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1. Materials characterization and photoactivity evaluation
1.1. Materials Characterization

The infrared absorption spectra were investigated using a Fourier-transform infrared
(FTIR) spectrophotometer (Equiox 55, Bruker, Karlsruhe, Germany). The morphologies
and crystal phases of samples were characterized by transmission electron microscopy
(TEM, JEM-2010, JEOL, Tokyo, Japan) and X-ray diffraction patterns (XRD, D8 Advance,
Bruker, Karlsruhe, Germany) with a Cu Ka radiation source. High-angle annular dark-
field scanning transmission electron microscopy (HAADF-STEM, JEM-2010, JEOL, Tokyo,
Japan) and energy-dispersive X-ray spectroscopy (EDS, JEM-2010, JEOL, Tokyo, Japan)
tests were operated on this TEM equipment. X-ray photoelectron spectroscopy (XPS, Shi-
madzu, Kyoto, Japan) was employed on a Kratos-Axis Ultra DLD apparatus equipped
with an Al (monochromatic) X-ray source to investigate the surface element composition
and chemical states, and binding energies were calibrated with respect to the signal for
adventitious carbon (binding energy = 284.6 eV). UV-Vis diffuse reflectance spectra (UV-
Vis DRS) were performed using a spectrophotometer (UV-2750, Shimadzu, Kyoto, Japan,
with BaSOs as a reference). The photoluminescence (PL) spectra of samples were recorded
using a spectrophotometer (Perkin-Elmer LS 55, Waltham, Massachusetts, USA) with an
excitation wavelength of 325 nm. The steady-state surface photovoltage spectroscopy (SS-
SPS, home-built, Harbin, Heilongjiang, China) measurements of the samples were ob-
tained with a home-built apparatus equipped with a lock-in amplifier (SR 830) and syn-
chronized with a light chopper (SR 540) at different atmospheres. The sample was sand-
wiched between two indium-tin—oxide (ITO) glass electrodes. A monochromatic light
was obtained from 500 W Xe lamp (CHF XQ 500 W, Global Xe lamp power) through a
double prism monochromator (SBP 300, Zolix, Beijing, China). Time-resolved photolumi-
nescence (TR-PL) measurements were carried out on a single photon-counting spectrom-
eter (EdinburghFLS 1000, Ediburgh Instruments, Edinburgh, Scotland, UK) with a radia-
tion pulse of 369 nm, using a 50 ps pulse lamp. The fluorescence was detected at a wave-
length of 420 nm.

1.2. Photoelectrochemical and Electrochemical Measurements

Photoelectrochemical and electrochemical measurements were carried out using an
IVIUM V13806 electrochemical workstation in a traditional three-electrode system (coun-
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ter electrode: Pt; reference electrode: saturated calomel electrode (SCE); working elec-
trode: as-prepared sample film) with a 500 W Xe lamp as the light source in a 0.5 M Na250s
solution (pH = 7). Before each experiment, the solution was bubbled with high-purity ni-
trogen gas (99.999 %) for 20 minutes. Photocurrent response curves (I-t curves) of six cycle
tests were obtained within 800 s under a 0.5 V bias. The photocurrent density tests were
performed at different illumination wavelengths where the monochromatic illuminant
was from a 500 W Xe lamp and a monochromator (CM 110). Electrochemical impedance
spectroscopy (EIS) measurements were carried out with a 0.5 M Na25Os solution as the
electrolyte, using the same three-electrode configuration over a frequency range from 102
to 10° Hz, with amplitude of 10 mV (Root Mean Square) and a bias of 0.5 V.

The cyclic voltammetry (CV) measurements were conducted using an IVIUM V13806
electrochemical workstation, using another three-electrode system (counter electrode: Pt;
reference electrode: Ag/AgCl; working electrode: as-prepared sample film). The electro-
lyte was a tetrabutylammonium perchlorate aqueous solution (0.1 M, pH = 6) with a scan-
ning rate of 50 mV s

The working electrode was prepared by the following method. A 100 mg sample was
dissolved in 1.8 ml ethanol and 0.2 ml Nafion solution (5 wt%) and stirred for 5 days. Then
the mixture was coated on the conductive surface of ITO glass and dried in a vacuum
under 60 °C.

1.3. Evaluation of Produced *OH Amount

A 100 mg sample was dispersed in 50 ml coumarin solution (1 x 10 M). Prior to
irradiation, the solution was stirred in the dark for 30 min to achieve the adsorption—de-
sorption equilibrium. The sample was then irradiated for 1 h under visible light (A > 420
nm) by a Xe lamp (150 W). After irradiation, the sample was centrifuged, and then the
supernatant was tested using a spectrophotometer (Perkin-Elmer LS 55) to detect the flu-
orescence of 7-hydroxycoumarin with an emission peak at ~460 nm.

2. Scheme, Figures, Table, and Method
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Scheme S1. Synthetic route of Fe(Ill)-coordinated PTA/g-CsN4 nanoheterojunctions.
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Figure S1. (a) XRD patterns of g-CsNs, XPTA/g-C3N4 and 0.5Fe-2PTA/g-CsNa. (b) XRD pattern of
PTA.
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Figure S2. UV-Vis diffuse reflection spectra of PTA, g-CsNs and xPTA/g-CsNa.
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Figure S3. FT-IR spectra of PTA (a) and (b) xPTA/g-CsNa.
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Figure S4. SEM images of g-CsNs (a) and xPTA/g-CsN4 (b—e).
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Figure S5. XPS spectra of samples: (a) survey and partially enlarged drawing, (b) O 1s and (c) Fe 2p.
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Figure S6. SS-SPS responses in air of g-CsNa and XxPTA/g-CsNa.
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Figure S7. PL spectra of g-CsN4 and xPTA/g-CsNa.
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Figure S8. Fluorescence spectra related to the formed ®OH amounts of g-CsNs and xPTA/g-CsNa
after irradiation for 1 h under visible-light irradiation (A > 420 nm).
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Figure S9. Nyquist plots under visible light illumination (A > 420 nm) of g-CsNs, 2PTA/g-CsNs and
0.5Fe-2PTA/g-CsNa (0.5 M Na250: aqueous solution, pH = 7, SCE).
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Figure 510. Photocatalytic activities of water reduction for Hz evolution (1 wt% Pt-loaded, 10
vol% TEOA as sacrificial agent, A > 420 nm) of samples: (a) g-CsNs and xPTA/g-CsNs; (b) yFe-
2PTA/g-CsNy; (c) comparison of g-CsN4, 2PTA/g-C3Ns, 0.5Fe-2PTA/g-CsNa, 2PTh/g-CsNa and 0.5Fe-

2PTh/g-CsNa.



8 of 10

Absorbance (a.u.)

300 400 500 600 700 800
Wavelength (nm)

Figure S11. UV-Vis spectra of g-CsNs and PTA. Inset shows the Tauc plots of g-CsNs and PTA.
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Figure S12. Cyclic voltammetry measurements of (a) g-CsNzand (b) PTA.
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Figure S13. B3LYP/6-31G wave functions of the frontier molecular orbital in PTA and g-CsNs with
a chain length of n = 1. The grey ball: carbon atom; blue ball: nitrogen atom; red ball: oxygen atom;
yellow ball: sulfur atom; white ball: hydrogen atom.
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Figure S14. (a) TEM image of 0.5Fe-2PTA/g-CsN4 (1 wt% Pt loaded). (b) HRTEM image of 0.5Fe-
2PTA/g-C3Na (1 wt% Pt loaded). (c) HAADF-STEM image and corresponding EDS mapping of
0.5Fe-2PTA/g-CsNa (1 wt% Pt loaded).
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Figure S15. Mechanism of photogenerated charge separation and corresponding photochemical re-
actions in Fe(IIl)-coordinated PTA/g-CsN4 nanoheterojunctions.

Method 1:

The HOMO and LUMO were acquired from the UV-Vis DRS spectra (Figure S11)
and cyclic voltammetry curves (Figure S12), according to the following method [1,2]:

Ferrocene was used as an external reference for calibration (Eiz, ferrocene = 0.45 V vs.
Ag/AgCl). Eu, ferrocene Tepresents the average potential of the redox couple peaks of ferro-
cene. The HOMO of PTA and the LUMO of g-CsN4 are determined as follows:
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Enomo (eV) =- (onionset VS. Ag/AgCl +4.80 — E]/Z,ferrocene) 1)

Erumo (eV) = (Ereionset VS. Ag/AgCl +4.80 — EI/Z,ferrocene) (2)

Eox_onset and Ere_onset represent the onset oxidation potential of PTA and the onset reduc-
tion potential of g-CsNs in the CV curves. The Eoxonset of PTA and Ereonset of g-CsNa are
marked with black arrows in Figure S12.

The optical absorption band edge (Eg) of PTA and g-CsNa can be acquired according
to the UV-Vis DRS spectra, as shown in the inset of Table S1 [3].

Table S1. HOMO and LUMO positions determined from CV curves, UV-Vis DRS spectra and DFT
calculation methods.

CcV DFT
Sample on_anset Ere_anset gHOMO ‘E;LUMO \]E‘ fomo Eruomo (eEé)
(V vs. Ag/AgCl) (V vs. Ag/AgCl) (€ u:fn)v ac- (e u:fn)v ac- (e uflsl‘n;ac' (eV vs. vacuum)
g-C3N, 1.38 -1.32 -5.73 -3.03 —6.85 -3.55 2.70
PTA 0.58 ~1.40 —4.93 —2.95 -5.57 -3.22 1.98
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