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Abstract: With the rapid progress of artificial intelligence, various perception networks were con-
structed to enable Internet of Things (IoT) applications, thereby imposing formidable challenges to
communication bandwidth and information security. Memristors, which exhibit powerful analog
computing capabilities, emerged as a promising solution expected to address these challenges by
enabling the development of the next-generation high-speed digital compressed sensing (CS) tech-
nologies for edge computing. However, the mechanisms and fundamental properties of memristors
for achieving CS remain unclear, and the underlying principles for selecting different implementa-
tion methods based on various application scenarios have yet to be elucidated. A comprehensive
overview of memristor-based CS techniques is currently lacking. In this article, we systematically
presented CS requirements on device performance and hardware implementation. The relevant
models were analyzed and discussed from the mechanism level to elaborate the memristor CS system
scientifically. In addition, the method of deploying CS hardware using the powerful signal processing
capabilities and unique performance of memristors was further reviewed. Subsequently, the potential
of memristors in all-in-one compression and encryption was anticipated. Finally, existing challenges
and future outlooks for memristor-based CS systems were discussed.

Keywords: memristor; inherent variation; compressed sensing; compression and encryption; edge
computing

1. Introduction

With the advent of emerging technologies, particularly in the domain of the Internet
of Things (IoT) and artificial intelligence, numerous perceptual networks were devised
to achieve seamless human–computer interaction. By 2025, the number of sensing nodes
is anticipated to reach 75 billion, and by 2030, it is projected to surpass 125 billion [1–3].
With massive amounts of digital information being stored, replicated, processed, and
communicated, bandwidth is becoming an increasingly scarce resource. The Shannon–
Nyquist sampling theorem stipulates that the sampling rate should be at least twice the
bandwidth to uniformly sample a signal without losing any information, which inevitably
constrains the sampling speed.

Donoho proposed a revolutionary compression technology called compressed sensing
(CS), which triggered widespread interest in signal processing and wireless communication
networks [4]. CS employs random matrix coding to achieve simultaneous data compression
and acquisition at the interface of the analog and digital domains, enabling sub-Nyquist
sampling rates. Specifically, a random Φ-matrix, also referred to as a measurement matrix,
is employed as a random matrix to encode a signal for compression. To decode the
CS measurement, any receiver must know the actual encoding Φ-matrix used during
sampling, and the compressive signal can be accurately recovered by solving convex
optimization problems [5]. Compared to the traditional sampling and compression process,
this random non-uniform sampling does not need to adhere to Nyquist’s law of sampling,
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thus enabling low-power and high-efficiency data processing. However, complex sampling
control modules and intensive matrix-vector multiplication (MVM) operations can still be
cumbersome, limiting scalability and sampling speed. Therefore, there is an urgent need
for an efficient hardware solution.

Memristor is one such technology that aims to develop the next generation of high-
density and high-speed digital technology through its powerful analog computing capa-
bilities [6–10]. In recent years, considerable progress was made in the development of
large-scale and efficient parallel analog computing capabilities based on transition metal
oxide memristors. For instance, a Ta/HfO2 128 × 64 1T1R crossbar array was constructed
and used for analog signal processing and machine learning [11–14]; and a 32 × 32 WOx-
based memristor crossbar array was used for image sparse processing [15]. However,
memristors exhibit serious non-ideal effects, such as variability, which are attributed to
the uncontrollable ion migration behavior. The non-ideal characteristics associated with
these devices hinder systems from achieving high accuracy, as greater variability can lead
to signal attenuation in a crossbar array, with selected devices contributing more to signal
attenuation than unselected devices [16]. Ongoing research in this area aims to mitigate
these “detrimental” effects [17–21]. Prezioso et al. [17] optimized through an exhaustive
experimental search for a range of titania compositions and layer thicknesses (from 5 nm
to 100 nm). Gao et al. [18] developed oxide-based synapses with 3D vertical structures,
incorporating multiple parallel resistive random access memory (RRAM) devices on the
same nanopillar to suppress intrinsic variation, resulting in a significant increase in recog-
nition accuracy from 65% to 90%. Interestingly, the non-ideal variability that most existing
work on memristor-based systems attempts to mitigate is highly beneficial for CS systems.
The most commonly used approach to implement CS using memristors is to leverage the
memristor’s random oscillation switching behavior and conductance distribution to realize
the measurement matrix Φ. Subsequently, the powerful analog computation capabilities
of the memristor are harnessed to perform vector multiplication with the input signal,
ultimately achieving signal compression, as depicted in Figure 1. The compressed signal
can then be stored in the cloud and, upon request, extracted and reconstructed, making
it an attractive technology for numerous edge computing applications, such as cameras,
mobile phones, computers, robots, and autonomous driving, as shown in Figure 1.
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Currently, with the rapid development of IoT technology and the increasing demand
for efficient edge computing, there is an urgent need for an efficient implementation of
CS hardware. This review provides a systematic presentation of the requirements for de-
vice performance and hardware implementation for CS. The essential electrical properties
required for CS implementation are introduced and analyzed from the mechanism level,
and relevant models are discussed. In combination with the powerful signal processing
capabilities of memristors, it can address the challenge of high-density MVM sampling
and accelerate the implementation of CS. From the perspective of the hardware system,
the current approaches for implementing memristors-based CS are summarized, including
constructing a measurement matrix by pre-programming the array conductance states, con-
trolling sampler sampling through intrinsic variability, and forming a measurement matrix
using the conductance state of intrinsic variation. It is noteworthy that memristor-based CS
systems are expected to realize the all-in-one compression and encryption engine by embed-
ding the encryption layer in the compression layer to build a zero-cost encryption scheme.
Finally, based on the current hardware implementation of memristors, the current chal-
lenges and improvement directions are proposed to effectively meet the growing demand
for information efficiency and security in rapidly developing data-intensive technologies.

2. Investigation of Memristor Inherent Variation
2.1. Inherent Variation Metrics Study

Variation, one of the non-ideal characteristics of memristors, refers to the spatial
stochastic behaviors observed from device-to-device (D2D) and cycle-to-cycle (C2C) [22,23].
The concept of intrinsic variability in the operation of memristor arrays is not a new feature
in unique devices, but rather a study addressing the internal switching phenomenon and its
underlying probabilistic nature. This feature was perceived by emerging memory technolo-
gies such as phase-change memory (PCM) [24], conductive-bridge memory (CBRAM) [25],
and oxide-based memory (OXRAM) [19]. Despite the aforementioned technical differences,
the commonality between such device variants is a consensus on the internal physical
properties. In general, the randomness observed in resistive switching devices can be pre-
dominantly attributed to the probabilistic generation and rupture of conductive filaments
(CFs) and underlying physical elements [26–28]. As illustrated in Figure 2a, under the
influence of an externally applied voltage, the metal undergoes oxidation at the anode,
which causes the migration of metal ions to form particle clusters, followed by reduction
at the cathode to create CFs. The CF model is currently the most frequently and widely
studied. The internal physical mechanism will be elaborated in detail in the subsequent
section. Based on the filament’s composition, it can be broadly classified into metal-based
and non-metal-based filaments. In the former, metals typically serve as the conductive
medium, whereas in the latter, defects such as oxygen vacancies are generally utilized as
conductive particles. Due to the kinetic behavior of diffusion, CFs are generated and rup-
tured stochastically, giving rise to devices with oscillatory electrical behavior. Specifically,
the stochastic characteristics of the CFs are primarily manifested in different distributions
of conductance and threshold voltage, which approximately conform to a normal distribu-
tion (Figure 2b,c). This feature endows these devices with unique advantages in certain
practical applications.

The random entropy source in the device arises from inherent probability behavior,
leading to high levels of randomness, non-repeatability, and unpredictability. This feature
enhances the security of built-in hardware security primitives, making them comparable to
biometric data in terms of their robustness and reliability. Liu et al. [29] demonstrated a
Bi2O2Se-based memristor, in which threshold voltages exhibited highly random variation,
and this randomness was harnessed to construct true random number generators (TRNGs)
for security applications. Ding et al. [30] proposed a unified approach to combine TRNGs
and physical unclonable functions (PUFs) in a 4-layer 3D NbOx memristor array. This
approach is robust against machine learning-based attacks. Furthermore, biological micro-
circuits are inherently stochastic, and neuroscience research showed that injecting noise into
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learning and information processing can lead to efficiency gains. [16] The ability of memris-
tors to simulate neuronal noise and stochastic neuronal dynamics at the device level holds
great promise for the creation of dense neural populations that can robustly represent sig-
nals and neuronal states. This will facilitate the development of neuromorphic computers
with highly integrated memory and processing units. [31] Importantly, an ideal mathe-
matical and physical model is needed to model the memristor-based intrinsic oscillatory
behavior for theoretical verification of more complex algorithms and hardware platforms,
thereby promoting the development of efficient and secure neuromorphic computing.
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Figure 2. Resistive switching characteristics and oscillating electrical behaviors. (a) The memristor
resistive switching model includes four stages: ion migration, accumulation, conduction channel
formation, and resistance switching. The propagation of ions along the entire device size is random,
and the growth of conductive filaments is also generated probabilistically, resulting in an oscillating
behavior of resistive switching characteristics. (b,c) This inherent variation in the probabilistic
formation and rupture of CF results in an oscillatory behavior of conductance (b) and threshold
voltage (c) across cycles, which can be represented by a Gaussian distribution.

2.2. Conductive Filament Mechanism

The primary challenge in establishing the intrinsic variation model of the memristor
lies in elucidating its inherent physical mechanism. Despite the existence of experimental
data, the complete comprehension of the resistive switching (RS) mechanism remains
ambiguous at this stage. Based on research findings, the current classification of mem-
ristor models can be categorized into three mechanisms: the CF mechanism [32–34], the
interface type switching [35], and the electronic effect mechanism [36–39]. Among the
three memristor mechanisms, the CF mechanism involves the random generation of CFs
within the dielectric layer, where random variability is a prerequisite for realizing CS. Due
to its extensive research, the CF model is the main focus of this section. Within the CF
mechanism, the RS process stems from the growth and rupture of CFs in the switch layer,
as illustrated in Figure 2a. Based on the type of CF, three RS mechanisms are introduced,
namely the electrochemical metallization mechanism (ECM) [40,41], the valence change
mechanism (VCM) [42,43], and the phase change mechanism (PCM) [44,45], as depicted in
Figure 3.
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2.2.1. Electrochemical Metallization Mechanism (ECM)

Typical ECM cells, also known as conductive bridging random access memory (CBRAM) [25],
are composed of metal–insulator–metal layer stacks. In ECM, the active electrode is gen-
erally located at the top, while the inert electrode is located at the bottom. The switching
between them is achieved through the electrochemical growth and dissolution of small
metal channels between the inert and active electrodes. As illustrated in Figure 3a, the
filament growth process for Ag cation migration and reduction is depicted. The filament
originates from the inert electrode (top) and, during the subsequent growth process, a
limited number of cations will preferentially diffuse to the existing filament end due to the
highest electric field in front of the protrusion. This process, in turn, results in branched
growth with dendrites pointing towards the active electrode, which is defined by twisted
electric field lines (bottom). Figure 3b,c displays a transmission electron micrograph (TEM)
image. Figure 3b illustrates the CFs formation process from a bottom electrode (BE) to a
top electrode (TE). Upon connecting TE and BE, the resistance shifts from a low resistance
state (LRS) to a high resistance state (HRS) (Figure 3d). Conversely, applying a negative
voltage to TE results in the Ag atoms within the CF dissolving into Ag+ via an oxidation
reaction, rupturing the CF (Figure 3c), and abruptly decreasing the current (Figure 3e),
leading to a switch from LRS to HRS. Depending on the positions of electrons in Ag+ and
BE during the reduction reaction, the growth kinetics determine whether the Ag CF grows
from TE or BE. When the mobility of Ag+ surpasses that of electrons, Ag+ and electrons
will be situated near BE, resulting in Ag CF growth from BE to TE [46,47]. Moreover, CFs
can break spontaneously due to their instability, with some exceptions. Song et al. [48]
proposed an Ag/TiO2-based memristor and observed volatile electrical behavior, which
can be explained by the spatial repulsion between the silver filament and the surrounding
oxide lattice, resulting in the fragility of CFs. Upon decreasing or withdrawing the voltage,
the rapid contraction of the elongated Ag nanoparticle cluster or joule heating when the
voltage is swept back to zero can naturally break CFs on the bottom electrode. Additional
explanations for ECM-based volatile behavior include Rayleigh instability, minimization
of surface energy, and the Gibbs–Thomson effect caused by the surface diffusion of metal
atoms [46].

2.2.2. Valence Change Mechanism (VCM)

The VCM mechanism also relies on the formation and fracture of CFs for the conduc-
tance transition, which is similar to the ECM mechanism. In VCM, the switching layer is
composed of oxide, and the electrodes typically use inert electrodes or oxides (Figure 3f).
Under the influence of an electric field, oxygen vacancies migrate and organize to form
non-metallic CFs, resulting in a switch in the conduction state. Using ZnO as an example,
the growth process of CFs was observed via in situ TEM. When an external voltage is
applied, the electrochemical reaction generates doped oxygen ions (O2−) that move toward
the Pt anode electrode. Moreover, as the sample is subjected to a higher voltage, O2− is
repelled and oxygen vacancies accumulate at the cathode (top electrode, TE). Once a suffi-
cient concentration of oxygen vacancies accumulates near the electrode and the charge is
balanced by biased electrons, the oxygen vacancies rearrange to form an ordered structure
and grow towards the bottom electrode [49]. The entire process is illustrated in Figure 3g.
In this case, the RS behavior is due to the migration of oxygen ions, which results in a switch
between ZnO1−x and ZnO dominated by Zn. Additionally, the redistribution of oxygen
vacancies tunes the stoichiometry of the switching layer of the oxide, thereby regulating
the conductivity of the film. VCM devices usually have more stable CFs, and better erasing
and writing capabilities because the metal electrode is inert and hardly participates in ion
migration, and no impurities remain in the oxide layer [43].

2.2.3. Phase-Change Mechanism (PCM)

Phase-change materials are highly effective storage materials that can be mass-produced [50].
Phase-change memristors consist of a small volume of a phase-change material that is
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sandwiched between two electrodes. These materials exhibit a unique switching behavior
between a crystalline state, characterized by low resistivity, and an amorphous state,
characterized by high resistivity, which is triggered by applying an electrical pulse of
sufficient magnitude to generate the necessary heat for the phase transition. To produce
amorphous regions within the crystalline matrix, a reset pulse of sufficient amplitude
(referred to as a reset pulse) is applied such that the current flowing through the device
generates Joule heating, which melts most of the phase-change material [32]. If the pulse is
abruptly terminated, the molten material quickly quenches into an amorphous phase due to
the glass transition. Chalcogenide glass, namely GST (Ge2Sb2Te5), is a widely used material
for phase change memory and is used as an example in this section [51]. Figure 3h displays
the cross-sectional TEM of a phase-change memristor in the full set, partially reset, and fully
reset states. Upon the application of the reset pulse, the device transitions from LRS to the
HRS, causing an increase in the volume of the amorphous region at the top of the bottom
electrode, until the bottom electrode is completely covered and the device state changes to
HRS. The inset displays the diffraction pattern of the amorphous region, indicating that
GST is polycrystalline. Following the reset pulse, the device state is dominated by the high
resistance of the amorphous GST region, and the electron diffraction pattern in the fully
reset state is depicted in Figure 3i. Moreover, in certain special materials such as VO2, the
device automatically reverts to a HRS after the set pulse is removed or attenuated; this
phenomenon can be explained by the Peierls-type phase transition [52].

Clearly, in the CF mechanism, the electrical properties of the memristors are directly
determined by CFs. As the formation of CFs is inherently stochastic, memristors based on
CFs often exhibit intrinsic variability, which needs to be accounted for in physical models
for theoretical validation of CS.

2.3. Physical Model for Stochasticity Distributions

The intrinsic oscillatory behavior of memristors is mainly manifested through prob-
abilistic switching and random conductance distribution. Numerous studies reported
normal distribution of conductance states and threshold voltages, which were applied in
information processing and security [53–59]. The high level of randomness in the conduc-
tance states and/or threshold voltages of memristors was utilized to construct random
encoding matrices for information encoding and computation, including compression and
encryption. Therefore, it is essential to establish a reliable model that can theoretically
justify the use of information encoding and computation. As the CF mechanism is cur-
rently the predominant model, this section focuses on the concept of relying on a single or
dominant CF structure to trigger the resistance transition mechanism.

Taking typical titanium oxide memristors as an example [60], Figure 4a depicts a
single cell of Pt/TiO2/Pt structure memristors and its conduction mechanism. Upon the
application of a positive bias, a redox reaction takes place causing Ti4+ to transform into
Ti3+ near the anode. The Ti3+ ions, in the form of Ti4O5

2+, then drove towards the other
electrode and reacted with O2− ions, forming Ti2O3, the metastable phase of titanium
dioxide. Consequently, Ti2O3 accumulates at the cathode and forms high CFs that grow
towards the anode. In this type of memristor, the conductance G is determined by the
length of the CFs, with longer growth lengths resulting in reduced overall drag. The reverse
reaction occurs when a negative voltage is applied. Based on the switching mechanism,
the conductance G can be expressed as a function of the two titanium materials’ structure.
Qian et al. [61] based on this mechanism established a related mathematical model:

G =
1
R

=
A

ρ1l + ρ2(d− l)
(1)

where R is the total resistance of the memristor, and A and d represent the cross-sectional
area and thickness of the Ti nanowire, respectively, ρ1 and ρ2 are the resistivities of the
CFs and the high-resistivity TiO2, respectively, while l represents the length of the grown
filament. A and d usually have large variations due to the variations in line edge roughness
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and thickness fluctuation from the fabrication processes and are typically modeled as
Gaussian distributions. In addition, the filament growth can be expressed as:

fi =
tswitch

∆t
, l = ∑ f i

x=0 ax (2)

where fi is the number of growth iterations under an applied pulse of duration tswitch, and
∆t is the single iteration time, which is a constant determined by the intrinsic properties of
titanium. The filament length l is accumulated for each growth iteration, denoted by ax.
Since write operations can be short, usually tswitch is not uniform. In addition, ax is also
affected by q, m*, ω, τ, V0, and κ factors, as shown in the following analysis model [15].
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ax =
qV0

2m∗
×


1

d − (a1 + a2 + ··· + ax−1)
(sinωtx−1 − sinωtx)

κ

1+(ωτ)2
1
d [(sinωtx−1 −ωτcosωtx−1)

−(sinωtx −ωτcosωtx)]

× (∆t)2 (3)

tx = x× ∆t (4)

where q and m* are the electron charge and its effective mass, both of which should
be regarded as constants; ω and τ are the frequency and mean free time between two
consecutive collisions, which are determined by the intrinsic properties of titanium; V0
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is the applied voltage; κ is given by the Arrhenius equation, κ = Ae−Eac/RT, which can
introduce temperature variations between different memristors during the initialization
phase. Figure 4b displays the conductance distribution based on the model, where the
conductance values exhibit a lognormal distribution. The conductance values present a
lognormal distribution. The selected parameter configurations are closely aligned with
the actual scenario in device fabrication. Additionally, models exist that were proposed
to validate the log-normal distribution of conductance [27,62]. The emergence of normal
distribution behavior is crucial for CS implementation, as elaborated in Section 4.

Furthermore, as discussed in the previous section on mechanism analysis, the CF
model is applicable to both volatile and nonvolatile memristors. Therefore, the electronic
behaviors of both types of memristors follow a normal distribution, which is supported by
numerous experimental data [63–65]. For instance, Huang et al. [66] utilized a kinetic Monte
Carlo simulation to model the LRS of Ag/Ta2O5:Ag/Pt and Ag/Ta2O5/Pt memristors,
as illustrated in Figure 4c,d, respectively. The simulation was based on ion movement
and redox reactions that form CFs. The resistance distribution of the insulating Ta2O5 and
conductive Ag points were solved using the continuity equation, and the potential of each
point was calculated to establish the probability of ion movement or redox reaction. The
simulated conductance distributions of the LRS for the Ag/Ta2O5:Ag/Pt and Ag/Ta2O5/Pt
devices presented normal distributions, as depicted in Figure 4e. Figure 4c illustrates that
the Ag nanoclusters and filaments in the Ag/Ta2O5:Ag/Pt device can be considered bipolar
electrodes when an electric field is applied. Due to the acceleration of the redox reaction by
the bipolar electrode, it is easier to alter the morphology of the filament and the distribution
of Ag nanoclusters in the Ag/Ta2O5:Ag/Pt device, leading to increased randomness of the
LRS conductance, which is advantageous for the realization of CS.
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Figure 4. The memristor model with conductive filament mechanism. (a) A generic Pt/TiO2/Pt
memristor device model. The top is the conductive filament growth model and the bottom is the
illustration of filament length and device resistance. (b) The simulation device conductance conforms
to the Gaussian distribution for the model. Reproduced with permission [61]. (c,d) Simulation of
random origins observed in Ag/Ta2O5:Ag/Pt and Ag/Ta2O5/Pt devices. (e) Simulated conductance
distribution for the LRS of the Ag/Ta2O5:Ag/Pt and the Ag/Ta2O5/Pt devices. Reproduced with
permission. [66] Copyright 2020, Wiley−VCH.
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3. Memristor Crossbar Arrays for Matrix-Vector Multiplication

In a large memristor crossbar array, memristors can leverage the laws of physics to
perform MVM in a single step, making them particularly suitable for applications in neural
networks [67–70], matrix equation solving [71,72], and signal encoding [15,73–75]. This
capability is also crucial for implementing CS algorithms in memristor arrays. Figure 5a
illustrates the memristor crossbar array, where the input vector and corresponding matrix
can be mapped to input voltages and the conductance of the memristor array, respectively.
By utilizing Ohm’s law and Kirchhoff’s current law for multiplication and accumulation
operations, respectively, the MVM results can be obtained in a single step, leading to
a significant improvement in calculation speed and energy consumption, as shown in
Figure 5b. The matrix computing capability of memristor crossbar arrays can be utilized
to solve matrix equations and achieve significant acceleration. Zidan et al. [71] conducted
experimental studies to solve Poisson’s equation using memristor crossbar arrays (as
depicted in Figure 6a). The solution obtained after 10 iterations demonstrated a perfect
match with the expected solution, as presented in Figure 6b,c. Sun et al. [72] illustrated
that a cross-point memristor array can perform the matrix-inversion operation to solve
a system of linear equations. Figure 6d shows the matrix-inversion operator circuit, and
the comparison of the measured output voltage of this circuit with the analytical solution
x = A−1b reveals an error below 10% (Figure 6e). Wang et al. [76] proposed a scalable
massively parallel computing scheme that exploits continuous-time data representation
and frequency multiplexing in nanoscale interleaved arrays. This approach enables a one-
time parallel read of stored data and MVM in interleaved arrays (as shown in Figure 7a).
The errors of parallel reading for this system are presented in Figure 7b,c. The error is less
than 2% at a small voltage amplitude and is comparable to that reported in neuromorphic
computing (Figure 7b). Furthermore, the error decreases with increasing frequency, and the
signal-to-noise ratio increases with frequency (Figure 7c). This system, when combined with
signal modulation performed concurrently with parallel signal processing, can be used for
low-power smart edge applications. In conclusion, memristors can provide scalable parallel
computing systems with high processing speed, power efficiency, and low computational
errors. This approach is particularly effective in achieving CS acceleration and addressing
the problem of explosive growth in the number of sensors from the root.
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Figure 5. The memristor arrays of M × N for matrix-vector multiplication. Schematic of a memristor
crossbar (a) arrays and (b) circuit. The voltage sequences (1 × N) are applied to the arrays to multiply
by the conductance matrix G (N × M) to achieve MVM operation. According to Ohm’s law and
Kirchhoff’s equations, the element I (1 ×M) is output in one step by listing.
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Figure 6. Memristor arrays for solving matrix-vector equations. (a) Memristor crossbar-based system
for solving a Poisson’s equation. (b,c) The solution after 10 iterations shows an excellent match
with the expected solution. Reproduced with permission [71] Copyright 2018, Springer Nature.
(d) Memristor cross-point circuit for solving matrix equations in one step. Circuits to calculate a
scalar product I = G·V by Ohm’s law, and to calculate a scalar division V = −I/G by a TIA. (e) The
parameter β to control the input current given by I = β [0.2; 1; 1] I0 with −1 ≤ β ≤ 1. Reproduced
with permission [72] Copyright 2019, National Academy of Sciences.
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Figure 7. Memristor arrays for frequency multiplexing computing technology. (a) Frequency multi-
plexing computing technology based on two memristor crossbar arrays for numerous data storage
and inference. (b) Relative error of the carrier signal for different voltage amplitudes. (c) The noise
suppression with increasing operating frequency. Reproduced with permission [76] Copyright 2021,
Springer Nature.
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4. Memristor Arrays for Compressed Sensing
4.1. Compressed Sensing

Donoho proposed a groundbreaking sampling compression technology called CS [77].
CS is an architecture that integrates compression and perception and is considered one
of the important frontier technologies in the development of artificial intelligence. The
traditional Nyquist theorem employs equidistant uniform sampling, which requires the
sampling frequency to be twice the lowest frequency of the signal to prevent signal aliasing.
This greatly limits the sampling speed [78]. The CS algorithm uses random non-uniform
sampling and does not require the signal to be extended at a fixed period in the frequency
domain. This enables the signal to be compressed while sampling, thus breaking through
the limitations of Nyquist’s theorem and enabling high-rate sampling [4,79]. Compared
to the traditional full sampling recompression process, low power consumption and high-
efficiency data processing can be achieved. The special structure of the memristor array
enables the realization of a scalable parallel computing system that can perform MVM in a
single step. Therefore, it can be used to realize a parallel CS system [80–82]. The foundation
of the parallel CS algorithm is as follows.

When the processing object is a two-dimensional signal such as an image, the signal
can be compressed and reconstructed in each column of the image through a measurement
matrix [83]. Assume that the original signal X is a

√
N ×

√
N real number, which can be

regarded as composed of N one-dimensional vectors in RN × 1. Assume that xi represents
the ith column of X, and Φ of M × N dimensions represents the measurement matrix
(Figure 8a). Then, the sub-sampling process of parallel CS can be expressed as:

yi = Φxi, i = 1, . . . , N (5)

where yi is the measurement value corresponding to each column of X, the dimension is
M × 1, and the combination of all column measurement values yi is the entire measurement
value Y; that is, Y = [y1, y2, . . . , yN]. For CS, there is a premise that the signal approxi-
mately satisfies sparsity; or as long as the signal satisfies approximate sparsity on a certain
transform domain, compression can be achieved in the sparse domain. Since actual natural
images are rarely absolutely sparse, it is often necessary to perform a sparse transformation
on natural images to complete CS in its sparse domain. Ψ is based on a sparse orthogonal
matrix of size N × N. Any signal in an RN can be represented by the basis of an N × 1
vector. Any signal can be expressed as:

xi = Ψsi, i = 1, . . . , N (6)

where si is the vector of the weighting coefficients, and the entire weight S is the concate-
nation of all si. X and S exactly represented equivalent signals. X and S are in the time
domain and Ψ domain, respectively (Figure 8a). Based on the discussion above, the specific
CS process of each column can be expressed as:

yi = Φxi = ΦΨsi = Θsi (7)

where Θ is the sensing matrix with θ = ΦΨ (Figure 8b). Moreover, the most critical
condition is that Θ must meet the restricted equidistant properties (RIP) rules; otherwise,
the reconstruction of the compressed signal cannot be completed [84]. The RIP rules
are as follows:

(1− δk)‖ x ‖2
2 ≤ ‖ Θx ‖2

2 ≤ (1 + δk)‖ x ‖2
2 (8)

where the equidistance is constant δk ∈ (0, 1), k is the number of coefficients. The essence
of the RIP rule is that the measurement matrix and the sparse matrix are uncorrelated.
Generally speaking, the Gaussian matrix and Bernoulli distribution matrix are simple and
easy to implement and can satisfy the RIP rule with a high probability [85]. Unfortunately,
there is currently no algorithm to verify whether the RIP rules are met, and it can only be
verified through simulation. Moreover, yi is the compression vector with the size of M and
xi is the original vector with the size of N. Because of M < N, the equation is indeterminate.
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Therefore, this is an optimization problem solved with the l1-norm for evaluating the signal.

ŝ = argmin‖ s′ ‖1 such that Θs′ = y (9)

Nanomaterials 2023, 13, x FOR PEER REVIEW 13 of 22 
 

 

the original vector with the size of N. Because of M < N, the equation is indeterminate. There-

fore, this is an optimization problem solved with the l1-norm for evaluating the signal. 

 

Figure 8. The compressed sensing processes. (a) Compressed sensing measurement process with 

measurement matrix Φ and discrete cosine transform (DCT) matrix Ψ. (b) The matrix product Θ =

 ΦΨ with the four columns corresponding to nonzero Si highlighted. Reproduced with permission. 

[4] Copyright 2007, IEEE. 

�̂�  =  𝑎𝑟𝑔𝑚𝑖𝑛 ∥ 𝑠′ ∥1 such that Θs′ =  y (9) 

In the end, it is necessary to transform the sparse signal into a time-domain signal X. 

The sampling and reconstruction processes of parallel CS are processed column by col-

umn, which significantly reduces the size of the array and computational complexity. 

Currently, numerous studies demonstrated that memristor-based CS hardware ex-

hibits higher efficiency and lower power consumption than traditional complementary 

metal-oxide semiconductors (CMOS). Wang et al. [86] demonstrated that the RRAM-

based interleave structure enables 10 times faster speed, 17 times higher energy efficiency, 

and three orders of magnitude smaller area compared to CMOS. Memristor-based CS 

hardware implementations can be broadly categorized into volatile memristors and non-

volatile memristors. 

4.2. Non-Volatile Memristor for Compressed Sensing 

The implementation of CS with non-volatile memristors relies on programming the 

conductance values in the crossbar array, which mainly involves Bernoulli distribution 

matrices and Gaussian distribution matrices. The programmed conductance matrix G 

serves as the measurement matrix Φ. The sensory signal is then converted into an electrical 

signal and fed into the memristor array, thereby completing the sub-sampling function. 

The sensory signal can be compressed near the sensor, reducing the cost of data transmis-

sion while ensuring information security (which will be discussed in the next section) [87]. 

As discussed above, implementing CS requires the measurement matrix to follow either 

Gaussian or Bernoulli distribution, and memristors can realize the switching function 

with conductance represented by Gaussian distribution. Hence, memristors are excellent 

candidates for implementing CS. Two methods are available for programming the 

memristor measurement matrix: the first method involves randomly programming the 

memristors on and off in the array to realize the Bernoulli distribution; the second method 

involves setting all the memristors to LRS and using Gaussian conductance distribution 

to deploy the measurement matrix. Recent research demonstrated that memristor arrays 

can perform not only compression but also on-chip signal reconstruction. Gallo et al. [88] 

proposed a novel method to implement fast and robust compression and reconstruction 

with approximate message passing using in-memory computing. Figure 9a illustrates the 

memristor crossbar array for the compression process. The compression measurement 

process involves applying x0 as a voltage to the array to complete the MVM row through 

digital-to-analog conversion, superimposing the output current obtained on the column, 

a b

Figure 8. The compressed sensing processes. (a) Compressed sensing measurement process with mea-
surement matrix Φ and discrete cosine transform (DCT) matrix Ψ. (b) The matrix product Θ = ΦΨ
with the four columns corresponding to nonzero Si highlighted. Reproduced with permission [4]
Copyright 2007, IEEE.

In the end, it is necessary to transform the sparse signal into a time-domain signal X.
The sampling and reconstruction processes of parallel CS are processed column by column,
which significantly reduces the size of the array and computational complexity.

Currently, numerous studies demonstrated that memristor-based CS hardware ex-
hibits higher efficiency and lower power consumption than traditional complementary
metal-oxide semiconductors (CMOS). Wang et al. [86] demonstrated that the RRAM-
based interleave structure enables 10 times faster speed, 17 times higher energy effi-
ciency, and three orders of magnitude smaller area compared to CMOS. Memristor-based
CS hardware implementations can be broadly categorized into volatile memristors and
non-volatile memristors.

4.2. Non-Volatile Memristor for Compressed Sensing

The implementation of CS with non-volatile memristors relies on programming the
conductance values in the crossbar array, which mainly involves Bernoulli distribution
matrices and Gaussian distribution matrices. The programmed conductance matrix G
serves as the measurement matrix Φ. The sensory signal is then converted into an electrical
signal and fed into the memristor array, thereby completing the sub-sampling function. The
sensory signal can be compressed near the sensor, reducing the cost of data transmission
while ensuring information security (which will be discussed in the next section) [87].
As discussed above, implementing CS requires the measurement matrix to follow either
Gaussian or Bernoulli distribution, and memristors can realize the switching function with
conductance represented by Gaussian distribution. Hence, memristors are excellent candi-
dates for implementing CS. Two methods are available for programming the memristor
measurement matrix: the first method involves randomly programming the memristors on
and off in the array to realize the Bernoulli distribution; the second method involves setting
all the memristors to LRS and using Gaussian conductance distribution to deploy the
measurement matrix. Recent research demonstrated that memristor arrays can perform not
only compression but also on-chip signal reconstruction. Gallo et al. [88] proposed a novel
method to implement fast and robust compression and reconstruction with approximate
message passing using in-memory computing. Figure 9a illustrates the memristor cross-
bar array for the compression process. The compression measurement process involves
applying x0 as a voltage to the array to complete the MVM row through digital-to-analog
conversion, superimposing the output current obtained on the column, and obtaining
y through analog-to-digital conversion. The on-chip reconfiguration process is shown
in Figure 9b. The approximate message passing (AMP) algorithm runs on a dedicated
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processing unit, while the matrix equation solving is deployed on the memristor array. To
fully demonstrate the feasibility of the memristive CS system, Qian et al. [89] proposed a
framework that successfully integrates the memristive CS system with the CMOS image
sensor system, as shown in Figure 9c. This architecture greatly reduces the amount of data
from the image sensor before digitization and wireless transmission, thus saving power
and accelerating performance. However, it should be noted that the memristor-based CS
system requires the integration of two arrays to form a bipolar structure to implement
the positive and negative elements in the measurement matrix, thus achieving low power
consumption and transmission cost. Furthermore, the current CS system can only use a
fixed sampling rate or an offline algorithm to modify the calculation rate. Since sensing
images have varying weights and sparsity, a fixed compression ratio may reduce efficiency
and reconstruction quality. Qian et al. [89] proposed a compression rate (CR) self-adaptive
design to enable CR to be self-adaptive at runtime, as shown in Figure 9d. The CS adap-
tive encoding for the 1920 × 1080 image sensor is achieved by judging whether there
is a significant difference between the input segment and the previous input segment
to determine whether a larger data sampling matrix is needed. The significant progress
made in non-volatile memristors inspired researchers to explore more devices, structures,
and algorithms.
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encodes the measurement matrix A, which is used to obtain the CS measurements and implement the
MVM of the AMP recovery algorithm. (b) Architecture of the memristive implementation of AMP.
Reproduced with permission [88] (c) The overall architecture based on the memristor arrays for the
CS encoder. Reproduced with permission. Reproduced with permission. (d) The CR self-adaptive
system to make CR self-adaptive at runtime. Reproduced with permission [89] Copyright 2020, ACM.
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4.3. Volatile Memristor for Compressed Sensing

Recent research highlighted the potential of volatile memristors in enabling tunable
random sampling strategies and cost-effective measurement implementations. This is
due to their ability to spontaneously return to HRS, which can be leveraged to construct
CS systems. Volatile memristors have a random switching behavior and a Gaussian
conductance distribution, which makes them suitable for CS applications. There are
currently two approaches to implementing CS using volatile memristors: constructing
a stochastic sampling circuit or creating a measurement matrix based on the Gaussian
conductance distribution in HRS. A key requirement for volatile memristors to be utilized
in CS is high durability, as they need to function continuously. Bao et al. [90] developed
a tunable stochastic oscillator using a TiN/VO2/TaOx/Pt volatile memristor, which can
be used as a core control device for CS. The I-V curve of the VO2/TaOx stacking structure
and the sampling circuit are illustrated in Figure 10a,b, respectively. When the memristor
is turned on and the voltage exceeds EN, the transmission gate (TG) is turned on to
complete the signal sampling. The recovery performance of the tunable stochastic oscillator
(TSO)-based CS paradigm is compared to the traditional Nyquist method in Figure 10c,d.
The results demonstrate that TSO has a higher compression ratio and lower error rate
in implementing a CS scheme. Furthermore, Wang et al. [91] developed a polyimide
memristor to realize CS. The conductance of the device exhibits a Gaussian distribution
when returning from an LRS to HRS, which can be used to construct a conductance matrix
as a measurement matrix in CS. The schematic circuit is illustrated in Figure 10e. In this
approach, image pixels are first mapped to an input voltage of 0~0.2 V, which is then
input row by row into the crossbar array to complete the compression process, followed
by reconstruction at the receiving end. Moreover, this work also demonstrated that the
one-time sampling (OTS) matrix, constructed using the intrinsic oscillatory behavior of the
device, can make the compressed signal satisfy perfect security in information theory. This
implies that encryption can be embedded in the compression layer at no additional cost.
The details of this will be discussed in the following section.

The non-volatile memristor enables the implementation of CS with a single program-
ming step, and deployment can be quickly achieved using Ohm’s and Kirchhoff’s laws.
However, the repeated use of the same measurement matrix may result in the complete
exposure of compressed information to unauthorized users, thereby reducing signal se-
curity. In contrast, volatile memristors enable tunable random sampling strategies and
cost-effective measurement implementations by spontaneously returning to HRS, which
can enhance the security of CS systems. However, volatile memristors require repeated
programming of the measurement matrix before each sampling, resulting in higher power
consumption in low safety requirement scenarios. Therefore, users can choose different
memristive-based CS hardware based on their specific needs, whether they prioritize safety
or energy efficiency.
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Figure 10. Volatile memristors for compressed sensing. (a) The typical I-V curve of VO2/TaOx

stacking structure. (b) Schematic image of the stochastic sampling circuit. (c,d) Benchmark of
TSO-based compressed sensing paradigm with conventional Nyquist method. Reproduced with
permission [90] Copyright 2020, IEEE. (e) Gaussian conductance mode for signal compression. The
original image “7” was mapped as a 0–0.2 V voltage sequence and applied to an array of devices
with a Gaussian conductance distribution. Signal compression coding is accomplished by Kirchhoff’s
current law and Ohm’s law. Finally, the OMP algorithm reconstructs the signal. Reproduced with
permission [91] Copyright 2023, Wiley−VCH.

5. All-in-One Memristor-Based Compression and Cryptosystem

A separate encryption layer can be too costly due to the increasing number of sensors
and the limited resources of each sensor. To address this issue, integrating data protection
mechanisms into the information awareness stage to achieve simultaneous compression
and encryption is an ideal solution [92]. CS exploits the structure of a specific signal
and encodes it by utilizing a random sub-sampling operator on the physical interface
between the analog and digital domains. The complete signal cannot be recovered if the
random sampling operator is kept secret. To accurately recover the signal, the receiver
must know the actual encoding matrix Φ used in the random sub-sampling encoding when
decoding the CS measurements. Therefore, if the Φ matrix is only shared with the receiver
through a private channel, it can be used as a key to simultaneously compress and encrypt
the signal. Unauthorized users cannot obtain the correct sparsity by solving a convex
optimization problem without knowledge of Φ [87]. Recently, studies showed that changing
the measurement matrix can provide additional security against chosen-plaintext attacks
(CPA) and achieve perfect security [93,94]. Although changing the measurement matrix can
resist CPA and achieve perfect security, programming the memristor conductance can be
costly. Wang et al. [91] proposed a solution in which the conductance of volatile memristors
changes each time it returns to the HRS. Importantly, it can spontaneously return to the
HRS, enabling the implementation of OTS pad encryption for perfect security. Compared
to non-volatile memory, this approach does not require a secondary programming process,
significantly reducing the cost of encryption. The article reports that for 50% compression
of a 512 × 512 image, the programming voltage required to ensure security is 0.392 W for
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volatile memristors, while non-volatile memristors require double that amount. However,
without OTS encryption, the cost of implementing CS is only 80 nW.

Furthermore, to expedite the CS process, parallel CS is commonly employed, whereby
CS is conducted on the signal line by line. However, with this approach, the features of
each column are preserved in that specific column, even though the OTS matrix guarantees
perfect security. As illustrated in the red box in Figure 11a, this can result in the exposure of
edge features in simple images, thereby rendering them non-confidential. To address this
issue, Figure 11b proposes an integrated scheme for OTS compression and encryption based
on volatile memristors. A highly random key is generated through the random threshold-
switching behavior of memristors. This approach requires only one diffusion operation
on the compressed data, which not only ensures absolute security and can withstand CPA
attacks, but also effectively prevents information leakage [93,95,96]. The effectiveness of the
diffusion behavior can be observed in Figure 11a, where the edge information is completely
obscured. This presents a promising solution for applications that demand high efficiency
and security.
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engine system based on CS. Reproduced with permission [91] Copyright 2023, Wiley−VCH.

6. Conclusions and Prospect

Memristor-based CS systems for edge computing are still in the early stages of de-
velopment and face both opportunities and challenges. To construct a more efficient
memristor-based edge computing paradigm, researchers are exploring various schemes for
designing devices, arrays, and systems that can implement CS.

From a device perspective, the probability of RS and Gaussian conductance are es-
sential factors for implementing CS. Relevant models based on the CF mechanism are
analyzed and discussed to demonstrate the feasibility of the memristor-based CS system in
a scientific manner. From an array perspective, the MVM operation can be implemented
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on memristor-based crossbar arrays in the analog domain, with low power consumption,
low complexity, and high speed. Additionally, the inherent variability of memristors al-
lows measurement matrices to be easily embedded in the arrays, and MVM operation
can be performed with attractive advantages, ultimately accelerating the implementation
of CS. Compared to traditional CMOS, the memristor-based CS system exhibits faster
speed and lower power consumption. In a memristor-based CS system, for scenarios with
low-security requirements, the non-volatile memristor only requires a single programming
step to obtain a fixed measurement matrix for the implementation of the CS system. On the
other hand, the volatile memristor requires programming before each sampling to generate
the OTS measurement matrix. As the measurement matrix changes with each sampling,
this can enhance system security and is suitable for use in scenarios with high-security
requirements. Subsequently, CS can effectively achieve simultaneous compression and
encryption by incorporating a data protection layer into the information awareness stage.
Based on this technique, the ciphertext can resist CPA and satisfy perfect security with the
OTS matrix. Moreover, the OTS matrix can be spontaneously implemented using volatile
switching behaviors, significantly reducing the cost of encryption without requiring a
secondary programming process. Additionally, a simple exclusive-OR (XOR) diffusion
can prevent parallel CS from the risk of leaking plaintext edge information, providing an
excellent solution for applications requiring high efficiency and safety.

In the future, memristor-based crossbar arrays offer advantages in various areas of
signal processing, such as signal filtering, time-frequency transformation, and information
classification. When combined with CS, it is expected to realize an efficient edge computing
architecture that integrates compression, encryption, storage, and recognition. Therefore,
the new computing paradigm based on memristors is quite attractive for edge-computing
systems. However, there are still several challenges that need to be addressed to fully
exploit the potential of memristor-based arrays for CS. Firstly, improvements in memristor
devices can be made by increasing their switching speed, reducing the operating voltage
and power consumption, improving device yield, and suppressing the off-state current.
Moreover, the physical and mathematical model of the multi-layer structure devices should
be established to further optimize the measurement matrix and guide the deployment of
the CS algorithm. At the crossbar array level, the IR-drop and latent paths pose significant
obstacles to the application of large memristor arrays. Therefore, it is essential to research
integration schemes with transistors and selectors to prevent misreading and reduce IR-
drop, which is critical for the deployment of measurement matrices. Moreover, the impact
of IR-drop on the quality of image reconstruction needs to be further evaluated to establish
a suitable IR-drop interval that allows the deployment of large arrays of CS hardware. At
the algorithm and system level, the original image contains redundant data, and techniques
such as image enhancement, segmentation, and feature extraction are utilized to obtain
image prior information, quickly eliminate image background noise, and focus on sampling
feature areas to improve efficiency. Additionally, the potential path of the device and the
IR-drop defects may degrade the quality of image reconstruction; hence, it is necessary to
design a reconstruction algorithm with more stability, lower computational complexity,
and fewer observation times to accurately restore the compressible signal with noise in real-
world complex environments. Finally, even though volatile memristors can simultaneously
perform CS and XOR diffusion encryption to achieve perfect security and resist CPA, these
two operations are still separate. Thus, a new integrated scheme is required to enable both
CS and diffusion for the efficient and secure deployment of an edge computing paradigm.
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