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Abstract: Metal/nitrogen-doped carbon single-atom catalysts (M−N−C SACs) show excellent catalytic
performance with a maximum atom utilization and customizable tunable electronic structure. However,
precisely modulating the M−Nx coordination in M−N−C SACs remains a grand challenge. Here, we
used a N-rich nucleobase coordination self-assembly strategy to precisely regulate the dispersion of
metal atoms by controlling the metal ratio. Meanwhile, the elimination of Zn during pyrolysis produced
porous carbon microspheres with a specific surface area of up to 1151 m2 g−1, allowing maximum ex-
posure of Co−N4 sites and facilitating charge transport in the oxygen reduction reaction (ORR) process.
Thereby, the monodispersed cobalt sites (Co−N4) in N-rich (18.49 at%) porous carbon microspheres
(CoSA/N−PCMS) displayed excellent ORR activity under alkaline conditions. Simultaneously, the
Zn−air battery (ZAB) assembled with CoSA/N−PCMS outperformed Pt/C+RuO2-based ZABs in
terms of power density and capacity, proving that they have good prospects for practical application.

Keywords: oxygen reduction reaction; single-atom catalysts; nitrogen-rich; supramolecular coordination;
Zn−air battery

1. Introduction

Developing efficient oxygen reduction reaction (ORR) electrocatalysts is the leading
research direction for electrochemical energy devices, including fuel cells and metal-air batter-
ies [1–5]. Currently, platinum-based materials have been widely used as ORR catalysts, but their
instability and prohibitive cost inevitably hinder large-scale applications [6–8]. Metal/nitrogen-
doped carbon (M−N−C) catalysts have attracted increasing interest as a promising substitute
for noble-metal-based catalysts, ascribed to their advanced catalytic performance, facile synthe-
sis and low cost [9–12] However, M−N−C catalysts are affected by the aggregation of active
components during intense pyrolysis, resulting in poor utilization of the M−Nx sites [13,14].

M−N−C single-atom catalysts (M−N−C SACs) have been proposed to substan-
tially advance the number of available M−Nx sites and realize the maximum atomic
utilization [15–19]. Simultaneously, achieving a rational catalyst design at the atomic
scale can additionally boost the intrinsic activity of M−Nx by modulating its electronic
configuration [20]. In most cases, M−N−C SACs are usually prepared by pyrolysis of
metal salts, carbon supports and precursors comprising nitrogeN−Containing small
molecules [21,22]. To avoid the uncontrolled formation of metal crystals confined in
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the carbon substrate, post-treatment with highly corrosive acids (e.g., nitric acid and
hydrochloric acid) under extremely rigorous conditions is required [23]. However,
slight changes in the manipulation strategy may gravely disrupt the electronic struc-
ture and coordination of the M−Nx sites, which is also undesirable for large-scale
production [24].

The well-defined metal-organic frameworks (MOFs) and other supramolecular coor-
dination composites can potentially be used as desirable precursors for SACs by altering
the metal nodes and organic ligands [25,26]. For example, by regulating the molar ratio
of Zn and Co in ZIF-8, the competitive interaction of the Zn ions with the N atoms in the
framework effectively widens the spatial separation between the two Co atoms to prevent
their aggregation, while the sublimation of Zn above 907 ◦C contributes to the porous
structure [27–30]. Nevertheless, the ligand (2-methylimidazole) of ZIF-8 contains a limited
nitrogen content, usually leading to insufficient generation of M−Nx sites. Therefore,
incorporating additional nitrogen-rich sources (melamine, urea, ammonia, etc.) into the
synthetic approach has been widely reported, but is considered a relatively cumbersome
solution, which probably leads to buried M−Nx sites in the SACs [31–33].

In this study, adenine−Zn/Co supramolecular coordination microspheres (Ad−Zn/Co
SCMS) were successfully prepared by a competitive coordination strategy. Adenine, as a
nitrogen-rich (51.8 wt%) ligand, provides a large amount of reaction sites for metal ions.
The creation of monodispersed cobalt sites (Co−N4) on N-rich porous carbon microspheres
(CoSA/N−PCMS) after pyrolysis was ensured by rationally adjusting the Zn/Co−N coordi-
nation and Zn/Co ratio in the Ad−Zn/Co SCMS precursor. Meanwhile, the elimination of
Zn during pyrolysis produced porous carbon microspheres with a specific surface area up to
1151 m2 g−1, allowing maximum exposure of Co−N4 sites and facilitating charge transport
for the ORR process. The ultra-high N doping (18.49 at%) promoted the efficient utilization
of Co single atoms, which could significantly improve the activity of ORR [34–38]. The onset
potential (Eonset) and half-wave (E1/2) potential of CoSA/N−PCMS under alkaline conditions
are 0.99 V and 0.87 V, respectively. Furthermore, CoSA/N−PCMS as a cathode material for
Zn-air batteries (ZAB) exxhibits high opeN−Circuit voltage, power density, specific capacity,
and charge/discharge cycle stability.

2. Experimental Section
2.1. Chemicals

Adenine was received from Sigma-Aldrich (Darmstadt, Germany). Pt/C (20 wt%)
and RuO2 were purchased from Alfa Aesar (Shanghai, China). N, N-dimethylformamide
(DMF), Co(NO3)2·6H2O, and Zn(NO3)2·6H2O were obtained from Macklin (Shanghai,
China). Nafion solution (5%) was obtained from Macklin.

2.2. Preparation of Ad−Zn/Co SCMS Precursor and CoSA/N−PCMS Catalysts

Adenine (1.08 g) was dissolved in 400 mL DMF at 140 ◦C. Zn(NO3)2·6H2O (3.996 mmol)
and Co(NO3)2·6H2O (0.004 mmol) were added to the adenine solution, which was stirred
continuously for 4 h. After the reaction, Ad−Zn/Co SCMS was collected by centrifugation and
then dried in an oven. CoSA/N−PCMS was obtained by directly calcining Ad−Zn/Co SCMS
in a tube furnace at 1000 ◦C for 2 h under an Ar atmosphere (ramping rate of 5 ◦C min−1).

For comparison, the preparation method of Ad−Zn SCMS and Ad−Co SCMS is similar
to that of Ad−Zn/Co SCMS, with the exception that only 0.4 mmol of Co(NO3)2·6H2O or
Zn(NO3)2·6H2O needs to be added. The calcined products of Ad−Co SCMS and Ad−Zn
SCMS are denoted as Co/N−PCMS and N−PCMS, respectively.

2.3. Characterization

Scanning electron microscopy (SEM, SU8100, HITACHI, Tokyo, Japan) and transmis-
sion electron microscopy (TEM, FEI Tecnai G2 F20 S-TWIN, FEI, Hillsboro, OR, USA) were
applied to observe the morphology of the samples. The images of annular bright-field scan-
ning transmission electron microscopy (ABF-STEM) and aberratioN−Corrected high-angle
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dark-field scanning transmission electron microscopy (HAADF-STEM) of CoSA/N−PCMS
were collected on a JEM-GRAND ARM300F (JEOL, Tokyo, Japan). X−ray diffraction (XRD)
spectroscopy of samples was performed on a Bruker D8 Advance A25 diffractometer
(Bruker, Karlsruhe, Germany). The surface valence state and elemental composition of
the catalyst were obtained by XPS (AXIS Supra, Kratos, Manchester, UK). The Brunauer-
Emmett-Teller (BET) specific surface area and pore size distribution were acquired on a gas
analyzer ASAP 2460 (Micromeritics, Norcross, GA, USA). A Raman spectrometer (DXRxi,
Thermo-Fisher, Waltham, MA, USA) was used to determine the extent of defects of the
catalysts. X−ray absorption spectroscopy (XAS) of the catalysts was performed on the
1W1B beamline at BSRF (Beijing Synchrotron Radiation Facility, Beijing, China).

2.4. Electrochemical Measurements

ORR electrocatalytic tests were performed in a three-electrode system with platinum
foil and Ag/AgCl as the counter and reference electrodes, respectively. All tests were
performed on a CHI 760E electrochemical workstation. The catalyst sample (5 mg), Nafion
(5%, 10 µL), and ethanol (490 µL) were mixed, then sonicated for more than 1 h to obtain a
homogeneous ink. Then, 8 µL or 10 µL of ink was dipped onto the rotating disk electrode
(RDE, geometric area ≈ 0.20 cm2) or rotating ring disk electrode (RRDE, geometric area
≈ 0.25 cm2) surface with a loading of 0.4 mg cm−2. Linear scanning voltammetry (LSV)
and cyclic voltammetry (CV) were carried out in O2-saturated 0.1 M KOH solution at a
scanning rate of 10 mV s−1. In addition, for the accelerated durability test (ADT), the RDE
was subjected to potential cycling. Specifically, the electrode was scanned from −0.4 to 0 V
at a rate of 100 mV s−1. CV and ORR curves were recorded at each set of 1000 (1 k) cycles.

The potential measured by Ag/AgCl can be converted to the potential of the reversible
hydrogen electrode (RHE) by the following equation:

ERHE = EAg/AgCl + 0.059 pH + 0.197 (1)

The kinetic current density (Jk) and electron transfer number (n) were calculated from
the Koutecky-Levich (K-L) equation:

1
J
=

1
Jk

+
1
Jd

=
1
Jk

+
1

Bω1/2 (2)

B = 0.2nFC0D2/3ν−1/6 (3)

in which ω is the electrode rotation rate, Jk is the kinetic current density, Jd is the diffusion-
limiting current density, J is the measured current density, B is the inverse of the slope of K-L
equation, F is the Faraday constant, C0 is the oxygen concentration in 0.1 M KOH solution,
D is the diffusion coefficient of O2, and ν is the kinematic viscosity of the electrolyte.

The kinetic current was calculated using the following equation:

Jk =
J × Jd
Jd − J

(4)

The hydrogen peroxide yield (H2O2%) and the number of electron transfers (n) were
calculated using the following equations:

H2O2(%) = 200 × Ir/N
Id + Ir/N

(5)

n = 4 × Id
Id + Ir/N

(6)

where Ir is the ring current, Id is the disk current, and N = 0.37 is the collection efficiency.
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2.5. Fabrication and Measurements of Zn−Air Battery

In the Zn−air battery test, a polished Zn sheet (8 cm × 3.2 cm) was used as the anode,
a carbon cloth coated with CoSA/N−PCMS or Pt/C+RuO2 (loading: 2 mg cm−2) was used
as the cathode (air electrode), and the electrolyte consisted of a mixture of 6 M KOH/0.2 M
zinc acetate. The battery was tested using a CHI 760E electrochemical workstation.

3. Results and Discussion

The synthetic route for CoSA/N−PCMS is illustrated in Figure 1a. As one of the nucle-
obases that is present in nucleic acids, adenine (N content up to 51.8 wt%) contains a lone
pair of electrons at the nitrogen atom and strongly coordinates with 3D metals (Zn(II) and
Co(II)), which triggers the self-assembly of adenine−Zn/Co supramolecular coordination
microspheres (Ad−Zn/Co SCMS) [39,40]. By rationally adjusting the Zn/Co ratio, excess
incorporated Zn ions occupy most of the coordination nodes in the Ad−Zn/Co building
blocks, which guarantees the isolation of atomically dispersed Co sites in the pyrolyzed prod-
ucts. As reflected in the SEM image (Figure 1b), Ad−Zn/Co SCMS shows monodisperse
micro-spherical features with an average diameter of about 1 µm. With the aid of an elemental
mapping analysis (Figure 1c), both Co and Zn were determined to be uniformly distributed
throughout the microspheres. As controls, Ad−Zn SCMS and Ad−Co SCMS were synthesized
by employing Zn(II) or Co(II), respectively, as the sole metal source (Figure S1). The red shift
in the UV-vis absorption peaks of Ad−Zn/Co, Ad−Zn, and Ad−Co SCMS with respect to
adenine indicates the coordination between Ad and the metal ions (Figure S2a). From the
FTIR spectra analyses (Figure S2b), the adenine molecule has the characteristic stretching and
bending vibrations of an imidazole N at 1120 cm−1 and the stretching vibrations of an amine
(-NH2) in the band range of 3300−3100 cm−1, which are noticeably attenuated in the assembled
Ad−Zn/Co SCMS, Ad−Zn SCMS, and Ad−Co SCMS.

Furthermore, XAS was used to characterize the chemical states and local structure of
Co and Zn in Ad−Zn/Co SCMS. From the X−ray absorption near-edge structure (XANES)
spectra (Figure S3a,b), the near-edge absorption energy of Co or Zn moves towards the
high-energy region, indicating that Co or Zn exists in an oxidized state. More structural
information about Co and Zn can be obtained from the extended X−ray absorption fine
structure (EXAFS). The Co K-edge Fourier transform (FT) EXAFS spectrum (Figure 1d)
of Ad−Zn/Co SCMS exhibits similar Co−N coordination with a peak located at ~1.41Å.
Meanwhile, the Zn K-edge FT-EXAFS spectrum (Figure 1e) of Ad−Zn/Co SCMS displays
a main peak at ~1.56 Å, corresponding to the Zn−N scattering path [40–43]. Therefore,
both Co and Zn coordinate with N on adenine, confirming the feasibility of achieving Co
atomic dispersion by precisely regulating the metal ratio.

CoSA/N−PCMS exhibits regular microspheres with uniform distribution of C, N, and
Co (Figure 2a and Figure S4). Benefitting from the use of N-rich adenine as the ligand, the
nitrogen atom loading content in CoSA/N−PCMS was as high as 18.49 at% (Table S1). To
further investigate the microstructure of the catalyst, high-resolution TEM (HRTEM) was
used, and rough surface and edge defects on the CoSA/N−PCMS can be clearly seen in
the image (Figure 2b). Meanwhile, the ring-like selected area electron diffraction (SAED,
illustration of Figure 2b) pattern indicates that the CoSA/N− PCMS catalyst has no metallic
Co. Furthermore, only amorphous carbon and lattice deformation were observed in the ABF-
STEM image (Figure 2c), further confirming the absence of Co aggregation. In comparison,
large, aggregated Co nanoparticles were found in the Co/N−PCMS without Zn addition
(Figure S5), confirming that the precise modulation of metals in Ad−Zn/Co SCMS precursors
is a decisive factor in achieving the dispersion of Co atoms. The crystal structures of the
catalysts were further investigated by XRD. There are only broad typical diffraction peaks
in the (101) and (002) planes of amorphous carbon in N−PCMS and CoSA/N−PCMS
(Figure 2d), while Co/N−PCMS has distinct Co metal peaks (Figure S6) [41]. All of the above
results confirm that the high dispersion of Co species was confined in CoSA/N−PCMS.
Raman spectra (Figure 2e) were measured to characterize the carbon structure in the catalysts.
Compared with N−PCMS and Co/N−PCMS, CoSA/N−PCMS has the largest ID/IG ratio,
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related to the promotion of defects by Co doping and Zn volatilization. Then, the porosity
character of the CoSA/N−PCMS was investigated using N2 physisorption measurements
(Figure 2f) [42]. The amount of absorbed N2 increases dramatically at relatively low pressures
of 0−0.005, which can be ascribed to the generation of many micropores by volatilization
of Zn during the pyrolysis process. CoSA/N−PCMS possesses a high specific surface area
of 1151 m2 g−1, surpassing that of Co/N−PCMS (98 m2 g−1). According to the pore size
distribution curves (Figure S7), CoSA/N−PCMS has an abundance of micropores [43]. The
micropore-dominated structure and large specific surface area could not only host a high
density of active sites but also provide sufficient channels to sufficiently boost the mass
transport in electrocatalysis [44,45].
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Figure 2. (a) Elemental mapping images of CoSA/N−PCMS. (b) HRTEM image of CoSA/N−PCMS
(inset: corresponding SAED pattern). (c) ABF-STEM image of CoSA/N−PCMS. (d) XRD patterns
and (e) Raman spectra of CoSA/N−PCMS and reference samples. (f) N2 adsorption-desorption
isotherms of CoSA/N−PCMS and Co/N−PCMS.

To further reveal the spatial location of Co atoms in CoSA/N−PCMS, HAADF-STEM
was conducted. As shown in Figure 3a, the atomic bright spots are circled in yellow,
confirming that the atoms of Co are dispersed in CoSA/N−PCMS [46]. Then, XPS was
used to elucidate the chemical composition of CoSA/N−PCMS, in which Co, C, N, and
O elements all exist (Figure S8). The N 1 s spectrum of CoSA/N−PCMS (Figure 3b) was
assigned to pyridine nitrogen (398.4 eV), pyrrole nitrogen (399.5 eV), graphitic nitrogen
(401.0 eV), and oxidized nitrogen (402.4 eV) with the Casaxps software analysis. The
presence of pyrrole and pyridine nitrogens provides sufficient anchoring points for the
single metal sites in the M−N−C catalyst, which also indicates the successful coordination
of N−Co in the catalyst for facilitating the ORR performance [47–51]. The Co K-edge
XANES spectra of different cobalt-containing samples are shown in Figure 3c. The Co
near-edge absorption position of CoSA/N−PCMS is located between the Co foil and
CoPc, indicating that the Co atoms are positively charged [52]. In contrast, the pre-edge
peak of Co/N−PCMS is similar to that of Co foil, confirming the possible generation of
metallic Co. As reflected in Figure 3d, a dominant peak at 2.18 Å attributed to Co−Co
binding in Co/N−PCMS further confirms the existence of metallic Co. The FT-EXAFS
curve (Figure 3d) for CoSA/N−PCMS only shows a major peak at 1.41 Å, originating from
the Co−N configuration. Meanwhile, no obvious Co−Co peaks were found, indicating
that Co is dispersed atomically in CoSA/N−PCMS [53]. These observations agree with the
conclusions of XRD, SAED, and HAADF-STEM. The detailed quantitative parameters of
CoSA/N−PCMS were obtained by EXAFS fitting (Figure S9 and Table S2), and the Co−N
coordination number is 4, with a bond length of 1.89 Å. The above results indicate that
Co atoms in CoSA/N−PCMS exist in the form of Co−N4 [53–55]. Nucleobase-engaged
competitive coordination self-assembly is also applicable to other transition metals, such as
Fe, indicating the universality of this approach (Figure S10). As a result, CoSA/N−PCMS
with regular microspheres, atomically dispersed Co−N4 sites, a high content of N, and a
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porous structure was prepared by precise regulation. These features will assist in enhancing
the performance of the ORR [56,57].

Nanomaterials 2023, 13, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 3. (a) HAADF-STEM image of CoSA/N−PCMS with atomically dispersed Co atoms partially 
circled. (b) N 1 s XPS high-resolution spectrum of CoSA/N−PCMS. (c) XANES spectra and (d) FT-
EXAFS spectra of CoSA/N−PCMS and reference samples at the Co K-edge. 

The cyclic voltammetry (CV) curves under alkaline conditions are shown in Figure 
4a. All four samples showed significant ORR peaks, with CoSA/N−PCMS having the high-
est peak potential (0.90 V), surpassing Pt/C (0.84 V), N−PCMS (0.84 V), and Co/N−PCMS 
(0.80 V). The linear sweep voltammetry (LSV) curve of CoSA/N−PCMS (Figure 4b) exhib-
ited the highest catalytic activity compared to Pt/C, N−PCMS, and Co/N−PCMS, owing to 
the remarkably high onset potential (Eonset = 0.99 V) and half-wave potential (E1/2 = 0.87 V). 
Table S3 summarizes the Eonset and E1/2 of the four samples [58]. Then, the Tafel slopes 
obtained from LSVs revealed that CoSA/N−PCMS (74 mV dec−1) was superior to Pt/C (81 
mV dec−1), indicating excellent reaction kinetics. To further evaluate the ORR of 
CoSA/N−PCMS, Koutecky-Levich (K-L) curves (Figure S11) were obtained by performing 
RDE measurements at varied rotation speeds. The electron transfer number calculated 
from the K-L plots is about 3.92, indicating a four-electron oxygen reduction process [59]. 
As shown in Figure 4d, the hydrogen peroxide yield and electron transfer number of 
CoSA/N−PCMS are similar to those of Pt/C, which is comparable to the values calculated 
by the K-L equation. The accelerated durability test (ADT) and chronoamperometric re-
sponse (i−t) were conducted to evaluate the durability of CoSA/N−PCMS [60]. The ADT 
results (Figure 4e,f) show that after 5000 consecutive cycles, the E1/2 of CoSA/N−PCMS has 
a negative shift of only 9 mV, significantly better than Pt/C (35 mV). After ADT testing, 
CoSA/N−PCMS was analyzed by XRD to investigate whether metal aggregation occurred. 

Figure 3. (a) HAADF-STEM image of CoSA/N−PCMS with atomically dispersed Co atoms par-
tially circled. (b) N 1 s XPS high-resolution spectrum of CoSA/N−PCMS. (c) XANES spectra and
(d) FT-EXAFS spectra of CoSA/N−PCMS and reference samples at the Co K-edge.

The cyclic voltammetry (CV) curves under alkaline conditions are shown in Figure 4a. All
four samples showed significant ORR peaks, with CoSA/N−PCMS having the highest peak
potential (0.90 V), surpassing Pt/C (0.84 V), N−PCMS (0.84 V), and Co/N−PCMS (0.80 V). The
linear sweep voltammetry (LSV) curve of CoSA/N−PCMS (Figure 4b) exhibited the highest
catalytic activity compared to Pt/C, N−PCMS, and Co/N−PCMS, owing to the remarkably
high onset potential (Eonset = 0.99 V) and half-wave potential (E1/2 = 0.87 V). Table S3 summa-
rizes the Eonset and E1/2 of the four samples [58]. Then, the Tafel slopes obtained from LSVs
revealed that CoSA/N−PCMS (74 mV dec−1) was superior to Pt/C (81 mV dec−1), indicating
excellent reaction kinetics. To further evaluate the ORR of CoSA/N−PCMS, Koutecky-Levich
(K-L) curves (Figure S11) were obtained by performing RDE measurements at varied rotation
speeds. The electron transfer number calculated from the K-L plots is about 3.92, indicating a
four-electron oxygen reduction process [59]. As shown in Figure 4d, the hydrogen peroxide
yield and electron transfer number of CoSA/N−PCMS are similar to those of Pt/C, which
is comparable to the values calculated by the K-L equation. The accelerated durability test
(ADT) and chronoamperometric response (i−t) were conducted to evaluate the durability
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of CoSA/N−PCMS [60]. The ADT results (Figure 4e,f) show that after 5000 consecutive
cycles, the E1/2 of CoSA/N−PCMS has a negative shift of only 9 mV, significantly better
than Pt/C (35 mV). After ADT testing, CoSA/N−PCMS was analyzed by XRD to investigate
whether metal aggregation occurred. As shown in Figure S12, there were only two broad
peaks attributed to carbon before and after the CoSA/N−PCMS test, indicating that no metal
aggregation occurred. The chronoamperometric response (i−t) curves for CoSA/N−PCMS
and Pt/C at 0.6 V are shown in Figure S13. The current density for CoSA/N−PCMS remains
91.7% for about 15 h, while the Pt/C catalyst only has 80.5% retention. In conclusion, the
ORR performance of CoSA/N−PCMS in 0.1 M KOH exceeds that of Pt/C. CoSA/N−PCMS
has a large amount of atomically dispersed Co−N4 active sites compared to N−PCMS, and
possesses a considerably larger specific surface area and abundant micropores in contrast to
Co/N−PCMS, thus exhibiting excellent ORR performance. Moreover, CoSA/N−PCMS also
has superior catalytic activity compared to those of recently reported Co SACs with less N
doping (Table S4).
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To verify the viability of CoSA/N−PCMS in practical applications, a Zn−air battery
(ZAB) was assembled (Figure 5a). CoSA/N−PCMS was used as the air cathode, polished
zinc flakes were used as the anode, and 6 M KOH and 0.2 M zinc acetate were used as
the electrolyte [61]. As displayed in Figure 5b, the CoSA/N−PCMS-assembled ZAB has
a higher and more stable OCV of 1.47 V than the ZAB based on Pt/C + RuO2 (1.40 V).
The ZAB with a CoSA/N−PCMS air cathode exhibits a maximum power density of
168.7 mW cm−2, which is better than the ZAB assembled with Pt/C+RuO2 (146.3 mW
cm−2) (Figure 5c). Moreover, its discharge capacity of 796 mA h g−1 outperforms that
of Pt/C+RuO2 (698 mA h g−1) at a current density of 10 mA cm−2 (Figure 5d). As
shown in Figure 5e, static discharge tests were performed on ZABs assembled with
CoSA/N−PCMS with the current density of 0–40 mA cm−2. The rate performance of
ZAB under varied current densities all show very stable voltages, proving the excellent
discharge rate performance of the CoSA/N−PCMS-based ZAB. In addition, constant-
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current charging and discharging were performed to further investigate the stability of
the ZAB (Figure 5f). The initial discharge potential of the CoSA/N−PCMS ZAB was
1.17 V and the charging potential was 2.08 V, with a charge−discharge voltage gap of
0.91 V. After 90 h of cycling, the ZAB based on CoSA/N−PCMS maintained a negligible
voltage gap change. However, the stability performance of the Pt/C+RuO2-based ZAB
decreased sharply after 50 h. The above results demonstrate the viability of the practical
application of CoSA/N−PCMS in ZABs.
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(b) OpeN−Circuit voltage (OCV) measurements of assembled ZABs with CoSA/N−PCMS and
Pt/C+RuO2. (c) The polarization and power density results for ZABs with CoSA/N−PCMS and
Pt/C+RuO2. (d) The discharge curves of ZABs based on CoSA/N−PCMS and Pt/C+RuO2 at
10 mA/cm2. (e) Discharge curves of the ZAB assembled with CoSA/N−PCMS at varied current den-
sities. (f) Discharge/charge cycling performance of ZABs based on CoSA/N−PCMS and Pt/C+RuO2

at 10 mA/cm2.

4. Conclusions

In summary, highly active Co monoatomic catalysts with a high nitrogen content
were successfully prepared by a N-rich nucleobase-engaged competitive coordination self-
assembly strategy. The N originating from Ad−Zn/Co SCMS promotes the coordination of
Co during pyrolysis. The large specific surface area, abundant micropores, and the wealth
of atomically dispersed Co−N4 sites result in CoSA/N−PCMS exhibiting excellent ORR
properties (Eonset = 0.99 V, E1/2 = 0.87 V). In particular, a ZAB based on CoSA/N−PCMS
exhibits a maximum power density of 168.7 mW cm−2, an impressive specific capacity of
796 mA h g−1, and excellent cycling durability over 90 h. This work aims to regulate the
coordination environment of metal atoms by using a nitrogen-rich molecule to improve the
catalytic activity of the M−N−C SACs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano13081330/s1, Figure S1: (a) SEM image of Ad−Zn SCMS.
(b) SEM image of Ad−Co SCMS, Figure S2: (a) UV-vis absorption of Adenine, Ad−Co SCMS,
Ad−Zn SCMS and Ad−Zn/Co SCMS. (b) FTIR spectra of Adenine, Ad−Co SCMS, Ad−Zn SCMS
and Ad−Zn/Co SCMS, Figure S3: (a) Co K-edge XANES spectra of Co foil, CoPc and Ad−Zn/Co
SCMS. (b) Zn K-edge XANES spectra of Zn foil and Ad−Zn/Co SCMS, Figure S4: SEM image of
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CoSA/N−PCMS, Figure S5: TEM image of Co/N−PCMS, Figure S6: XRD pattern of Co/N−PCMS,
Figure S7: Pore size distribution curves of CoSA/N−PCMS and Co/N−PCMS, Figure S8: XPS full
scan of CoSA/N−PCMS, Figure S9: Co K-edge EXAFS fitting analysis of CoSA/N−PCMS in R space,
Figure S10: (a) TEM image of FeSA−N PCMS. (b) HAADF-STEM image of FeSA−N PCMS with
partially atomically dispersed Fe atoms circled. Figure S11: (a) LSV curves at different rotating rates
of CoSA/N−PCMS. (b) the Koutecky-Levich plots, Figure S12: XRD patterns of CoSA/N−PCMS
before and after ADT testing, Figure S13: Chronoamperometry (i-t) measurement of CoSA/N−PCMS
and Pt/C with a rotation rate of 1600 rpm in O2-saturated 0.1 M KOH, Figure S14: (a) CV curves of
CoSA/N−PCMS, Co/N−PCMS, N−PCMS and Pt/C in O2-saturated 0.1 M HClO4 with a sweep rate
of 10 mV s−1. (b) LSV curves of CoSA/N−PCMS, Co/N−PCMS, N−PCMS and Pt/C in O2-saturated
0.1 M HClO4 with a sweep rate of 10 mV s−1 and 1600 rpm, Figure S15: Chronoamperometry (i-t)
measurement of CoSA/N−PCMS and Pt/C with a rotation rate of 1600 rpm in O2-saturated 0.1 M
HClO4; Table S1: eZAF Smart Quant Results of CoSA/N−PCMS, Table S2: EXAFS fitting parameters
at the Co K-edge (S0

2=0.76), Table S3: Summary of ORR activity of different catalysts in this work
under alkaline condition, Table S4: CoSA/N−PCMS compared with recently reported Co SACs.
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