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Abstract: The work described herein assesses the ability to characterize gold nanoparticles (Au NPs)
of 50 and 100 nm, as well as 60 nm silver shelled gold core nanospheres (Au/Ag NPs), for their
mass, respective size, and isotopic composition in an automated and unattended fashion. Here, an
innovative autosampler was employed to mix and transport the blanks, standards, and samples
into a high-efficiency single particle (SP) introduction system for subsequent analysis by inductively
coupled plasma–time of flight–mass spectrometry (ICP-TOF-MS). Optimized NP transport efficiency
into the ICP-TOF-MS was determined to be >80%. This combination, SP-ICP-TOF-MS, allowed
for high-throughput sample analysis. Specifically, 50 total samples (including blanks/standards)
were analyzed over 8 h, to provide an accurate characterization of the NPs. This methodology was
implemented over the course of 5 days to assess its long-term reproducibility. Impressively, the
in-run and day-to-day variation of sample transport is assessed to be 3.54 and 9.52% relative standard
deviation (%RSD), respectively. The determination of Au NP size and concentration was of <5%
relative difference from the certified values over these time periods. Isotopic characterization of
the 107Ag/109Ag particles (n = 132,630) over the course of the measurements was determined to be
1.0788 ± 0.0030 with high accuracy (0.23% relative difference) when compared to the multi-collector–
ICP-MS determination.

Keywords: nanoparticles; automated; high throughput; single particle; ICP-TOF-MS; SP-ICP-MS

1. Introduction

Dedicated efforts in analytical chemistry are often centered on minimizing sample
handling, improving analysis efficiency, and increasing throughout. These attributes have
generally been shown to improve the overall data quality while reducing analysts’ time on
the instrument. For inorganic mass spectrometry, the automation of sample introduction
and sample preparation has become a major target as a way to boost productivity and
sample throughput while reducing the time required for sample preparation [1]. These
efforts often manifest in the form of multiport and switching valves [2], sample loops [3],
vacuum and syringe pumps [4], mixing chambers [5], and flow injection techniques, such
as separation or preconcentration columns [1,4,6,7]. Specifically, in the field of nuclear
analytical chemistry, Metzger et al. utilized an automated separation system to separate
uranium and plutonium from environmental sample swipes. These automated efforts not
only improved sample throughput but also lowered method blanks due to an enclosed
separation system which minimized sample handling [8]. Xu et al. utilized a novel sample
introduction platform to minimize sample volumes of plutonium metal samples by ap-
proximately 90% by introducing the sample via syringe drive in conjunction with a sample
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loop (as opposed to traditional aspiration), while improving the method detection limit (by
approximately 50×) [9]. Aside from nuclear analytical chemistry [10,11], other applications
emphasizing improved automation and sample delivery have been particularly useful in
terms of ICP-MS-based analysis, including speciation [12], stable isotope analysis [13], and
clinical studies [14,15].

Single particle (SP) analysis is a unique sample scheme/approach for ICP-MS-based
measurements [16–18]. Since the emergence of SP analysis, there have been some efforts
explored regarding automated high-efficiency sample introduction [19,20] or automated on-
line purifications [21] for single particles/single cells. In comparison to a bulk dissolution,
which ultimately homogenizes the sample, SP analysis allows for the direct discrimination
of particles. This technique has proven its utility covering a wide range of applications
and is revolutionizing the way nanomaterials/nanoparticles (NPs) are studied. In short,
this measurement needs a highly efficient way to introduce the sample into the ICP, such
that one particle enters at a time. Secondly, an ICP is needed with a mass analyzer fast
enough to detect such events. Sector field (SF)-based mass spectrometers are valuable when
highly sensitive measurement are warranted, but are often hindered when more than one
detected isotope is of interest due to magnet settling time [22]. While more recent hardware
and software developments now permit for such fast data acquisition [23], the sequential
nature of quadrupole- and single-collector SF-ICP-MS, does not allow for simultaneous
multi-elemental NP analysis and thereby hinders high-throughput measurements. Indeed,
as the sample needs to be repeatedly analyzed for all isotopes of interest and a sufficient
number of NPs for reliable statistics, the analysis time is significantly lengthened. Time-
of-flight (TOF)-based instruments appear to present the best utility for SP measurements,
not only due to their inherently fast acquisition times, but also to their ability to quasi-
simultaneously monitor all masses (e.g., 6Li–242Pu) [24]. This lends itself to be the ideal
platform for isotopically characterizing multi-elemental SPs with ultra-fast acquisition
times (a multi-collector instrument could isotopically characterize individual particles, but
is limited based on acquisition times and mass range) [25].

Regarding sample introduction considerations for SP analysis, one must consider the
effective preparation of the particle suspension, how to sample effectively and quickly,
and how to introduce the sample into the ICP with high transport efficiency. Presented
here are results from an optimized sample introduction method for NP characterization.
A focus was placed on efficiently introducing particles into the ICP-MS with high in-
sequence repeatability and successful day-to-day reproducibility. This was achieved with
an innovative autosampler which incorporates in-run mixing of the samples, syringe-driven
sample uptake for the precise aliquoting of samples, and a state-of-the-art nebulizer, spray
chamber, and torch/injector for high-efficiency sample transport. This sample introduction
methodology was validated with ionic and NP standards to determine NP concentration,
size distribution, and isotopic abundance. The ability to reproductively introduce, detect,
and characterize NPs, over long sequences (8 h) and multiple days (5 d) is highlighted
here and can have an immediate impact across various applications (e.g., environmental,
clinical, etc.).

2. Experimental
2.1. Materials & Reagents

Monodisperse spherical gold nanospheres (Au NPs) of 50 and 100 nm, and silver
shelled gold core nanospheres (Au/Ag NPs) (nanoComposix, Fortis Life Sciences, San
Diego, CA, USA) were utilized in the presented work. The certificate of analysis (COA)
for these particles is summarized and presented in Table 1. For preparation of the NPs
presented here, the stock solutions were diluted such that the working concentration was
roughly 50,000 particles mL−1. Prior to each dilution, the sample was sonicated for 30 s to
aid in resuspension. All dilutions were performed with ASTM type I water (18.2 MΩ·cm)
generated with a ThermoScientific BarnsteadTM GenPureTM xCAD Plus ultrapure water
purification system (Waltham, MA, USA). For quantification, single element ionic standards
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of Au and Ag were prepared from a stock solution (10 µg mL−1) from High Purity Standards
(HPS, Charleston, SC, USA). Appropriate dilutions were performed in ASTM type I water
to final concentrations of 1, 5, and 10 ng mL−1. OptimaTM grade nitric acid (HNO3) from
Fisher Scientific (Pittsburg, PA, USA) was utilized to digest the Au/Ag NPs for subsequent
Ag isotope verification via multi-collector (MC) ICP-MS.

Table 1. Relevant characteristics of the nanoparticle samples.

Characteristic 50 nm Au 100 nm Au 60 nm Ag/Au Core Shells

Diameter (nm) 51.0 ± 1.9 102.2 ± 4.2 59 ± 6 (total)
Au = 30 ± 3

Ag = 15 (calculated)
Surface Area (m2g−1) 6.1 3.0 8.5

Mass Concentration (g L−1) 0.053 0.053 0.8 (Ag); 0.24 (Au)
Particle Concentration

(particles mL−1) 3.9 × 1010 4.9 × 109 8 × 1011

Working Particle Concentration
(particles mL−1) 3.9 × 104 4.9 × 104 8 × 104

2.2. Multi-Collector–Inductively Coupled Plasma–Mass Spectrometry

For isotopic verification of the 15 nm silver shell of the Au/Ag NPs, a multi-collector–
inductively coupled plasma–mass spectrometer (MC-ICP-MS) was employed. Here, the
Au/Ag NPs were dissolved in 4 M HNO3 at 150 ◦C for 30 min. The dissolved material
was screened on a Thermo Scientific (Bremen, Germany) TQ ICP-MS to ensure complete
dissolution of the Ag shells. Subsequent dilutions were made with 2 % (w/w) HNO3 such
that a working concentration of 1 ng mL−1 could be analyzed by the MC-ICP-MS (Neptune
Plus, Thermo Scientific, Bremen, Germany). Isotopes of Ag were analyzed using two 1011 Ω
resistance amplifiers with 107Ag on the axial cup and 109Ag on the H2 cup to allow for
periodic recalibration of the center mass position during analysis. A quartz spray chamber
was used with a 150 µL min−1 nebulizer which resulted in 1 V ppb−1 Ag sensitivity. The
analysis method was set up as single block of 10 cycles with an 8 s integration time. An
HPS Ag standard was run, bracketing the samples to correct for instrumental mass bias
effects. The isotopic ratio of the samples was corrected by direct comparison to the Ag
standard.

2.3. Single Particle–Inductively Coupled Plasma–Time of Flight–Mass Spectrometry

An Elemental Scientific Inc., (ESI, Omaha, NE, USA) microFAST SC sample intro-
duction system was employed to introduce the NPs to the ICP-TOF-MS. The entirety of
this introduction/detection system can be seen in Figure 1, operating conditions can be
found in Table 2, and the sample introduction protocol is presented in Table 3. A tapered
tipped carbon fiber autosampler probe is directed into the sample in which a mixing step
is initiated, to assure NP suspension. Initial studies were performed to determine the
optimum mixing protocol. In these studies, multiple repeated measurements were per-
formed with and without mixing. It was found that the sample mixing prior to injection
(100 µL) improved the percent relative standard deviation (%RSD) from 12.4 to 5.2 of
the number events between samples. This study was performed over a 2 h analysis of
20 samples, each containing approximately 1000 particles. Once mixed, a syringe was
employed to transport the sample into the sample loop to deliver a precise volume (100 µL)
to the ICP-TOF-MS. Once injected out of the sample loop, the sample is then directed
into a CytoNeb50 (ESI) nebulizer housed within a CytoSpray chamber (ESI, SC-CytoC-73)
for high-efficiency NP introduction. The aerosolized particles are then transported into a
unique one-piece torch/injector (ESI, T20-73, 2 mm) for NP delivery to the ICP. To deter-
mine particle transport efficiency, 50 nm Au NPs were injected at a known volume and
known particle number concentration (PNC). The injection parameters were optimized
such that the particle transport efficiency, calculated via particle frequency, was >80% for
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the 50 nm Au NPs. This high-efficiency particle transport performance is on par with what
has recently been published [26], employing the same introduction components.
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Figure 1. Illustration of the single particle (SP)-ICP-TOF-MS setup.

Table 2. Autosampler sample introduction procedure.

Step Action Volume (µL) Speed
(µL min−1)

1 Probe descends into sample vial – –
2–5 Sample mixing – 3000

6 Fill sample loop 150 2000
7 Probe ascends – –
8 Probe moves to rinse – –
9 Probe descends into rinse – –
10 Dispense from sample loop to ICP-MS 100 10
11 Fill sample loop from rinse 1000 25,000
12 Probe moves to waste – –
13 Dispense 1000 25,000
14 Probe moves to rinse – –
15 Fill sample loop from rinse 1000 25,000
16 Probe moves to waste – –
17 Dispense 1000 25,000

Table 3. Single Particle (SP)-ICP-MS example sequence with respective integration (ms) and acquisi-
tion (s) time.

Sample Integration Time (ms) Acquisition Time (s)

DI Water (×3) 100 60
Au standards (1, 5, 10 ng mL−1) 100 60

DI Water 100 60
Ag standards (1, 5, 10 ng mL−1) 100 60

DI Water 100 60
50 nm Au NPs (×11) 2 450

DI Water 100 60
60 nm Au/Ag core-shell NPs (×11) 2 450

DI Water 100 60
100 nm Au NPs (×11) 2 450

DI Water 100 60
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Here, an ICP-TOF-MS (icpTOF R, TOFWERK AG, Switzerland) was employed for
sample analysis. Uniquely this ICP-MS can quasi-simultaneously detect all isotopes
(2–290 Th) at ultra-fast acquisition times (30 µs). Further information regarding this
ICP-TOF-MS instrument design can be found elsewhere [24]. This capability allows for
multi-element as well as isotopic analysis of single NPs. The tuned mass resolving power
and sensitivity of the instrument for 238U at the approximate times of measurement was
3100 ∆m m−1 and 40,000 cps ppb−1, respectively. Experiment setup, data acquisition, and
data processing were performed using TOFpilot v2.11.5 (TOFWERK AG, Switzerland).
Using the dedicated particle module (TOFpilot v2.11.5, TOFWERK AG, Switzerland), the
data were thresholded for particle identification by applying the compound Poisson algo-
rithm [27] and subsequently, quantified using liquid standards [28]. Further data processing
and data visualization were performed with in-house developed Python scripts.

3. Results and Discussion
3.1. Reproducibility of Detected Particles

For the characterization of NPs, a sequenced approach was utilized and is presented
in Table 3. Briefly, the ASTM Type I water (Blank) was bracketed before and after the
sample analysis to monitor for successful rinsing of the tubing and injection loop prior to
the analysis of the subsequent sample. Prior to the analysis of the NPs, single element (Au
and Ag) ionic standards were measured at varying concentrations such that quantification
based on external calibration could be utilized. All blanks and single element standards
were measured with a 100 ms integration time for 60 s. These samples also aided in the
determination of limits of detection (LOD). All NP samples were analyzed 10× with a 2 ms
integration time for 450 s. The entirety of this sequence was completed in ~8 h. It should
be noted that all calibration standards and NPs were prepared fresh prior to each daily
sequence.

To determine the reproducibility of precisely injecting the same number of particles
in each sample injection, the determined events were compared. For example, in a single
injection (100 µL) of 50 nm Au NPs (with the presented dilution factors in Table 1) would
yield around 2200 events during the detection time, assuming an 80% transport efficiency.
This value is then compared within a single sequence and over the course of days, presented
in Figure 2. This provides in-run and day-to-day statistics regarding the reproducibility of
the 50, 60, and 100 nm SP introduction into the ICP-TOF-MS. The average %RSD for the
in-run precision of detected events of the 50, 60, and 100 nm particles was 3.54 ± 1.05%.
For day-to-day precision, the 50, 60, and 100 nm particles were detected at 2092 ± 510,
2412 ± 456, and 3029 ± 419 (2σ), respectively. Ultimately, this provides insight into the
reproducibility of the effectiveness of particle introduction. The transport efficiency was
calculated daily with an average of 77 ± 6% for the 5 days. As mentioned above, without
the automated mixing of the sample, %RSDs (in terms of detected particle events) were seen
in the >10% range on a single measurement. It would be expected that this %RSD would
greatly increase over the course of longer sequences, such as those presented here. The fact
that the average in-run precision during this study was 3.54 ± 1.05% and the day-to-day
was 9.52 ± 5.3% demonstrates this introduction approach is a unique and robust way to
introduce SP samples into the ICP-MS, which would be greatly beneficial in the arenas of
environmental, production, and characterization of NPs.
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Figure 2. Detection of 50 nm Au (red), 100 nm Au (blue), and 60 nm Au/Ag core-shell (green) NPs
presented as the average number of events within the replicate injections [50 nm NPs: n = 10, 100 nm
and 60 nm Au/Ag NPs: n = 11] with its respective standard deviation (2σ) over the course of 5 days.

3.2. Mass and Size Characterization of Nanoparticles

The mass respective size characterization of the 50 nm Au NPs is presented in Figure 3
for a single day. This data clearly demonstrates the effectiveness of accurately determining
the mass and size of the NPs. The data were processed in TOFpilot such that the signal
(Figure 3a) from the ICP-TOF-MS measurement is converted to mass (Figure 3b) via external
calibration based on the method of Pace et al. [29], this mass can then be used to determine
NP size with the assumption of a spherical geometry. A set of known information, including
elemental distribution and density of respective element (e.g., density of Au is 19.32 g cm−3)
along with shape of the particles, can be used to calculate the particle diameter. Similar
approaches have been previously reported [29,30]. Next, a k-clustering algorithm was
applied to identify if multiple gaussian distributions were present in the sample population.
The k-clustering was run 10× with differing random seeds for each sample to ensure if
multiple distributions were detected that they were repeatedly identified. For the 100 nm
Au NPs, a second population with a slightly larger diameter (approximately 106 nm) was
identified; for the calculation of the NP diameter to compare with the COA values, only
the lower distribution was used. Here, the Au NP sizes were determined to be 50.9 ± 0.30
and 104.9 ± 0.73 nm, over the course of the study, which is in excellent agreement with
the certificate value of 51.0 ± 1.9 and 102.2 ± 4.2 nm. The Au/Ag NPs were analyzed
with the same procedure, with the addition of the Ag layer thickness calculation. Here,
the Au core was calculated to be 31.5 ± 0.32 nm and the Ag thickness was calculated to be
8.76 ± 2.4 nm compared to the certificate values of 30 ± 3 nm and 15 nm, respectively.
The difference between the calculated and certificate values of the shell thickness may be
caused by Ag layer degradation, or the certificate value may not be very accurate, as it was
calculated rather than measured and does not have an associated uncertainty.
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Figure 3. Representative demonstration of particle size calculation for the 50 nm Au NPs (n = 10)
based on the (a) counts, (b) mass, and (c) calculated size presented as histograms regarding the
frequencies of events.

The derived particle diameters are presented in Figure 4, showing in-run and day-
to-day variation with this characterization. Regarding each sample measurement (e.g.,
50, 100 Au NPs and 60 nm Au/Ag NPs), the determined diameter of the Au cores was
well within the certificate value with an average diameter (over the course of 5 days)
corresponding to a 0.20, 2.6, and 5.0% relative difference, respectively. The in-run precision
was assessed as 0.51% RSD on average for all measurements and the day-to-day %RSD
being <1.03%.
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at 2σ (orange shaded box). All data are compared to the certified value (orange dashed line) with its
respective standard deviation (yellow shaded box).

3.3. Isotopic Characterization of Nanoparticles

The isotopic ratio characterization of particles via SP-ICP-MS is of interest to various
communities, including environmental [31], nuclear [32], and biological [25]. Typically, this
measurement would require the ability to simultaneously measure multiple isotopes of
interest, such that single particle discrimination can be achieved. To date, and the authors’
knowledge, SP-ICP-MS of suspension for isotopic determination has only been primarily
investigated with either a TOF [25,31] or SF-MC [25,32–34] configuration, albeit a recent
study demonstrated the effectiveness of a quadrupole-based ICP with the employment
of O2 gas for transient broadening [23]. A recent study by Yin et al., explored the various
ICP-based platforms to assess the figures of merit regarding isotope ratio measurements
on single NPs and cells [25]. The conclusion for the Ag NPs (40 and 80 nm) and cells
containing Ag (100 and 300 µg L−1) was that their ability to quasi-simultaneously (ICP-
TOF) and simultaneously (MC-ICP-MS) outperformed the scanning quadruple-ICP-MS, as
expected. Moreover, the MC-ICP-MS outperformed the ICP-TOF-MS such that all particle
determinations were within ±5% deviation of the expected value, while the ICP-TOF-MS
had 80% of the events within ±30%, although the ICP-TOF-MS ultimately offers the benefit
of being able to monitor all isotopes of interest (e.g., 6Li–242Pu).
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From the Au/Ag NPs, the 107Ag/109Ag isotope ratio was determined. For this deter-
mination, a direct mass bias correction was applied to the NPs based on the daily analysis
of the Ag ionic standard. The isotopic data presented from the entirety of the study (5 days)
are presented in Figure 5, which depicts the analysis of just over 132,000 particles. When
looking at the mass (fg) plot (107Ag versus 109Ag) in Figure 5a, there is a strong positive
and linear correlation of the data (r = 0.988), similar to what was determined by Yin et al.,
when comparing the ICP-TOF-MS to other ICP-based platforms [25]. Figure 5b provides an
insight to the accuracy of the measurement with respect to the mass of the characterized
particles. It should be noted that each 60 nm core-shell particle should contain 1 fg of Ag
(0.52 and 0.48 fg for 107Ag and 109Ag, respectively). This is a significantly smaller mass
than has previously been published regarding this measurement. Similar trends have been
identified previously [23,33], primarily due to Poisson counting statistics such that accurate
isotope ratio determination is often hindered when analyzing low signal particles. To
summarize, 80.8% of the detection population was within ±30% RD, 61.6% was within
±20% RD, and 33.7% was within ±10% RD. When considering this as a function of mass,
at levels > 1.8 fg and >9.2 fg, most of the respective population (≥99%) was within ±20
and 10% RD, respectively. Based on the deviation of low signal events and their impact on
isotope ratio, a threshold equal to that of the largest daily LOD (0.19 fg 109Ag) was applied
for the final isotope ratio calculations.
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The day-to-day accuracy and precision of the isotopic determination of the Ag compo-
nent within the Au/Ag NPs are presented in Figure 6. It is evident that the SP-ICP-TOF-MS
method was accurate at determining this ratio when compared to the bulk digestion-based
MC-ICP-MS measurement. The average ratio over the course of the days was determined



Nanomaterials 2023, 13, 1322 10 of 12

to be 1.0788 ± 0.0030 (2σ) with respect to the MC-ICP-MS determination of 1.0763 ± 0.0014
(2σ). The % of RD was determined to be 0.23% over the course of the measurements.
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Figure 6. Depiction of the 107Ag/109Ag isotope ratio, determined by SP-ICP-TOF-MS, over the course
of 5 days with respect to the determined value via bulk digestion-MC-ICP-MS (dashed line).

4. Conclusions

Herein, the analysis of 50 nm Au, 100 nm Au, and 60 nm Au/Ag core-shell NPs
employing an automated introduction system with ICP-TOF-MS was presented. This
methodology includes sample mixing, precise injection, and efficient NP characterization.
Ultimately, the sample was reproducibly delivered to the ICP-TOF-MS with an average
%RSDs of 3.4% in-run and 9.5% day-to-day for the total number of detected particles per
injection. Regarding the characterization of the NPs, all particle sizes were determined
well within the certificate value with the day-to-day reproducibility of <1.03% RSD. The
isotopic determination of the Ag shell of the 60 nm Au/Ag core-shell particle was also
presented and had a strong linear correlation amongst the 107Ag/109Ag isotopic plot. The
determined isotopic values of the 100,000+ particles were in excellent agreement (0.23% RD)
with the comparator value from bulk digestion-MC-ICP-MS measurement. This method-
ology, automated sample introduction SP-ICP-TOF-MS, demonstrated its robustness and
effectiveness regarding high in-run and day-to-day precision for NP characterization. This
analytical technique lends itself to readily being applied to more routine applications where
high-throughput particle characterization is warranted.
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