [403],
artworks [404], or textile pieces [405].

Toxicity: Despite its significant advantages, the risk of toxicity in humans, living
beings, and the ecosystem comes from multiple sectors such as mining, industry, trans-
portation, or wastewater treatment. Restoration work does not escape this risk, since these
nanomaterials are deposited on different surfaces that contribute to dispersing silver in various
scenarios affecting the environment when exposed to air or water [406]. For instance, there is
a risk of toxicity from the oral way during restoration activities. It is crucial to consider that,
among the mechanisms of internalization in the human body of silver nanoparticles, there
is ingestion which may conduce to diabetes, hyperlipidemia, or hypertension [289,407,408],
medical treatments being an essential way of entry into the organism. Studies in cultured cells
and animal tissues reported induced oxidative stress, genotoxicity [409], and apoptosis [410].
Its incorporation produces cytotoxicity inside the mitochondria and nucleus, implicating the
direct involvement in mitochondrial toxicity and DNA damage [407]. However, it depends
on the specific properties of the nanoparticles, including their size, surface area, shape, ag-
glomeration status, and dose. Their interaction with the cell differs depending on parameters
such as diffusion, gravitation, and convection forces [407].

6.3.4. Gold

Gold nanoparticles have shown high efficiency and multifunctionality [411], highlight-
ing their antifungal and antibacterial properties [412]. Treatments using gold nanoparticles
to prevent dust deposits on cultural heritage building surfaces demonstrate an improve-
ment in the photocatalytic capacity of TiO2, conferring a constant self-cleaning activity
through the TiO2/SiO2/Au mixture [413]. In addition, in wood consolidation processes, Au
nanoparticles show high effectiveness when combined with nano-hydroxyapatite (HAP),
as reported in the Au/HAP mixture obtained by sonochemical homogeneous precipitation
synthesis [414]. Specifically, the Au/HAP nanoparticles could cover vessels and wood
fibers and fill empty spaces, thus stopping the weathering process more accentuated in
aged wood than in young species [414].

Toxicity: Despite the multiple applications of gold nanoparticles, there is also a risk of
toxicity that is still a matter of debate, since some articles maintain that they are not toxic
and others maintain the opposite [415,416]. As Sany et al. point out [416], the conflict in
the gold bioactivity data is partly due to laboratory protocol variations, making it difficult
to determine and generalize vital aspects of its effects without establishing a consensus
that allows us to conclude its toxicity effects. However, due to this situation, researchers
comment on the need to systematize data on the most relevant physical-chemical param-
eters that govern and control the toxicity of gold nanoparticles at the cellular level and
throughout the organism [415].

On the other hand, specific studies indicate, to a certain extent, oxidative stress in
tissues and cell lines used in vivo and in vitro, respectively, with the liver, spleen, and
kidney being the most affected [416]. As summarized by Sany et al. in their review,
several in vivo experiments in humans report leukemia, lung fibroblasts, or spermatozoa
modifications affecting their viability and motility [416].

6.3.5. Platinum

Among the advantages of platinum nanoparticles, their antimicrobial, antifungal,
antioxidant, antidiabetic, and anticancer properties stand out [417]. Among them, an-
tifungal and antibacterial properties are strategic for controlling colonization on stone
substrates [418]. The studies reported by Khan et al. 2021 [417] provide information
about the state of the art concerning the different factors that affect catalytic efficiency,
making the nanoparticles’ morphology a crucial factor [417]. For example, an assessment
of the efficiency of platinum nanoparticles comparing nanoclusters, nanospheres, and
nanocubes indicated that the nanoclusters were more efficient among the three types of
morphologies because the high percentage of corners and edges of atoms increased the
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efficiency of the nanoclusters’ catalytic phenomenon [419]. On the other hand, to achieve
greater antimicrobial efficacy, one of the possibilities is to use photochemical sterilization,
previously mentioned in TiO2 treatments [374]. By means of this technique, it is possible
to eliminate micro bacteria photoelectrochemically by applying semiconductor powders
of platinum/titanium oxide, which, when irradiated with a xenon laser lamp, inhibit the
respiration of microbial cells, as reported in the control of Lactobacillus acidophilus, Saccha-
romyces cerevisiae, and Escherichia coli [420]. Another possibility is to apply Pt/MWCNT
treatments, where it is possible to obtain better results by combining the benefits of carbon
nanotubes (described in the next section) with those of platinum, with antimicrobial ac-
tivity [1]. Furthermore, there is the possibility of making different combinations, such as
platinum/silver, whose combination has been proven to be effective in dental treatments
for controlling bacterial activity [421].

Toxicity: The assessment of platinum nanotoxicity is a subject on which the different
research groups have yet to agree, as reported by Czubacka et al., 2019 [422]. Although the
internalization of nanoparticles can occur through the respiratory or digestive routes, there
are no studies regarding penetration through the skin [422]. Based on the available toxicity
information, there is evidence that nanoparticles can accumulate in the liver, heart, lungs,
or kidneys. Still, their toxicokinetics depend on the size of the particles [422]. In addition,
platinum nanoparticles can cause inflammation and oxidative stress when they enter the body
orally. In addition, intravenous access can cause hepatotoxicity, nephrotoxicity, DNA damage,
and cell apoptosis [422]. However, despite the advances in toxicity assessment, more tests are
needed to determine the limit values of the occupational exposure of workers [422].

6.3.6. Copper

Copper nanoparticles stand out for their biocidal and antibacterial power, both in the
medical sector [423] and in conservation treatments for pieces of cultural heritage [1,15,16].
Specifically, investigations into its application against fungi and lichens in the conserva-
tion of archaeological material on marble, sandstone, and plaster substrates indicate a
high efficiency during three years compared to traditional treatments [424]. However, its
efficiency may vary depending on the climatic conditions to which they are subjected,
with the possibility of a slight darkening in color in materials treated with a high con-
centration of Cu [424]. Another alternative for eliminating biological colonization in art
stone works is the mixture of copper nanoparticles with compounds with hydrophobic and
consolidating properties prepared from oligomers of ethyl silicate and polysiloxane [425].
Likewise, studies on wood to control termite colonization indicate a high efficiency of
copper nanoparticles compared to Zn nanoparticles or micrometric Cu particles [426].

Toxicity: The nanotoxicity of copper nanoparticles is a subject of debate since different
researchers maintain that there are many variables to consider, including the effect of size,
the oxidation, or the corona effect [423]. Some studies identify a relationship with increased
neurodegenerative disorders, including Alzheimer’s and Parkinson’s [427]. At an ecological
level, cover nanoparticles are highly polluting and seriously affect tiny aquatic organisms [427].

6.4. Multifunctional Properties of Carbon Compounds (Nanotubes, Nanowires, Nanorods)

Today, the use of allotropic nanostructured carbon compounds, classified as fullerenes
(zero-dimensional), nanotubes (one-dimensional), and graphene (two-dimensional), has
achieved significant advances in different applications, such as in the pharmaceutical,
electronics, and biomedicine fields [428].

Carbon nanotubes consist of tubular carbon molecules arranged in monoatomic layers
of carbon-forming cylinders, which can be isolated forming monolayers (SWCNT) or
concentric arrangements forming multilayers (MWCNT). Depending on the synthesis
process, they can develop different morphologies and include other chemical compounds
in their structure to achieve certain specific properties. As reported along the evolution of
manufacturing conditions, the morphologic variations include bundles, entangled tubular
objects, and fibers. Specific bundles may develop crystal-like structures, as reported in
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hexagonally arranged SWCNT [429]. Moreover, regular or irregular agglomerates can
assemble, forming other morphologies such as double spiral rounded, tubular, or flower-
bundles shapes [430]. In all cases, the thickness diameters range around 2–3 nm or less,
and their length reaches the micrometric order [170,431].

Heritage conservation takes advantage of its versatility for creating new products with
specific properties, such as super-hydrophobic or hydrophilic materials [1], to protect from
water [432], biocidal [433], or fire action [118,434]. Its use in building materials restora-
tion processes mainly focuses on reinforcement to improve the mechanical strength of
SWCNT/MWCNT grown on the polymeric matrix [435], as described below. Moreover, the
advantages of fine art conservation materials report the design of devices, including CNT,
in the form of lightweight, flexible, transparent, and breathable film-like mats applicable
to preserving the required humidification properties and as gas permeable membranes of
paintings, textiles, and works on paper [1].

Toxicity: Based on the multitude of variables that can form in both SWCNTs and
MWCNTs, it is expected that the level of toxicity will be very different, depending on their
morphology, degree of agglomeration, aspect ratio, rigidity and flexibility and the presence
of impurities or metal additions (Fe, Co, Ni,), besides the local environment in which they
interact. Internalization can be different, obstructing critical blood pathways or producing
various cytotoxic effects [436]. In all cases, the degree of damage will depend on the dose
and the time of incubation [437]. The smaller the diameter of CNTs and the greater the
aspect ratio, the greater the toxic effect that is observed [438]. Increasingly, reports with
different connotations discuss how the interaction of CNT induces damage to the heart
and cell proliferation, muscles, hindrance in the blood flow, vascular atherosclerosis or
in the alveolar and intra-tracheal tissue walls [439]. Moreover, CNTs accumulation in the
kidney or the liver may lead to renal and liver toxicity [439]. In other cases, they can induce
lung fibrosis [440], ocular damage [441], or granuloma formation with entrapped MWCNT
agglomeration in the subcutaneous tissues [439]. Reports indicate how CNT can produce
inflammation, apoptosis, and oxidative stress in the brain [442]. Furthermore, specific CNTs
such as those with elongated fiber shapes constitute a relatively high risk of producing
DNA damage due to mutations, oxidative stress, or chromosome alterations depending
on the concentration and specific particle properties [443]. With the advance of research,
new studies suggest the necessity of alternative designs and safety application methods for
minimizing their damage [443].

6.5. Fire Retardants

The protection of different materials against eventual exposure to fire is an issue for which
nanotechnology can be helpful. The treatments consist of coatings with products that resist
high temperatures or react by decomposing to confer protection against heating [372,444].

Among the nanomaterials with fire-retardant properties [445], magnesium hydrox-
ide [446], aluminum hydroxide [176], and new combinations, such as adding magnesium
hydroxides to carbon nanotubes, stand out [118]. Other fire retardants consist of polymers
such as phosphines, phosphonates, phosphates, silanes, siloxanes, boric acid, borates,
carborane, or melamine derivatives [447], which are highly harmful depending on the
exposure dose due to the toxic gas emission with the increase in heating [448]. Furthermore,
it is essential to consider a series of factors that determine the toxic potential of materials,
including the elemental and organic composition of the decomposed material, based on
their thermal properties, and the possible reactions among them [448].

6.5.1. Magnesium Hydroxide–CNT Combinations

Magnesium hydroxide is the most commonly used fire retardant as a protective coating.
It hydrolyzes to obtain crystalline water, absorbing a large amount of heat (44.8 kJ/mol)
when the temperature reaches between 340 ◦C and 490 ◦C [444]. During hydrolyzation, it is
transformed into magnesium oxide, releasing water [444]. On the other hand, CNTs are light
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and flexible, as reported in coating film trials, obtaining promising results [449]. Therefore,
the combination of both compounds manages to obtain fire-retardant properties [118].

Toxicity: In addition to the most relevant aspects of the toxicity of both magnesium
hydroxide and carbon nanotubes, described in the previous section, specific studies on
magnesium hydroxide emphasize the possible risk of Mg2+ ion release during heating,
which could be higher in high Mg concentrations than in low ones [343]. Moreover, with
a high dilution of nanoparticles, a low content of Mg emission happens [343]. Another
factor could be the possibility of magnesium hydroxide nanoparticles aggregation, which
could generate a thicker layer of material, preventing the release of Mg2+ and the stability
of the colloid regarding its cytotoxicity. Similarly, it is essential to consider the specific
physicochemical properties of carbon nanotubes. Therefore, knowing these properties
would be the only way to determine the degree of toxicity of the CNT-Mg hydroxide
combination, which has been unreported to date.

6.5.2. Nano Aluminum Hydroxide

Nano aluminum hydroxide stands out for its high efficiency as a fire retardant and
consolidant, which decomposes when heated at 320 ◦C, losing its crystal water [450].
There is an interest in improving its efficiency by preparing composites, including aluminum
hydroxide nanoparticles. For instance, as assessed in wood pieces, the mix of foam composites
and nano aluminum hydroxide-foaming agents results in a good fire retardant for preventing
spontaneous coal combustion, obtaining, at the same time, smoke suppression [450].

Toxicity: Studies about the toxicity of aluminum hydroxide advise how its ingestion
can conduce to potential reproductivity in embryo/fetal toxicity [451]. When it is in nano-
metric size, the risk is higher. The internalization of aluminum hydroxide nanoparticles can
produce allergic reactions, besides dermal damage producing erythema, subcutaneous nod-
ules, contact hypersensitivity, and granuloma, as observed during vaccine inoculation [452].
These risks can also occur when handling solutions during the fire-retardant coatings
procedures when aluminum hydroxide nanoparticles are applied to the materials without
adequate protection, causing skin irritation, which increases with a higher concentration or
decreasing particle size.

6.5.3. Nanoclays

Other compounds used as fire retarders are nanoclays. The reported phyllosilicates
include montmorillonites and sepiolite nanorods. The ensemble of these clays with polymer
chains forms nanocomposites [176]. In the case of sepiolite, a magnesium silicate-containing
nanoclay mineral, silica tetrahedra form nanoplatelets surrounded by nanosheets of magne-
sium. In this case, sinalol groups (SI-OH) give it hydrophilicity and suitability in chemical
functionalization [176].

Toxicity: Reports about sepiolite toxicity highlight the high risk of persistent pul-
monary inflammatory and cytotoxic effects in humans and animals [453], which could have
the same lung toxicity as other nanofibers or nanorods, as described in the previous section.
However, its risk depends on the inhaled nanofibers accumulation.

Montmorillonite has the advantage of being an oral delivery carrier because it provides
mucoadhesive properties across the gastrointestinal barrier [454]. Reports about its toxicity
in in vivo and in vitro studies point out that montmorillonite could cause some cytotoxic
effects at high concentrations after long-term exposure [454]. In addition, reports about the
incorporation of this clay into polymeric systems talk about intestinal damage producing
morphological alterations in the Golgi apparatus and nucleolar segregation due to the
increase in intracellular reactive oxygen species production [455].

6.6. Hybrid Nanomaterials and Nanocomposites

Nowadays, protective treatments for stony materials use composites based on polymers
with nanomaterials [176,456], which vary in effectiveness depending on the type of polymer
used. For instance, the new trend is to synthesize organic–inorganic hybrid nanocomposites
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using acrylate, organosilane (TEOS), fluorinated silane (FOTCS), and titania nanoparticles
(TiO2) with hydrophobicity and self-cleaning properties, resulting in an opportunity to obtain
better thermal, mechanical, and weathering resistance of carbonate stones [457].

Moreover, the mixture of siloxane (hydrophobic) with nano SiO2 (superhydrophobic)
composites shows that this combination can only slightly reduce the water vapor per-
meability and the water amounts absorbed by capillarity in comparison with the same
polymer without nano SiO2. The aggravating factor is that it can produce a modification
in color on the surface [124]. Nevertheless, another kind of polymer can produce better
results, such as applying Fluor-alkyl silanes-SiO2 composites in granites in the appropriate
proportion [458]. In the same way, the application of new compounds, including nano
TiO2 in combination with Fluor-polymers, can enhance their biocide and self-cleaning
properties [456]. However, its effectiveness depends on the concentration. Among the
disadvantages, there is a risk of producing significant damage in the treated stone by the
titanium oxide–polymer interaction [456]. Some reports explain how coupling the photo-
catalytic titania with the hydrophobic polymer could lead to low contents of water-soluble
ions adsorbed by the NPS, which may be accumulated on the coated stone surface [456,459].
Within the protective treatments using polymers, the most recent line of research opts for
incorporating SWCNT and MWCNT to improve the materials’ mechanical and UV radia-
tion resistance. Single- and multi-walled CNTs are promising superhydrophobic materials
in combination with milled xerogel or poly (dimethylsiloxane), causing a decrease in the
water adsorption capacity of the polymeric matrix [153].

Furthermore, new combinations seek to improve the biocide action, such as citrate-
stabilized silver nanoparticles, silver/TiO2 nanocomposites, and citrate-stabilized silver/TiO2
nanocomposites, whose effectiveness depends on their penetration depth in the stone ma-
trix [103]. Furthermore, combinations such as Silver-TiO2-SiO2 have improved photocatalyst
properties for self-cleaning applications [460], along with SiO2 crystalline-TiO2 nanocom-
posites, which produce photoactive and hydrophobic coatings when applied as sols brushed
onto stone [461].

Toxicity: The toxicity risks of polymers with nanoparticles are an issue that needs
more investigation. It is a priority to analyze the possible risk of these composites since the
polymers are easily degradable by the action of UV rays, exposing the layer of nanomaterials
on the surface to which it was applied, as reported in MWCNT [462,463], with the possibility
of environmental dispersion [464], depending on their degree of adherence. Therefore, it is
necessary to consider the emission risk during handling procedures such as cutting, dry
coating, or grinding that will contribute to eventual toxicity. [465].

In addition, there is also a risk of environmental dispersion in other types of exposures,
such as that produced by the sun (photodegradation), thermal variations (thermal decom-
position), humidity (hydrolysis), interactions with other solutions (chemical processes), or
incineration [465]. Therefore, it is necessary to delve into this topic since, for instance, a change
in the material’s roughness or particle size is not exempt from damage due to the mentioned
factors, which facilitate its degradation and the consequent release of the nanomaterial.

Therefore, the exposition of environmental conditions, including the wind speed, the
presence of chemically enriched water, the relative humidity, or the specific climatic conditions
of the different types of nanocomposites, could have the same risks as nanoparticle powders
in the short and long term depending on the particular properties of the composite.

The constant increase in the hazards of nanomaterials during their handling tasks,
or during grinding, cutting, or shredding processes, has encouraged different specialists
in nanomaterial synthesis to promote the substitution of high-risk nanomaterials for less
dangerous ones.

Although most of the trends are focused on improving the effectiveness of nanomate-
rials in their different applications, it is crucial to consider that their toxicity appears right
from the moment of synthesis in which precursors are used that can affect the ecosystem
during their manipulation, including disposable material that can leak by water or air. For
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these reasons, there is currently a tendency to develop new nanomaterials through green
synthesis and bioinspired nanomaterials [466].

The objective of the green synthesis technique is to produce nanomaterials by achiev-
ing a biogenic reduction in metal precursors. Its advantages include being ecological,
low-cost, and free of chemical contaminants, using bottom-up techniques [467]. Specific
bioinspired nanomaterials promote the manufacture of different compounds such as metal hy-
droxides/oxide, silver, titanium oxide, zinc oxide, and nickel oxide nanoparticles using natural
resources, which have significant use in restoration processes of cultural heritage [466,468–470].

Among them, compilation reports mention the diverse green synthesis method and
its potential applications [250] for obtaining biogenic silver by mixed-valence polyoxomet-
alates or polysaccharide methods [471] or by including extracts of coffee and tea [472].
Similarly, other applications include the use of aloe vera as a precursor to obtaining sil-
ver [473], a mix of lemon juice, zinc acetate, and sucrose for fabricating nano ZnO [474], or
different extracts for obtaining TiO2 nanoparticles [475].

Although the new trend among groups specialized in synthesis processes allows for a
decrease in the impact of the different reagents on the environment, there is still much to
study about their toxicity.

Once released and airborne, it is necessary to evaluate its specific properties, the dif-
ferent aggressive factors with living beings, and the environmental media. These advances
in knowledge are the only way to know the degree of toxicity of each of the nanomaterials
obtained by green synthesis methods and the different bioinspired options.

Table 2. Main nanomaterials and new alternatives used in conservation treatments of cultural heritage
and the risk of toxicity.

Product Properties Reported Toxicity

Ca(OH)2
Stone: [1,15,16,91,94–96,323]
Artworks [4]

Dermatitis, skin burns [333], eye
injuries [334], DNA damage [336],
Lung diseases [338].

Mg(OH)2 [444] Skin burns and eye injuries [342]
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Amorphous SiO2 [1,10,12,15,16,18,153] Inflammatory processes in the
lung submucosal cells [364–366]

TiO2 [369,371,372]
DNA damage, lung diseases,
carcinogenic by inhalation, fetus
damage [45,48–50,378,379]
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Zn oxide [107,381,382]
Neurotoxicity [386],
hepatic/embryonic cytotoxicity,
genotoxicity [387]

Silver [12,401–405] Diabetes, hyperlipidemia,
hypertension [289,407,408]

Gold [411,412]
Oxidative stress in the liver,
leukemia, lung fibroblasts, or
spermatozoa modifications [416]
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Au-HAP [414] Not reported
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Table 2. Cont.

Product Properties Reported Toxicity

Platinum [417,418] Hepatotoxicity, nephrotoxicity,
DNA damage [422].

Pt/MWCNT [1] Not reported

Platinum/silver [421] Not reported
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Copper [1,15,16,424–426] Neurodegenerative disorders
[427]
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Carbon compounds (nanotubes,
nanowires, nanorods)

Super-hydrophobic [1]
Mechanical properties
strengthener [1]
Gas permeable membranes [1]

Atherosclerosis, blood alteration
[439]
Heart, alveolar, and intra-tracheal
damage [439],
Renal and liver damage [439]
Inflammation, apoptosis, and
oxidative stress in the brain [442]
DNA damage, oxidative stress, or
chromosome alterations [443]

Magnesium hydroxide [1,2,13,15,16] Skin burns and eye injuries [342]

Mg(OH)2/CNT [118,449] Not reported

Aluminum hydroxide [176,450] Embryo/fetal toxicity [451],
dermal damage [452]

Nanoclays with polymers [176,450] Pulmonar inflammation [453]

H
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Montmorillonite [176] Cytotoxicity [454], intestinal
damage [455]

Hybrid nanomaterials and
nanocomposites

[8,176,456–458] Ecosystem damage [465]
TEOS/FOTCS/TiO2 [457] Not reported
Silver/TiO2 nanocomposites
[105]. Not reported

Silver/TiO2/SiO2 [460] Not reported
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Citrate-stabilized silver/TiO2
nanocomposites [103]. Not reported

7. Role of International Organizations in the Control of Exposure to Nanomaterials
and the Assessment of the Degree of Toxicity

Over time, the constant progress in nanotoxicity cases has led different sectors, mainly
nanomaterials factories, to consider how to identify hidden risks that could affect workers.

After knowing the primary published data on nanomaterials typically used in heritage
conservation and the possible toxicity risks, it is crucial to question what organizations
have done in this regard. The great concern and constant increase led different groups
to create guides for workers, which were compiled by the European Commission [198],
based on individual European states regulations, and other more recent ones that were
incorporated including:

• Austria (Nano information) [476,477]
• Danish Environmental Protection Agency Denmark (NANORISKCAT NRC) [478]
• France (French Agency for Food, Environmental, and Occupational Health & Safety

ANSES 2008-INRS) [479]
• Germany Bundesanstalt für Arbeitsschutz und Arbeitsmedizin BAUA, German insti-

tute for Standardization -DIN eV, -Federal Institute for Materials Research and Testing
(BAM)) [480]

• Italy (INAIL 2011), Italian National Institute for Occupational Safety and Prevention,
Department of Occupational Medicine Italy [481]

• The Netherlands: Health Council of the Netherlands and Delft University of Technol-
ogy (TU Delft): Nanosafety Guidelines [482,483]

• Switzerland Bundesamt für Gesundheit (BAG) (INFONANO), nanotechnology [484]
• Spain (Spanish Health and Safety Institute (INSST)) [485,486]
• UK (Health and Safety Executive (HSE) and the British Standard Institution (BSI)) [487,488]
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Some of the decisions of the European Commission were to establish manuals and
guides for workers, to reach a consensus within the different groups, and to commit to
updating them periodically [489–492].

On the other hand, the United States, by means of the National Institute for Occu-
pational Safety and Health (NIOSH), which stands out for having a solid support group
for nanotoxicology, constituted the NIOSH Nanotechnology Research Center (NTRC) in
2004, which frequently reports the last advances in the field of occupational health and
safety [493,494]. The United Kingdom, through the British Standard Institution (BSI), has
also established its quantitative evaluation database considering its solubility, carcinogenic-
ity, mutagenicity, estrogenicity, or toxicity for reproduction [487,488]. Their committee and
different research groups frequently update their advances [495].

Other organizations represent countries such as Canada (Occupational Health and Safety
Research, IRSST) [496], Australia (NanoSafe Australia) [497], or China [498]. This information
and compilations of global safety process standards are available in review articles [499,500].

The following considerations were established by the European Comission [198]:
In the first place, the premise focused on establishing a definition of what a nanomate-

rial is, defining it as a particle that has one or more external dimensions within a size range
of 1–100 nm. As a priority, it was necessary to establish the most appropriate evaluation
process and the way to manage risks.

The following steps were defined. The first one was the identification of nanomaterials
in the workplace, giving information on constituents, mixtures, and physical-chemical
properties. The second step would be the evaluation of the risks for workers due to inhala-
tion, absorption through the skin and eyes, ingestion, fires or explosions, chemical reactions,
risks derived from the facilities due to leaks or spills, protection trays against mechanical
impact, or the existence or inexistence of preventive maintenance. The establishment of
these categories would be dependent on the degree of concern, among which it is necessary
to consider the shape (nanoparticle, nanofiber, nanoplate, nanorod, nanotube, or nanowire),
solubility in water (high, medium, or low), and biopersistence (ability to resist removal
by natural mechanisms). Similarly, it is necessary to determine the amount of dust, its
probable emission, duration, and frequency, and the number of exposed workers.

One of the significant advances in the control of the Environment, Health, and Public
Safety is the constitution of an intergovernmental Organization for Economic Cooperation
and Development (OECD), where representatives of 36 industrialized countries of North
and South America, Europe, and the Asia-Pacific region meet, as well as the European
Commission, to coordinate and harmonize policies, discuss issues of mutual interest, and
work together to respond to international issues such as essays and evaluation; good labo-
ratory practices and compliance monitoring; pesticides; biocides; risk management; the
harmonization of regulatory oversight in biotechnology; the safety of novel foods and feeds;
chemical accidents; pollutant release and transfer registers; emission scenario documents;
the safety of manufactured nanomaterials; and pathways of adverse outcomes [501]. OECD
was one of the first major international treaty organizations to establish nanotechnology
groups. In 2006, OECD’s Council established the Working Party on Manufactured Nano-
materials (WPMN) as a subsidiary body of OECD’s Chemicals Committee [502]. WPMN,
also known as WPN, has the purpose of advising on emerging policy issues in science,
technology, and innovation related to the responsible development and use of nanotechnol-
ogy [502]. Details about the constitution of the different organizations and standardization
criteria up to 2011 are available in the Nanotechnology Standards book [503].

OECD provides free-access information on the safety of manufactured nanomate-
rials [504], starting its first report in 2006 [505]. Between the years 2006 and 2015, OED
established specific details such as the safety of manufactured nanomaterials, methods and
models available for assessing exposure to manufactured nanomaterials, testing guidelines on
the ecotoxicology and environmental fate of manufactured nanomaterials, inhalation toxicity,
genotoxicity, and guidance manuals for integrating risk assessment in the life cycle assessment
of nanotechnology-enabled applications to finally establish preliminary guidance notes on
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nanomaterials, detailing interspecies variability factors in human health risk [504]. Once
OECD established the main parameters, the new focus was the specific considerations, such as
using dissolution as a function of surface chemistry to assess the environmental performance
of nanomaterials in risk assessments using silver nanoparticles [506].

The 2016 year stands out by the fundamental advances in critical considerations
such as physical-chemical parameters, relevant measures, and methods for regulating
nanomaterials. In addition, it includes the categorization of nanostructured materials,
updates in the delegations on the safety of manufactured nanomaterials, and compilations
of existing information on compounds such as SWCNT, MWCNT, fullerenes, silver, gold,
titanium oxide, silicon oxide, and metallic mixtures in CNT. [504]. Furthermore, OECD
published a review paper about the test guidelines and an overview of the materials tested,
the test methods applied, and the discussions regarding the applicability of the OECD test
guidelines, which are recognized methods for the regulatory testing of chemicals, including
the compounds ZnO and nanoclays [507].

In the following period from 2017 to 2021, OECD focused on the environmental and
consumer exposure to manufactured nanomaterials [508], exposure characterization [509],
inhalation toxicity, human risk assessment, the biodurability of nanomaterials, and the
different types of risk assessments (2018), establishing the physical-chemical parameters
measurement, test guidelines [510] (2019) and biopersistence/biodurability of manufac-
tured nanomaterials (2020) [511] and evaluating the tools and models used to assess envi-
ronmental exposure besides the evaluation and categorization of the risk of nanomaterials
functional assessment and statistical analysis (2021). In 2022. OECD deepened the sustain-
ability and safe design [504]. Specifically, document 103 discusses topics of interest in the
risk assessment of invoiced nanomaterials [512]. This document provides an overview of
the chemical risk assessment paradigm and describes the adaptation of existing regulatory
frameworks in various member countries. First, it summarizes information about the risk
assessment of manufactured nanomaterials. It provides current practices, challenges, and
strategies for the risk assessment of manufactured nanomaterials when data are limited. Fi-
nally, it concludes with the need for more research on specific risks, highlighting priorities for
research toward assessing particular risks. Table 3 summarizes the main strategies, activities,
and reports of OECD from 2006 to 2022, which are available online [504].

Table 3. Main strategies, activities, and reports of OECD from 2006 to 2022.

Year/
Period Strategies, Activities Report No.

2006–2015

Definition of criteria for the safety of manufactured Nms
Design of testing guidelines on:
The ecotoxicology and environmental fate of manufactured Nms
Inhalation toxicity tests
Genotoxicity
Preliminary guidance about advances in the safety of manufactured Nms

1 [505]
62 [506]

2016

Categorization of nanostructured materials, physical-chemical parameters, methods
for regulating nanomaterials
SWCNT/MWCNT fullerenes, silver, gold, titanium oxide, silicon oxide, and metallic
compounds in CNT

63–79
[504]

2017 Sampling strategies, techniques, and protocols for determining the concentrations of
manufactured nanomaterials in the workplace air 80–84 [504]

2018
Inhalation toxicity of submicron particles, in vitro methods for human hazard
assessment, biodurability of nanomaterials, and different types of risk assessments
of manufactured nanomaterials

85–88
Test Guidelines 318, 412–413 [504]

2019 Physical-chemical parameters measurement 89–91 [504]

2020 Biopersistence/biodurability of manufactured nanomaterials, categorization of Nms
risks 92–97 [511]

2021
Evaluating tools and models used to assess the environmental exposure to
manufactured Nms
Functional evaluation and statistical analysis

98–102 [504]

2022 Sustainability and safe design 103–105 [512]
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Despite the constant progress in the different lines of action of the OECD over the years,
other issues are relevant, making it necessary to deepen the improvement of methods for
detecting and characterizing complex matrices. The investigations were carried out thanks
to the financing of the horizon 2020 program, reporting the findings made by different
research groups [307,501–513], as discussed in the action cost CA 1714–2020 regarding
“Protocols of consensus for the complete physicochemical characterization of new/existing
chemical entities and/or nanomaterials” [514].

While establishing these strategies, OECD published other guidance documents on
good practices of in vitro methods (GIVIMP). These documents aim to develop and im-
plement in vitro methods for regulatory use in human safety assessment. Its beginnings
go back to 2013, and the guiding document has been available since 2018 [515]. As the
aspects highlight, the paper points out essential elements for knowing the nature of a
certain nanomaterial, citing the appearance of the nanomaterial, nominal size, morphol-
ogy, size distribution, aggregation, agglomeration phenomena, and surface characteristics
(surface area, surface charge, surface chemistry). It also insists on evaluating the solvents’
concentration, the nanomaterial’s physicochemical properties and state, whether it is solid,
liquid, or gas, the type of radiation, and all intermediate states, such as aerosol, dust, or
viscous liquid. Other criteria include the type of preparation or the formulation of the
tests before being applied in vitro. Other critical parameters must be considered, such as
the composition, purity, pH, solubility, osmolality, lipophilicity, homogeneity, and pho-
toreactivity. Furthermore, it includes recommendations about air handling, water supply,
environmental control, heating, and cooling, always choosing to guarantee an adequate
environment for the specific type of work in the laboratory [515]. Continued updates are
available [516,517]. This documentation should be consulted within conservation activities
when evaluating the effectiveness of a nanomaterial with biocidal purposes.

On the other hand, in 2015, the European Center for Ecotoxicology and Toxicology
of Chemicals (ECETOC) Nano Task Force proposed a project entitled “A Decision-making
framework for the grouping and testing of nanomaterials” (DF4nanoGrouping) [518]. The
DF4nanoGrouping would cover all relevant aspects of a nanomaterial’s life cycle and
biological pathways, i.e., intrinsic material and system-dependent properties, biopersis-
tence, uptake and biodistribution, and cellular and apical toxic effects. The use (including
the manufacture), release, and route of exposure are applied as “qualifiers” within the
DF4nanoGrouping to determine if, e.g., nanomaterials cannot be released from a prod-
uct matrix, which may justify the waiving of testing. The four main groups encompass
(1) soluble nanomaterials, (2) biopersistent high-aspect-ratio nanomaterials, (3) passive
nanomaterials, and (4) active nanomaterials. The DF4nanoGrouping aimed to group nano-
materials by their specific mode-of-action, which results in an apical toxic effect. This is
eventually directed by a nanomaterial’s intrinsic properties [518]. The DF4nanoGrouping
has been used in different applications, demonstrating a highly efficient means of identify-
ing nanomaterials that may undergo risk assessment without further testing [519,520].

Furthermore, it is essential to highlight the role of private international standards
for nanotechnology, such as the independent and non-governmental organization ISO
(International Organization for Standardization). ISO established a technical committee for
nanotechnologies in June 2005, structured into four working groups (WGs): WG 1: Termi-
nology and nomenclature; WG 2: Measurement and characterization; WG 3: Health safety
and the environment; and WG 4.

The Working Group on Health, Safety, and Environmental Aspects of Nanotechnologies
(Working Group 3) defined the original structure. It served as the home of technical committee
229 for documentary standards related to nanotoxicology [488,503,521–523]. Among them,
one of the main contributions was the ISO standard 29701:2010, “ISO 29701:2010”, which
describes the application of a test using the Limulus amebocyte lysate (LAL) reagent for the
evaluation of nanomaterials intended for cell-based in vitro biological test systems [524].
According to the norm, the test is suitable for use with nanomaterial samples dispersed
in aqueous media, e.g., water, serum, or reaction medium, and for such media incubated
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with nanomaterials for an appropriate duration at 37 ◦C [524]. Although ISO standard
29701:2010 (upgraded in 2021) is restricted to test samples for in vitro systems, the meth-
ods can also be adapted to nanomaterials to be administered to animals by parenteral
routes [524]. The ISO norm 29701:2010 stands out for its contributions to investigating and
monitoring nanotechnology hazards. For example, advances using this standard made it
possible to identify aspects of endotoxin contamination during the synthesis process and
the handling of TiO2, silver, CaCO3, and SiO2 nanoparticles; all of these products are highly
used in conservation processes. Specifically, the endotoxin extraction process—in this case,
liposaccharides—was slowed down by the high concentration of nanoparticles since these
nanomaterials can interfere with detection systems [525]. Other applications of the ISO norm
29701:2010 reported its use for controlling the toxicity of biomaterials by endotoxin contam-
ination, which could be helpful, for instance, in bone regeneration using hydroxyapatite
nanoparticles, a nanomaterial with several applications in cultural heritage [526].

7.1. Qualitative Evaluation Methods

Based on the concepts criteria established by the European Commission and OECD,
the field of nanotechnology decided to apply its principles through the strategy known as
control banding, based on the progress achieved with the qualitative or semi-quantitative
tools previously developed for the pharmaceutical sector.

One of the goals of the control banding technique is to promote health and safety at
work through a qualitative or semi-quantitative approach to risk assessment and man-
agement. It compiles schemes of existing data about the risks of different aggressive
compounds, warning of the health harmfuls caused by their potential exposure. This tech-
nique provides a quick reference guide that, among its commitments, must be constantly
updated. In this case, the term “banding” refers to bands of possible risks according to the
degree of toxicity (high, medium, low) and exposures (small, medium, large exposure),
which is very useful for companies according to their specific needs, depending on the type
of compound, in the case of inhalation and contact with eyes or skin (skin/eye irritant, very
toxic, carcinogenic, etc.) [527].

Along with the application of control banding techniques, different reports compile
the continuous advances endorsed by NIOSH [528,529]. The best-known techniques are
suitable for different groups, each fit for different purposes, different domain applications,
and inclusion criteria [530]. Among them, the most used are the control banding Nano tool
(United States), Stoffenmanager-Nano (The Netherlands), Nano safer (Denmark), Anses
(France), the European Commission, and NEAT (NIOSH).

7.1.1. Control Banding Nanotool

It is a qualitative risk assessment and management strategy associated with exposure
to chemical products in the workplace. The concept consists of managing the potential
exposures to harmful materials through the application of four control modalities. Further-
more, despite a large number of dangerous chemicals, only a limited number of prevention
measures are available. Therefore, it is essential to consider the characteristics of the sub-
stance, the potential exposure, and the risk associated with the substance to determine
the appropriate prevention strategy. If the potential harm to the worker increases, the
prevention measures must be proportional to manage the risk [531]. Control banding is
potentially valuable for risk management associated with nanomaterials in cases with no
official occupational exposure limits [531].

The basis of this methodology is establishing the focus/receptor relationship according
to the specific necessities [532–535]. For instance, this strategy indicates that the exposure
depends on the air’s emission, transmission, and immission factors. Decisive exposure
factors include tasks, local measures taken, general ventilation, and product characteristics,
scored on a logarithmic scale.

The basis of this methodology is establishing the focus/receptor relationship according
to the specific necessities. For this method, it is necessary to dispose of specific information
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on the nanomaterial that should be available in the safety data sheet and the product’s
technical information. However, in the absence of this, the advice is to choose the less
favorable option [536,537].

Even though it does not propose control measures associated with the risk (or priority)
bands, the system allows the user to redesign the scenario to reduce the risk and test the risk
reduction of the new preventive measure implemented. Examples of its application are the
control of occupational exposure to nanoparticles in specific fields such as construction [538],
chemistry laboratories [536,539], metallurgy, or industrial processes [533,540].

7.1.2. Stoffenmanager Nano

The model uses information about physicochemical characteristics and mass balances
to give a relative ranking of exposure situations. To guarantee a sound risk assessment
process and the further acceptance of the Stoffenmanager, a comprehensive evaluation of
its underlying exposure algorithm is highly desirable [541,542].

This strategy considers the source–receptor relationship [543] being adapted differently.
The model emphasizes that the exposure depends on the air’s emission, transmission, and
immission factors. Decisive exposure factors include tasks, local measures taken, general
ventilation, and product characteristics, scored on a logarithmic scale.

This method considers that the specific information is available in the safety datasheets
of the product and the technical information supplied with it. Therefore, if this is not the
case, the method suggests choosing the most unfavorable situation [252].

This technique considers four domains: (1) the synthesis of nanomaterials; (2) powder
handling; (3) spray and dispersions of ready-to-use nanoproducts; and (4) fracturing and
abrasion of NM embedded in products. In addition, the user must assess the extent to
which the substances are nano-relevant (defined as a particle size < 100 nm and products
with a specific SA. ≥ 60 m2 g−1 [544].

Even though it does not propose control measures associated with the risk (or priority)
bands, the system allows the user to redesign the scenario to reduce the risk and test the risk
reduction of the new preventive measure implemented. Examples of its applications are the
synthesis of nanomaterials such as TiO2 [536], alumina nanopowder [545], calcium carbon-
ate [546], mortars elaboration [547], or the blast furnace process in steel-making plants [548].

The main European Commission’s objective is to give information that guarantees work
safety with manufactured nanomaterials by using non-binding guidance for employers and
health and safety professionals. It provides an overview of the problems of the safe use of
intentionally manipulated nanomaterials in the workplace [549]. The European Commission
collects a broad description of preventive action and provides a tool to comply with the
specific aspects of worker prevention, such as risk assessment and management [198].

7.2. Semiquantitative Method: NEAT

The NEAT (Nanoparticle Emission Assessment Technique) is a method for measuring
nanomaterials developed by NIOSH in 2009 [550] and later updated [551], which combines
different techniques. It is semi-quantitative and conceptually designed to measure the concen-
trations of nanomaterials dispersed in the air in the workplace [552]. It considers the inhalation
risk assessment in the production and handling of intentionally manipulated nanomaterials,
considering the environment around the application. For instance, among its applications
are the assessment of nanometal oxides emission [553] and the release of nanoparticles to the
environment during the drilling of materials that include carbon nanotubes [554].

7.3. Dose Control

In addition to resolving issues related to the degree of the harmful of nanomaterials, it
is necessary to assess the effects of the dose received.

The No Observed Adverse Effect Level (NOAEL) and the Low-Observed-Adverse-
Effect-Level (LOAEL) approaches are traditionality applied to determine the point of
departure (POD) of animal toxicology data for use in human health risk assessments. In
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this sense, NOAEL is suitable when the data are insufficient to support exposure–response
modeling, as reported in acute inhalation exposures [555,556]. However, from the studies
carried out by the United States Environmental Protection Agency (US EPA), it was possible
to determine that its criteria are only sometimes valid—specifically, those related to the
strict reliance on dose selection, the dose spacing, and the sample size used with critical
effects [555,557]. For this reason, the US EPA decided to create a method that would
estimate the benchmark reference dose (BMD), which, like the NOAEL, would serve as a
starting point (POD) to derive the guideline value for human health. Nowadays, many
health organizations around the world use BMD during their procedures. Particularly, a
reference dose (BMD) is a dose or concentration that produces a predetermined change
in the response rate of an adverse effect. This default change in the response is known
as the baseline response (BMR) [558]. It was the moment when the Benchmark software
emerged, which has evolved in its versions over the years [559]. This software allows for
estimating the reference doses of nanomaterials [557]. BMD contributes to the reduction in
experimental animals in toxicity studies [559]. However, some studies indicate that it has
its restrictions since it depends on several parameters, including the data format presented
or the consumed time [560]. Different organizations analyze the BMD [561–563], some of
them comparing it with the traditional NOAEL, highlighting its advantages in case the data
is unsuitable for BMD modeling [564]. However, certain studies indicate that there are also
disagreements related to specific aspects of the modeling concerning the recommendations
of the US EPA and the European Food Safety Authority (EFSA) [560].

One study applies the Benchmark dose to classify the sensitivity and toxicity of
metal oxide nanoparticles in lung cells while providing information on the mode of
action [558]. In this case, according to the BMD calculated for the most sensitive test,
the toxicity decreased such that ZnO turned out to be less toxic, following an order of
ZnO > CuO > TiO2 > ZrO2 > CeO2. The authors highlight that the BMD analysis was an
effective tool for assessing the different aspects of risk [558]. However, as the authors main-
tain, there are still unresolved doubts. One of them is that the mechanisms of action of the
different metallic nanoparticles are unknown in detail, nor are the ranges in which adverse
effects occur, suggesting the necessity of carrying out in vitro toxicity tests [558]. Some
specific in vitro and in vivo citometric studies apply the Benchmark dose analysis [565].

However, despite the progress, there is a need to continue deepening the development
of BMD software, focusing on specific issues such as the implementation of new statistical
methods in user-friendly software and the lack of consensus about how to derive the
benchmark dose lower limit [566] Additionally, other associations insist on creating a BMD
Standing Working Group [566,567]. Moreover, several reports speak of using BMD for
information processing in several nanomaterials [568–570], such as ZnO or Siver [571],
TiO2 [572], multiwalled carbon nanotubes [573], and SiO2 [574]. However, there is still a
great variety of nanocomposites to be studied.

8. Recommendations for the Proper Handling and Storage of Nanomaterials: State of
the Art

Another issue to resolve is how to prevent contact with nanomaterials. In this sense, it is
necessary to take measures both for the workers handling the nanomaterials and to control
the possible release of nanomaterials in the surroundings, including during the treatments
using nanoproducts and the processes of synthesis, storage, or disposal of the same. In either
case, its risk can affect humans, fauna, flora, or the environment close to the emission zone.

The control of contact by the respiratory route or the direct contact by the skin are the
main aspects on which the standards focus.

The next section summarizes the different protection mechanisms that are currently
commercially available. This compilation is the result of studies carried out by several research
entities under the supervision of international organizations—mainly, by NIOSH and the
European Commission, with the support of the different associations previously cited.
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It is essential to bear in mind that the severity of the risk defines what type of protection
is necessary, even if it is for occasional or frequent work. In all cases, the most crucial thing
is to determine the dose to which the operator, people, animals, plants, and surrounding
environment (soil, water) are exposed.

After reaching a consensus among the different organizations, the European Union
developed several regulations that cover the control of personal protective equipment (PPE)
and the installation of adequate filters to protect against the emission of nanomaterials
in the workplace and external emissions to the environment. Details of this standard are
available in the guide prepared by the European Commission in 2013 about protecting
health, safety, and the potential risk of workers exposed to nanomaterials [198].

At the same time, NIOSH organized its guidance strategic plan for promoting the
responsible development of nanotechnology [494]. In addition, various groups have
published state-of-the-art articles over the years, commenting on the need to minimize
risks and proposing new initiatives that leading organizations should consider [575].

Within the update reports, NIOSH 2022 established the following control measures: [493].

a Identify sources of potential ENM exposures
b Establish similar exposure groups by area or job tasks where workers may be exposed
c Characterize exposures of all potentially exposed workers
d Assess the effectiveness of engineering controls, work practices, personal protective Equip-

ment (PPE), training, and other factors used to reduce or eliminate potential exposures.

The NIOSH report 2022 [406] established that the exposure monitoring should include
these elements:

1. Develop an exposure assessment strategy.
2. Identify areas and tasks that are more likely to emit engineered nanomaterials, such

as handling dry powders or the sonication of liquids. The use of direct reading
instruments may assist with identifying these work areas.

3. Collect personal breathing zone (PBZ) samples for the worker’s full shift to determine
adherence to the applicable REL.

4. Collect area samples using filter-based samples at indoor locations both in near prox-
imity to and removed from the use of the engineered nanomaterials of interest to
determine product migration and the extent of any cross-contamination (from pro-
duction to non-production work areas) from work practices or improperly designed
high vacuum or other ventilation systems.

5. Use task-specific short-term PBZ and area sampling to identify those tasks that are
more likely to emit engineered nanomaterials.

6. Consult with the analytical laboratory to evaluate detection limits and sample time/
volumes to achieve a sensitive enough measurement.

At the same time, the European Agency for Health and Hygiene at Work, through
the Occupational Safety and Health Administration (OSHA), presents new updates for the
management of nanomaterials in the workplace that are available through the Internet,
among which the following should be highlighted [576]:

I Any situation in which nanomaterials may become airborne, such as the loading
and unloading of nanomaterials or chemicals containing nanomaterials into/from
milling or mixing equipment, the filling of chemicals into containers, the sampling of
manufactured chemicals, and the opening of systems for product retrieval.

II The cleaning and maintenance of installations (including closed production systems)
and of risk reduction equipment, such as filters in local exhaust ventilation systems.

III The research and development of nanomaterial-containing substances, such as com-
posite materials.

IV Handling powders and spraying mixtures containing nanomaterials. Powders are
likely to have an increased risk of explosion, self-ignition, and electrostatic charging,
giving rise to safety concerns. In addition, they may form dust clouds, leading to
inhalation exposure.
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V Mechanical or thermal treatment of items containing nanomaterials that could release
because of these processes (e.g., laser treatment, grinding, or cutting).

VI Waste treatment operations involving items containing nanomaterials.

A helpful guide recommended by the Environmental, Health, and Safety office of
the Institute of Technology of the United States in 2009, based on NIOSH information,
summarizes the best practices that, although in this case were established for the university
sector, are equally valid for those groups that are unfamiliar with the subject [577]. It
includes the following aspects:

I Prevent inhalation exposure
II Prevent dermal exposure
III Prevent laboratory contamination
IV Prevent exposure during spills
V Obtain current toxicity information on nanomaterials in use.

The next section explains the most relevant aspects regarding personal protection equip-
ment, ventilation control, nanomaterials isolation, specific regulations, and waste management.

8.1. Personal Protective Equipment (PPE)

One of the aspects that is essential to preventing damage from direct contact with
nanomaterials is to have adequate personal protective equipment (PPE). This equipment
must be used with frequency as part of prevention measures. In nanomaterials handling,
its use results are mandatory when other preventive measures are insufficient to control
exposure. Its use requires the application of a maintenance program and periodic reviews.
The correct use of this equipment in security implies that users must know, in detail, the
conditions of use, proper storage, and wear indicators that lead to their replacement [549].

The inhalation route is the main route of entry of nanomaterials into the body. As
such, it requires a proportional effort when designing and implementing a Respiratory
Protection Equipment management program (RPE).

In all senses, the objective of RPE is to reduce worker exposure to levels that are
acceptable in the absence of adequate collective protections and during different circum-
stances. Therefore, it is essential to consider aspects such as the installation or maintenance
of collective protections and short-term tasks that make collective impractical protections
or emergencies. The risk situations associated with their conditions of use imply that the
decision to use respiratory protection must consider different criteria. In this way, those
provided by the professional judgment of an expert in occupational risk prevention, those
that arise because of a risk assessment, and those that come from risk management practices
are essential. The sum of the primary criteria intends to keep worker inhalation exposure
below an internal control or exposure limit.

8.1.1. Protective Clothing

The regulations of the European Commission, European Nanosafety [198], or the
British [205] recommend using polyethylene textiles, preferably disposable ones, even
if reusable, advising against the use of cotton, wool, or paper clothing, which can drop
dust. Moreover, HSE states that this clothing type is the most convenient for workers in
contact with CNTs and bio-persistent High-Aspect-Ratio Nanomaterials (HARNs) [578].
It is necessary to wear overalls that cover most of the body without exposing the skin
during activities such as drilling, polishing, or cleaning due to the rise of the high content
of particulate dust [198]. Furthermore, another aspect to consider is foot protection. In this
case, as mentioned by the different standards, any classification of security work footwear
could be valid as long as it provides the necessary level of tightness. In addition, it is
necessary to use disposable footwear when the level of exposure requires it, which may
also form part of the safety suit.



Nanomaterials 2023, 13, 1454 42 of 74

8.1.2. Respiratory Protective Masks

Exposure to nanomaterials via the respiratory tract is a matter that requires particular
interest. In this sense, it is crucial to consider that respiratory protection equipment is adequate
when it can reduce the user’s exposure to an acceptable risk level [579]. During the years
working with nanomaterials, various organizations and research groups have constantly been
evaluating whether the quality of the masks is effective in controlling access to the organ-
ism [580–582]. Nowadays, it is possible to access the comparison of specific nomenclatures
and selection criteria available for different international organizations [579,583–586]. There
is even a new trend for creating nanostructured face masks for obtaining nanofibers that
can incorporate multifunctional nanomaterials, which consist of polymeric nanofibers
fabricated by electrospinning, phase separation, template synthesis, or self-assembly tech-
niques, which include different nanoparticles such as metals (gold, silver, Zn), metal oxide
(TiO2), metal composites (CuO-polyacrylonitrile), graphene, or carbon nanotubes [587].
For example, masks made by electro-spinnable polymers [588] include nanomaterials with
antibacterial properties such as ZnO nanoparticles or titanium oxide nanowires, antiviral
membranes containing Ag nanoparticles, and superhydrophobic masks including CNTs or
graphene layers against several pathogens or organic compounds such as chitosan. In all
cases, biodegradable, eco-friendly, and smart face masks are sought [588].

Nevertheless, this subject needs evaluation in the long term. Therefore, it is necessary
to consider the possible reaction with the fibers that constitute it and the effectiveness of its
adherence to avoid the eventual detachment and entry into the organism, besides the risk
of dispersion to the environment in cases of the improper management of them.

The European Commission and NIOSH insist on the need for protection through
high-efficiency facemasks, but their classification varies from efficiency to nanomaterial
retention. In this case, the filters proposed by the European Union are those called FFP
(Filtering FacePiece), which retain particles in the air, classifying them as FFP1 (Filters
at least 80%), FFP2 (Filters at least 94%), and FFP3 (Filters at least 99%). Currently, the
standard for protecting personnel at risk due to respiratory contact is the EN 149 standard
of 2009 (an update to 2001) [589].

For its part, NIOSH classifies masks and respirators into three different alphanumeric
types. In this way, depending on whether or not they are suitable for the presence of oil,
there are N (not resistant to oil-based particles), R (resistant to oil-based particles), and P
(oil-proof), with P being the most efficient. In addition, P masks resist up to 40 h or up to
30 days after the first time. Regarding the numbers, these refer to the percentage of the
retention of nanoparticles, being 95 (retention up to 95%), 99 (retention up to 99%), and
100 (retention up to 99.97%).

There is also another type of nomenclature depending on each country. For example,
in China, the GB 2626-2006 standard classification of non-oil-resistant masks is KN (95, 98,
and 100) [498]. In Spain, the mask classification is P1 (low-efficiency filters), P2 (medium-
efficiency filters), and P3 (high-efficiency filters) [579]. In the same way, the Australian and
New Zealand regulations use the same classifications, P1, P2, and P3, with P3 being the
most effective (AS/NZA 1716:2012) [590].

Currently, there are different designs of respiratory protection masks, self-filtering masks,
disposable masks, half masks, full masks, external air-assisted, and self-contained masks,
which can provide different levels of protection against airborne particles [591]. These levels
of protection must be known a priori and protect against the entire range of environmental
values the worker is subject to, be it daily, short-term, or ceiling exposure [494,591,592].

However, it is necessary to consider that filtration efficiency depends on specific
parameters such as the particle size, charge, concentration, and flow rate through the filter
material [593]. In addition, it is essential to note that contaminants can bypass the filter,
passing through small gaps between the edge of the respirator and the face, known as
“edge seal leakage”. The extent of leakage also depends on factors such as the size and
shape of the face, facial hair, respirator design, and manner of use [593].
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8.1.3. Hand and Arm Protection

The skin is one of the main entry routes that is easily exposed when handling nano-
materials. Therefore, it is crucial to establish a barrier between the potentially harmful
material and the skin. International associations recommend using polyethylene gloves
because they are more resistant to the penetration of nanomaterials by diffusion than cotton
or polyester gloves. In addition, latex, neoprene, or nitrile gloves resist the penetration
of nanomaterials during an exposure time of only a few minutes [198,594]. However, it is
essential to bear in mind that the effectiveness of gloves can vary depending on whether
the particles are in powder or as colloidal solutions [595]. One example is the static and dy-
namic loading experiments using gloves with different compositions or thicknesses (nitrile,
latex, neoprene, and butyl rubber) in powder form or colloidal solution [595]. The result
showed how the particles in the colloidal solution penetrated through the nitrile gloves,
which increased with the time of deformation, producing surface modifications due to the
increase in the number, diameter, and depth of the pores [595]. In addition, the penetration
of nanoparticles through gloves depends on the dissolution mediums. For example, the
efficiency between nitrile rubber, butyl rubber, and latex gloves varies depending on the
type of dissolvent (water, polyethylene glycol, as well as the glove thickness) [596]. Specific
studies in nanoTiO2 dispersions comparing the efficiency of these gloves showed how
the latex gloves had better efficiency for all types of solutions, similar to 200 µm-thick
nitrile rubber gloves; it was very poor when they were 100 µm-thick [596]. Furthermore, in
powder nanoparticles, the efficiency worsened in butyl rubber gloves and 100 µm nitrile
rubber. The authors justify these differences because the chemical composition in this case
was more favorable in latex gloves, and there was an increase in the protective barrier
when the rubber nitrile gloves were thicker [596]. According to the researchers, there is a
necessity to study different situations in the workplace, recommending a constant change,
especially if the gloves are thinner or in cases of working with colloidal solutions [595].
Furthermore, NanoSafe recommends the use of nitrile for CNT, nitrile and neoprene for
TiO2, and Pt, nitrile, neoprene, and vinyl for graphite [597].

The European Nano safe states that despite the degree of porosity of the different
gloves, their efficiency at aerosols generated by nanomaterials is very high. Nano safe
recommends establishing an appropriate selection of gloves based on their resistance to the
nanomaterial and other chemical products or liquids with which the hands will come into
contact [597]. As part of good practice, different organizations recommend changing the
globes when they have visible signs of wear or contamination. Furthermore, their donning
should ensure that no body parts are exposed.

Similarly, the correct way to manage the contaminated gloves is to store them in closed
plastic bags in a designated isolated area until their removal as a waste. Moreover, it is es-
sential to take care during the disposal of contaminated gloves to avoid skin contamination,
as reported in several studies, including EEP clothing after handling nanomaterials.

The main recommendation is replacing disposable gloves frequently to reduce exposure
to nanomaterials—for instance, when exposure to nanomaterials occurs in the liquid phase.
In this case, the Health and Safety Executive [578] and the European Commission [198]
consider single-use disposable gloves adequate. Furthermore, the glove material thickness is
an important aspect to consider. One recommendation is to use at least two pairs of gloves
when handling Carbon Nanotubes and High-Aspect-Ratio Biopersistent Nanomaterials [198].

8.1.4. Eye Protection

Eye protection is essential but, at the same time, neglected, as some researchers point
out [281]. The risk of entry through the eyes is very high and depends on the type of
nanomaterial. Nowadays, the main recommendation is to work with universal frame
glasses. The risk of splashing is greater during manipulation with colloidal solutions,
which is why different associations recommend using face shields. When working with
aerosols, it is best to use more full faces. Moreover, there are commercial glasses for
protecting the eyes during the handling of nanomaterials.
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All the associations recommend eye protection when handling any chemical product,
including all nanomaterials. Safety glasses must have at least a closed integral frame, be
well-fitting, and meet existing dust protection standards [198,205,494].

8.2. Laboratory Adaptation for Nanomaterials Processing and Storage
8.2.1. Ventilation in Workplaces

One of the essential aspects to control is the emission of nanomaterials in the workplace.
For this reason, it is necessary to maintain good ventilation and have an infrastructure
capable of retaining the emission of particles to the outside. Thus, to obtain good ventilation,
it is required to incorporate air filters into the workplace. The main objective of air filters
is to eliminate particles. According to their configuration, mechanical and electrostatic
filters have fibrous mediums or membranes to protect against other factors such as heating
systems, air conditioning, and industrial applications. Its effectiveness depends on factors
such as the fibers’ size, the filter’s density, or the material used. According to the results
of different studies, it was possible to define four types of filter collection that catch the
particles by diffusion, interception, inertial impact, and electrostatic attraction [598].

The diffusion mechanism bases its principle on random movements of the Brownian
type so that the particle contacts the fiber through the filter. At interception, the radius of
the particle moving along the line of the air stream is greater than the distance from the
airline to the surface, which causes the particle to meet the fiber surface. When impact by
inertia occurs, the air current curves around a fiber and the inertia of the particles make
them continue to move straight so that they collide with the thread and adhere by an
interchange of molecular forces [598].

Electrostatic attraction occurs when the particle and the fiber have opposite charges.
In this case, there is a charge: mass dependency that is more effective if the particle size
decreases. However, it is crucial to consider the effect of atmospheric conditions, which
affect the capacity of nanoparticles to gain or lose electricity, and that the impact of atmo-
spheric variability occurs faster than in microparticles [599], as observed in multiwalled
carbon nano tubes and iron oxides dispersions [600].

It is essential to consider the filtration efficiency against the most penetrating particle
size (MPPS). Theoretical efficiency approximates the movements of particles in the fibers of
a filter. Thus, the actions of an aerosol around the vicinity of a filter depend on the particle
size and fiber characteristics.

Moreover, experimental results indicate that the fraction of retained particles in the
filter determines its efficiency. Therefore, it depends only on diffusion and inertia and not
on the size of the holes in the filter. The fraction of particles retained in the filter determines
its efficiency [598]. Nowadays, many studies promote the improvement of the air filter’s
quality [601–603].

The European directive council of communities defined the workplace’s minimum
health and safety standard [604]. The norms and other guidelines are available in sub-
sequent compilations [605,606]. Following directive 89/654/CEE [604], all workplaces
must comply with the minimum ventilation requirements, especially the ventilation of
confined workplaces. The standard insists on guaranteeing sufficient fresh air in enclosed
workplaces, considering the working methods used and the physical demands of the
workers [604]. One of them is an adequate laboratory with extraction ventilation located
directly in the manipulation place with nanomaterials. The specifications for this kind of
ventilation must include the following conditions:

(1) Extraction cabin.
(2) Conduit that transports the contaminant along the extraction tube.
(3) Fan that moves air through the exhaust system.
(4) Smoke outlet where the system discharges the air.

The system must have filters capable of retaining particles. The standards for pro-
tection against the nanomaterials products also include the adequacy of fume cupboards,
whose objective is to create a current of air inside the hood, with recirculation regions.
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There are several cupboards depending on the specific necessities [607–611]. If the main
objective is the biological security [612], there are different configurations including outdoor
evacuation or indoor recirculation considering the norm 12885, ISO TR, 2008 [613], the UK
NanoSafety Partnership Group (UKNSPG), with contributions from the HSE [614].

The adaptation of insulating filters capable of retaining the particles emitted to avoid
the external emission of nanomaterials in workplaces is an essential issue to consider.

The European Union standard EN-1822 classifies filters as EPA (Efficiency Particulate
Air), HEPA (High-Efficiency Particulate Air), and ULPA (Ultra-Low-Penetration Air), EPA
filters being the least efficient and ULPA filters being more efficient, with the lowest
penetration, making them the most effective, along with, more recently, SULPA (Super
Ultra-Low-Penetration Air) [615].

The term “filtration efficiency” considers the retention against the most penetrating
particle size (MPPS). Theoretical efficiency approximates the movements of particles in the
fibers of a filter. Thus, the actions of an aerosol around the vicinity of a filter depend on
the particle size and fiber characteristics. However, experimental results indicate that the
fraction of retained particles in the filter determines its efficiency. Therefore, it depends
only on diffusion and inertia and not on the size of the holes in the filter [598]. Nowadays,
many studies promote the improvement of the air filter’s quality [598,601].

The efficiency of each filter proposed by the EN 1822 standard [615] is the following:
EPA Filters:

E10 > 85% efficiency, <15% penetration (integral value)
E11 > 95% efficiency, <5% penetration (integral value)
E12 > 99.5% efficiency, 0.5% penetration (integral value)

HEPA filters:

HEPA 13 > 99.95% efficiency, <0.05% penetration (integral values); >99.75% efficiency,
<0.25% penetration (local values)
HEPA 14 > 99.995% retention, <0.005% penetration ((integral values); 99.975% retention,
<0.025% penetration (local values)

ULPA filters:

U15 > 99.995% efficiency, 0.0005% penetration (integral values); >99.975% efficiency, 0.0025%
penetration (local values)
U16 > 99.9995% efficiency, 0.00005% penetration (integral value); >99.99975% efficiency,
0.00025% penetration (local values)
U17 > 99.99995% efficiency, 0.000005% penetration (integral value); >99.9999% efficiency,
0.0001% penetration (local values)

SULPA filter:

Super-Low-Penetrating Air filter with a minimum efficiency of 99.9999% on 0.12 µm
particles (added later).

Following the recommendation of international agencies established in the European
Norm EN 17141:2020 [616], currently, companies specialize in developing isolation or
confinement equipment for handling nanomaterials in the workplace [617]. Thus, various
equipment is available depending on the potential risk of environmental emissions that
may affect the surrounding personnel. The fundamental thing is the adequacy of a cabin
in which high-protection gloves are adapted for handling, avoiding contact with the
nanomaterial, and keeping it isolated. Depending on their needs, each laboratory can use a
pyramid portable glove bag for handling small amounts of nanomaterials which can be
used in field works, glove box insulators for materials with high dispersion, or, if necessary,
biological safety cabinets. In all cases, the most crucial thing is insulation, so depending
on the risks, they can incorporate a fan to control any leakage and achieve tightness in
the handling environment. In this way, any leak, such as the one that can occur due to a
possible break in the gloves, can be controlled using inward constant gas flows to minimize
the escape of the nanoparticles. Technical details and periodic reviews of the subject’s
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state are available in the literature, in which it is questioned or encouraged to improve its
effectiveness [577,581,618].

8.2.2. Organizational Measures in the Workplace: Labeling and Specifications

Controlling exposure to occupational risks is essential for protecting the workers and
anyone who may be directly in contact with them.

Current regulations indicate that all nanomaterials must have a label including all
possible information as chemical products in the work area. The storage must be in marked
containers showing their chemical content and the most information. Likewise, storing
nanomaterials that are dissolved in liquids or dry makes it mandatory to put them in
unbreakable and completely sealed containers.

In addition, the accesses zone to nanomaterials handled and stored, including products
or waste areas, must have indicative signs as pictograms, risks, obligations, prohibitions,
information, and warnings information according to the applicable regulations.

8.2.3. Nanoparticulate Waste Management

The management of nanomaterial waste is an aspect that requires high responsibility,
taking into account the severe added damage that a wrong procedure can cause. There is a
high possibility of generating large quantities of nano waste in the long term, which can
easily affect living beings and ecosystems [619].

The current regulations [198] indicate the necessity to consider at least the follow-
ing aspects:

1. Classify the waste within the families previously established or create a new one,
taking into account the characteristics of the waste both for containing nanomaterials
(solid, slurry, liquid) as well as by the composition of the dissolved medium (solvents,
epoxies) and its shape.

2. A suitable container for the waste, which is required to be unbreakable, allows for an
airtight seal; in eventual cases, the recommendation is to provide a second container
according to the circumstances [198].

3. If the residue consists of easily dispersed dust in the air, it must adopt additional
measures, such as the case of filling the container. This process must always be carried
out within collective protection that acts on the focus and establishes a minimum time
settlement of the dust generated inside the container. It can oscillate between half an
hour and two hours, while the other option is to use a single-use container.

4. Label the container with the information associated with the risk of the collected waste.
5. Mark the container with a pictogram indicating the presence of nanomaterials and

the risk associated with hazardous chemical agents.
6. Establish a temporary storage point enabled in this regard and comply with the table

storage incompatibility established until its withdrawal by the authorized manager.
7. Establish the safety conditions and the mandatory PPE for handling and action in

emergencies. For instance, in cases of cleaning spillages, there cannot be brushing,
compressed air cleaning, or traditional vacuum cleaners aspirating in the workplace.
In the last case, the recommendation is always to use vacuum cleaners including
HEPA-filters [205].

9. Current Status of Regulations on the Protection of Cultural Heritage

The concern derived from the possible ecological impact of nanomaterials on cultural
heritage has led some researchers to evaluate the current state of regulations regarding
the leaching effect of nanomaterials in the environment [620]. Specifically, as discussed by
Brunelli et al. (2021) in their review [620], further efforts are needed to assess the potential
release of NPs by leaching to support an investigation of potential risks throughout their
life cycle since the assessment. Nanotechnology-enabled materials and products’ safety
and sustainability have not kept pace with their rapid commercialization [621].
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The compilation by Brunelli et al. indicates that the registration, evaluation, and
authorization of chemicals (REACH) regulation in force since 1 January 2020 (and the
corresponding guidance manuals) includes a complete set of information on the physico-
chemical properties of MLs (e.g., distribution of particle size, shape, crystallinity, surface
area, solubility/dissolution rate), as well as knowledge of environmental fate and toxicity.
According to the REACH 2020 regulation, it is necessary to consider that twenty additional
nano-specific information requirements must be met to register substances [622]. However,
methods are needed to identify and investigate relevant exposure scenarios (including a
justification for “no exposure” or “low exposure” assessments) in the event that a chemical
safety assessment is required [620]. Previously, in 2018, the annexes to the European Union
chemical legislation regarding nanomaterials were revised to provide more structure and
clarity and oblige manufacturers, importers, and downstream users to make a considerable
effort to understand the details of what should and should not be done [623]. As Clausen
and Hansen (2018) point out, the annex revisions are very inclusive in some respects. In
assessing persistence, bioaccumulation, and toxicity, registrants should consider all life
cycle stages when making quantitative and qualitative estimates of the dose/concentration
of the substance to which humans and the environment may be exposed. This revision
includes estimating environmental distribution and fate and performing a characterization
of the possible degradation, transformation, reaction processes, dissolution rate, particle
aggregation and agglomeration, and changes in particle surface chemistry [623]. Among
the decrees of the new annexes [623], it is worth highlighting the following issues:

1. Nanoform and characteristics that can influence (eco)toxicity and environmental exposure.
2. Do not solely use molecular structural similarities to justify grouping different

nanoforms together.
3. Justify the relevance of the safety information provided for all registered nanoforms.
4. Document the safety of all registered nanoforms throughout the life cycle.
5. Provide information about test conditions and tested nanoforms.
6. Fulfill specific ecotoxicity-related test requirements for different nanoforms depending

on their dissolution and solubility.
7. Comply with specific testing requirements related to toxicity for different nanoforms

depending on their nature and likely route of exposure.
8. Consider multiple reporting metrics of results for nanoforms that are hazardous.
9. Justify waiving information requirements.
10. Propose additional testing and/or comply with ECHA testing requirements.

In addition, as highlighted by Brunelli (2021) [620], there are other aspects of the
current regulations concerning the standard methods used to evaluate the leaching of
NPs from nano-enabled products, such as ISO 2812:2018 [624], AWPA E11-97 (wood
leaching) [625], and the work of the technical committee 351 CEN/TC through CEN/TS
16637-1:2018 [626], with which it is possible to identify adequate leaching tests for the release
of harmful substances from construction products in soil, surface water, and groundwater.

10. Preventive Measures during Conservation Treatments of Cultural Heritage

Based on the guidelines prepared by the different organizations, it is necessary to
consider a series of precautions during the conservation procedures of heritage materials
with nanomaterials. For example, actions that require procedures such as dripping, brush-
ing, or spraying application methods of nanomaterials must consider that the operator is
protected as much as possible from direct contact with the nanomaterial. Specifically, the
risk of contact with the skin for nanoparticulate materials released into the environment
when dripping or brushing treatments are used is more significant due to a wrong choice
of protective gloves (Figure 10a), making it necessary to choose high-quality gloves. There
is a high probability of inhalation during spraying treatments (Figure 10b). Moreover, there
is a greater risk of nanomaterial emissions during cleaning processes—for example, by
laser [128,131], mechanical tests, or milling procedures; the latter is commonly applied in
breakdown nanomaterials synthesis processes [627]. Therefore, it is mandatory to take
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more significant protection measures due to the high risk of the emission of nanomaterials
into the environment. It is necessary to use an approved protective suit that covers the
entire body and feet, high-protection gloves, a hat that covers the head, and a mask and
face shield (Figure 10c).

During dripping, brushing, and spraying procedures, it is necessary to protect the
operator with a mask with an HEPA 14 filter, a face shield, gloves, and a protective suit
(Figure 10d) [601]. In the case of procedures that do not require extensive nanomaterials
manipulation or during optical visualization, to avoid contact with the eyes, it would be
sufficient to use protective glasses. In all cases, it is best to have a glove box to handle
nanomaterials and pieces subjected to nanomaterial treatments and to remain isolated
to avoid contact with the outside. Furthermore, a pyramid portable glove bag could be
convenient if it is necessary to transport nanomaterials, such as a work field or outdoor
procedures. In addition, an adequate ventilation system and special containers for waste
management must be available in the laboratory. Special care is necessary for handling
the debris, based on the current international guideline recommendations, which have
similarities to highly harmful chemical products [198,494].

It is essential to consider special care when cleaning brushes, paintbrushes, and any
instruments, avoiding pouring their content into the water pipes; instead, they should be
stored in labeled cans with information about their content and risk. Moreover, it is crucial
to consider that the risk increases with the dose received, so in the case of frequent contact
with nanomaterials, it is necessary to have a dosimeter for periodic control of the content of
accumulated nanomaterials.

On the other hand, in any case, it is necessary to consider that the spraying, brush-
ing, or immersion procedures are not generalized or standardized for a particular nano
compound because each nanomaterial has its specific properties; a specific material might
be applied with different methods depending upon a specific treatment [1,161,162,628].
Therefore, choosing the most appropriate method depends on its composition and textural
characteristics, the water or environmental conditions, and the degree of deterioration.
Other important parameters are the effectiveness of each method with regard to the con-
solidant penetration depth, mechanical properties, microstructure, contact angle, water
sorptivity, color [628], number of applications, time interval between applications, and
differences between the amount of the product absorbed and consumed, which depend on
the degree of volatility of the solvents and the absorption capacity of the stone [162]. Thus,
before starting the treatments, the main recommendation is to consider the possible risk
of each procedure, contemplating the aerosol effect, including the evaporation of harm-
ful organic solvents and release of nanoparticles during the spray coating process [629],
the specific electric charge of nanoparticles and the meteorological variables [630–632].
Table 4 summarizes the main risks of toxicity depending on the application method and
recommendations of security during the handling of products based on nanomaterials.

Table 4. Main risks of toxicity depending on the application method and safety recommendations
during the handling of products based on nanomaterials.

Procedure Risk Reccomendations

Spraying

Dispersion through the air of nanoparticles:
contact with the skin, inhalation. Evaporation of
harmful organic solvents and release of
nanoparticles [629]

• Avoid the applications of powders of
nanoparticles [198]

• Individual protection equipment: gloves, mask
(HEPA 14), and special clothing [579]

• Avoid the applications of powders of
nanoparticles [198]

• Use specific containers for waste management
[580–582]

• Adapt the area with isolation equipment and
ventilation control indoors and outdoors [631]

Brushing Skin exposure to nanoparticles

Inmersion Splash and dispersion though the air, soils, and
rivers, contact with the skin, inhalation [257,630]

Cleaning, milling Dispersion through the air of nanoparticles:
dermal and ocular contact, inhalation [631]
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Personal Protection Equipment (gloves, masks, face shield, protective glasses) and isolation measures
(glove box, pyramid portable glove bag).

11. Final Considerations and Conclusions

After reviewing the state of the subject in terms of applications of nanotechnology in
heritage conservation, it is necessary to consider some aspects that are relevant to confirm
its degree of toxicity. This review article reports the main effects of nanomaterials frequently
used in conservation treatments in their different fields without discarding many other
signs of toxicity, which will be found as time goes by.

The main objective was to identify the possible toxicity risks during the handling,
including brushing, spraying, or cleaning procedures. Another concern that is essential
to consider is the release into the environment during other activities including crushing,
grinding, and waste management. All of these processes are also applicable to different
synthesis procedures or industrial activities.

It cannot be generalized that the toxicity of the analyzed nanomaterials is similar
without taking into account their specific properties and functionalization, emphasizing a
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variation in their morphology, their aspect ratio, their roughness, or the size of nanoma-
terials. Although the nanomaterials have the same composition, they can cause different
cytotoxic actions once their internalization occurs. Moreover, many researchers insist on the
need for more specific physicochemical data, which have even given contradictory results
due to the lack of detailed information on the nanomaterial. It is necessary to consider
that when nanoparticles are taken into the body, each compound is in contact with varying
dispersion media. Nowadays, there is a lot of knowledge about the solubility in water
but less knowledge about organic solvents. Therefore, it is urgent to analyze the local
environment through both in vivo and in vitro analysis, taking into account that a variation
in the type of solvent can lead to changes in solubility and, therefore, more or less ionic
propagation through the different cells.

There are gaps in other criteria, such as the analysis of the reactivity of nanomaterials,
taking into account the degree of defects that ultimately make their difference.

The constant progress in the production of nanomaterials and hybrid nanostructured
materials turns out to be subject to exploration in depth. It is mandatory to analyze criteria
such as the incorporation of different compounds, which can lead to phase transformation
processes that will vary their chemical and structural properties, symmetry, and unit cell
size, conducing to variations in its efficiency, which in turn will affect the organism in a
different way. Currently, there is not enough information on these specific properties.

Specifically, conservation work in the different lines frequently uses nanomaterials for
consolidation processes, protection against aggressive biological agents, waterproofing,
or fire retardants. Titanium dioxide and carbon nanotubes are highly toxic nanomaterials
among the various compounds. Although several adverse effects are known for particular
compositions, it is necessary to consider that, in new combinations, the degree of hazard
is unknown. In this sense, it is also essential to consider that each nanomaterial behaves
differently depending on the environmental conditions, both extrinsic and those produced
when faced with different body fluids. Moreover, many nano compound mixes still need
more studies, and part of this limitation depends on the detection limit of the characterization
tools. On many occasions, there is limited access to specific body parts to track their behavior.

According to the stated reasons, it is crucial to consider the current work protection
regulations during the handling and storage of nanomaterials. There should be no skimping
on environmental protection measurements, as the long-term effects that nanomaterials
can cause when released or transported through the environment is unknown.

Despite the fact that international organizations offer different guidelines for handling
nanomaterials in different situations, it is necessary to constantly report the latest advances
and update existing data to provide more information to users. In this sense, to achieve a
more significant advance in the knowledge of nanotechnology and its toxicity, it is neces-
sary to consider today’s contribution to diagnostic tools such as microscopic techniques.
International reports need to expand their reporting, considering the constant support
these techniques can offer.

Within international regulations, it is possible to consult the guides provided by
different associations, such as the NIOSH, the European community, and the OECD, among
others, for free. However, access to ISO standards from the private sector is limited.

On the other hand, after reviewing the state of the art concerning international or
domestic regulations, there is an urgent need to carry out specific regulatory documents
focused on conservation processes in which there are risks during spraying, brushing, and
immersion procedures, as well as courses that require cutting, polishing or cleaning the
surface, such as laser treatments, and other in which there is a high probability of emission
of nanoparticles into the environment. In this sense, it is urgent to establish a committee
of experts in nanotechnology applied to heritage, with knowledge of toxicity and nano
prevention, focused on establishing standards and practical guides and defining the specific
dose control of each nanomaterial for the different research fields.

Although nanotechnology offers other advantages in terms of protection, such as the
latest advances in personal protective equipment with nanomaterials, it is urgent to assess
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its compaction and the eventual airborne release, as well as the management of the waste
of this new emerging technology. The same occurs with the adaptation of sensors with
nanomaterials for monitoring gases in closed environments.

One of the emerging problems is the storage of waste from nanomaterials. Although
international organizations report some guidelines, it is urgent to exercise a collective plan
to delve further into the toxicity issue since its reactivity continues to be high as time passes.
Therefore, it is crucial to consider that the time elapsed since the work with nanomaterials
began differently from what will come in the future. Consequently, it is essential to decide
what to do with these wastes, since when different compounds are in contact, there will
be chemical reactions between them, and it is unknown to what point their toxicity may
increase. In addition, it is necessary to deepen the different alternatives regarding the
management of nanomaterial waste so as not to cause damage to the water cycle, farmland,
and living beings, since, in this way, the damage would further increase globally.
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298. Uskoković, V.; Castiglione, Z.; Cubas, P.; Zhu, L.; Li, W.; Habelitz, S. Zeta-potential and Particle Size Analysis of Human

Amelogenins. J. Dent. Res. 2010, 89, 149–153. [CrossRef]
299. Salopek, B.; Krasic, D.; Filipovic, S. Measurement and application of zeta-potential. Rudarsko-Geolosko-Naftni Zbornik 1992, 4, 147.
300. Johnson, D.; Hilal, N.; Bowen, W.R. Basic principles of atomic force microscopy. In Atomic Force Microscopy in Process Engineering;

Elsevier Ltd.: Amsterdam, The Netherlands, 2009; pp. 1–30.
301. Müller, D.J.; Dufrêne, Y.F. Atomic force microscopy: A nanoscopic window on the cell surface. Trends Cell Biol. 2011, 21, 461–469.

[CrossRef] [PubMed]
302. Grobelny, J.; DelRio, F.W.; Pradeep, N.; Kim, D.I.; Hackley, V.A.; Cook, R.F. Size measurement of nanoparticles using atomic force

microscopy. In Characterization of Nanoparticles Intended for Drug Delivery; Humana Press: Totowa, NJ, USA, 2011; pp. 71–82.
303. Carter, C.B.; Williams, D.B. (Eds.) Transmission Electron Microscopy: Diffraction, Imaging, and Spectrometry; Springer: Cham,

Switzerland, 2016. [CrossRef]
304. Birtcher, R.; Kirk, M.; Furuya, K.; Lumpkin, G.; Ruault, M.-O. In situ Transmission Electron Microscopy Investigation of Radiation

Effects. J. Mater. Res. 2005, 20, 1654–1683. [CrossRef]
305. Kawasaki, T. Environmental Transmission Electron Microscopy. In Compendium of Surface and Interface Analysis; Springer:

Singapore, 2018; pp. 171–175.
306. Hansen, T.W.; Wagner, J.B. Environmental Transmission Electron Microscopy in an Aberration-Corrected Environment. Microsc.

Microanal. 2012, 18, 684–690. [CrossRef] [PubMed]
307. Modena, M.M.; Rühle, B.; Burg, T.P.; Wuttke, S. Nanoparticle Characterization: What to Measure? Adv. Mater. 2019, 31, e1901556.

[CrossRef] [PubMed]
308. Karatasios, I.; Theoulakis, P.; Kalagri, A.; Sapalidis, A.; Kilikoglou, V. Evaluation of consolidation treatments of marly limestones

used in archaeological monuments. Constr. Build. Mater. 2009, 23, 2803–2812. [CrossRef]
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