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Abstract: As one of the widely studied semiconductor materials, titanium dioxide (TiO2) exhibits
high photoelectrochemical (PEC) water-splitting performance as well as high chemical and photo
stability. However, limited by a wide band gap and fast electron-hole recombination rate, the low
solar-to-hydrogen conversion efficiency remains a bottleneck for the practical application of TiO2-
based photoelectrodes. To improve the charge separation and water oxidation efficiency of TiO2

photoanodes, antimonene, a two-dimensional (2D) material obtained by liquid-phase exfoliation,
was assembled onto TiO2 nanorod arrays (TNRAs) by a simple drop-coating assembly process.
PEC measurements showed that the resulting 2D Sb/TiO2 photoelectrode displayed an enhanced
photocurrent density of about 1.32 mA cm−2 in 1.0 M KOH at 0.3 V vs. Hg/HgO, which is ~1.65 times
higher than that of the pristine TNRAs. Through UV-Vis absorption and electrochemical impedance
spectroscopy measurements, it was possible to ascribe the enhanced PEC performances of the 2D
Sb/TiO2 photoanode to increased absorption intensity in the visible light region, and improved
interfacial charge-transfer kinetics in the 2D Sb/TiO2 heterojunction, which promotes electron-hole
separation, transfer, and collection.

Keywords: TiO2 nanorod arrays; antimonene; heterojunction; photoelectrochemical; solar water splitting

1. Introduction

The rapid development of the global economy and rapid growth in the global pop-
ulation has accelerated the consumption of non-renewable energy. As the reserves of
traditional energy are limited, the development of low-cost, clean, and renewable energy is
of great significance to ease the energy crisis and the realization of sustainable development.
Solar energy, as one of the natural resources on which human beings depend for survival,
has attracted great attention because it is inexhaustible. Photoelectrochemical (PEC) water
splitting is considered to be one of the most efficient and clean solar energy conversion
technologies [1–5], but how to improve the solar energy conversion efficiency of PEC
remains a huge challenge.

In a typical PEC water-splitting system, the water oxidation reaction on the pho-
toanode is four orders of magnitude slower than the water reduction reaction on the
photocathode, which is the rate-determining step of water splitting [6,7]. How to improve
the water decomposition performance of a semiconductor photoanode is the key problem
in this field [8]. Semiconductor photocatalysts, especially metal oxides such as TiO2, CdS [9],
and BiVO4 [10], have been widely studied as photoanode materials for PEC. As one of
the most widely studied photoanode materials, TiO2 [11–13] shows good chemical and
photo stability, abundant storage capacity, and high photoelectrocatalytic activity. In recent
years, researchers have designed different nanostructured TiO2 thin films as photoanodes
in a PEC cell [14], such as nanorods [15], nanowires [16], nanosheets [17], nanotubes [18],
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nanoparticles, etc. In particular, one-dimensional (1D) TiO2 nanorod arrays (NRAs) show
unique morphology and ordered structure that enable charges to migrate rapidly along the
axial direction of the NRAs, which significantly improves charge transfer by reducing grain
boundaries [19,20]. Meanwhile, the larger specific surface area of 1D TiO2 NRAs ensures
more active sites on the electrode surface and faster photocarrier migration. However, TiO2
can only respond to ultraviolet (UV) light, which accounts for only 3%–5% of sunlight. The
photogenerated carriers show serious recombination during the separation and transfer
process, resulting in a very low utilization rate of solar energy by TiO2. Therefore, various
modification strategies to improve the photoresponse and charge separation rate of TiO2
NRAs have been reported [21]. Among those strategies, the construction of heterojunctions
is one of the most efficient strategies [22]. For example, Wang et al. successfully fabricated
g-C3N4/TiO2 nanotube arrays (NTAs) heterojunctions and the new heterostructures of g-
C3N4/TiO2 NTAs exhibit enhanced PEC water-splitting activity. The photocurrent density
was approximately 2 times (0.86 mA cm−2) higher than that of the pristine TiO2 NTAs [23].
Liu et al. reported 2D ZnIn2S4 nanosheet/1D TiO2 NR heterojunction arrays synthesized by
a facile hydrothermal process. The heterojunction arrays show high performance for solar
water splitting as photoelectrodes in a PEC cell [24]. Xie et al. constructed TiO2 NRAs/CdS
quantum dots/ALD-TiO2 nanostructures through atomic layer deposition (ALD), which
improved the PEC and photocatalytic properties of TiO2 in solar energy conversion [25].

Recently, 2D antimonene (Sb) nanosheets have attracted much attention because of
their layered structure similar to graphene and some unique physical and photoelectric
properties superior to graphene [26–29], such as high carrier mobility, high stability, ad-
justable band gap, short out-of-plane atom bond length, and strong spin-orbit coupling
effect [30–32], showing potential applications in the energy storage [33], battery develop-
ment, optoelectronics [34,35], and semiconductor [36–38] fields. The theoretical calculation
results from Prof. Zeng’s research group in 2015 show that Sb in the bulk phase has a typical
semi-metal band structure, and when it is thinned to a single atomic layer, it will transform
into an indirect band-gap semiconductor material [39]. Zhang et al. investigated the atomic
and electronic structures of a 2D Sb monolayer using DFT calculations, indicating that 2D
Sb with a tunable bandgap is suitable for photocatalytic water splitting [40]. At present, the
main methods for the preparation of monolayer and few-layer (<10 layers) Sb nanomateri-
als are mechanical exfoliation [41], liquid-phase exfoliation [42], and epitaxy growth [43]. In
2018, Wang et al. [26] prepared few-layer Sb nanosheets with smooth surfaces by combining
pre-grinding and liquid phase ultrasonic assistance and found that the 2D Sb materials can
act as a hole transport layer in perovskite solar cells. Fu et al. [44] synthesized Sb/g-C3N4
van der Waals heterostructures by self-assembly of g-C3N4 nanosheets and antimonene that
show a better-photogenerated charge separation efficiency than pure g-C3N4, providing a
reference for the rational construction of high-performance heterojunction photocatalyst
for CO2 reduction reactions. In addition, Zhao et al. [45] reported efficient visible-light
N2 fixation in water using a novel 2D Sb/amorphous TiO2 heterostructure. The intimate
interfacial contact of 2D Sb and a-TiO2 greatly promoted carrier migration and charge-
carrier separation. These findings show the potential application of 2D Sb and its hybrids
in photocatalysis. Therefore, it can be expected that Sb nanosheets will have potential
applications in PEC fields.

In this work, 2D Sb nanosheets stripped by liquid-phase exfoliation were assembled
onto TiO2 NRAs by a simple drop-coating assembly process to form heterostructures to
improve the PEC performances of TiO2 photoanodes. The PEC water splitting results show
that the photocurrent density of 2D Sb/TiO2 NRAs is 1.32 mA cm−2 in 1.0 M KOH at
1.23 V vs. RHE, which is 1.65 times higher than that of the pristine TiO2 photoanode. The
enhancement can be ascribed to the increased absorption of visible light and separation
efficiency of photogenerated electron-hole pairs caused by the introduction of 2D Sb and
the formation of heterostructures between 2D Sb and TiO2 NRAs.
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2. Experimental Section
2.1. Materials

Ethanol (>99.8%) and acetone (>99.5%) were purchased from Shanghai Reagent Fac-
tory. Fluorine-doped tin oxide conducting glass (FTO, Guluo Glass, LA, CHN) was cleaned
by sonication in a mixture of acetone and ethanol and then deionized water for 15 min,
respectively, for use. Conductive silver glue was purchased from Shenggelu Technology.

2.2. Preparation of 2D Sb Suspensions

2D Sb dispersions [46–48] were prepared by adding 200 mg of bulk antimony powders
into 10 mL of N-methyl pyrrolidone (NMP) and sonicating using a horn probe sonic tip
(KQ2200V, 100 W) with 40% amplitude for 48 h. The obtained black Sb suspension was
then centrifuged at 3000 rpm for 4 min to remove the unshed crystals. The gray-black
supernatant containing Sb nanosheets was centrifuged at 12,000 rpm for 12 min. The
precipitate was washed three times with absolute ethanol and dried at 60 ◦C in a vacuum
oven. Then, 2, 4, and 6 mg of the obtained 2D Sb were re-dispersed in 1 mL of absolute
ethanol under ultrasonication for 30 min to obtain 2D Sb suspensions with concentrations
of 2, 4, and 6 mg mL−1, respectively.

2.3. Fabrication of 2D Sb Modified TiO2 NRAs

TiO2 NRAs were grown on FTO substrates via a previously reported hydrothermal
method [49,50]. Typically, 15 mL of deionized water was mixed with 15 mL of concentrated
hydrochloric acid (36.5–38 wt%). This mixture was stirred for 5 min, then 0.5 mL of titanium
butoxide was added dropwise under continuous stirring. The resulting solution was
transferred into a Teflon-lined stainless steel autoclave. Then the cleaned FTO conductive
glass (1.5 cm × 1.5 cm) was placed vertically in the reaction reactor. The hydrothermal
growth was performed at 150 ◦C for 4 h [51,52]. After cooling to room temperature, the
FTO substrate was withdrawn, rinsed extensively with deionized water, and dried at
60 ◦C in air. The obtained TiO2 NRAs were then annealed in air at 400 ◦C for 1 h. The
heterostructured 2D Sb/TiO2 NRAs (2D Sb/TNRAs) were prepared by a drop-coating
method. Before the drop-coating process, the annealed TiO2 NRAs were preheated on a
heating plate at 70 ◦C for 30 min. The obtained 2D Sb suspension of various concentrations
(2, 4, or 6 mg mL−1) was quickly pipetted and dropped onto the preheated TiO2 NRAs with
an exposed surface area of 1.5 cm2, to make close contact between Sb nanosheets and TiO2
NRAs. The final samples were named 2D Sb (2 mg)/TNRAs, 2D Sb (4 mg)/TNRAs, and
2D Sb (6 mg)/TNRAs, based on the concentration of 2D Sb. The electrodes were prepared
by connecting FTO/2D Sb/TNRAs with copper wire using conductive silver glue and
heating at 60 ◦C in a vacuum furnace for 2 h. The electrode surface was then coated with
insulating silicone rubber, with only a 0.5 cm × 0.6 cm working area left exposed. The
obtained electrode was then dried for use.

2.4. Characterizations

X-ray diffraction (XRD) (3 KW D/MAX-2200V/PC) patterns were acquired to analyze
the phase and composition of the samples using Cu Kα radiation (λ = 1.5418 Å) with
a cathode voltage and current of 30 kV and 30 mA, respectively. Raman spectra were
acquired on a LabRAM ARAMIS Raman system using a 532 nm laser as the excitation
source. The morphology of the samples was observed under a JEOL microscope (JSM6701F)
using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and
high-resolution TEM (HRTEM) (FEI-Talos F200S). The chemical states of the samples were
characterized by X-ray photoelectron spectroscopy (XPS, ThermoScientific, ESCALAB,
250XI) using monochromatic Al Kα Radiation. Ultraviolet-visible (UV-Vis) absorption
spectra of the obtained samples were recorded with a UV-Vis spectrophotometer (UV-
2500PC, Shimadzu) in the range of 300 to 800 nm.



Nanomaterials 2023, 13, 1293 4 of 12

2.5. PEC Measurements

All PEC tests were performed using a three-electrode system on a CHI660E electro-
chemical analyzer under AM 1.5 G (100 mW/cm2) illumination, which was produced from
a Xenon lamp (300 W) with an AM 1.5 G filter. The PEC performance was measured in 1 M
KOH with Hg/HgO as the reference electrode and Pt sheet as the counter electrode. Before
the PEC measurements, the system was purged with argon (Ar) for 30 min to remove the
oxygen. The potential vs. a reversible hydrogen electrode (RHE) was obtained from the
equation: ERHE = E + 0.059pH + EHg/HgO, where E is the applied potential vs. Hg/HgO
electrode, and EHg/HgO is 0.095 V. Electrochemical impedance spectroscopy (EIS) measure-
ments were made under AM 1.5 G illumination with a frequency range between 0.01 Hz
and 100 kHz and an amplitude of 5 mV at the open-circuit potential of the PEC cells.

3. Results and Discussion
3.1. Morphology and Composition Characterization of 2D Sb/TiO2 NRAs

The surface morphology and microstructure of the TiO2 NRAs grown on FTO sub-
strates were analyzed by SEM. Figure 1a shows the SEM image of the nanorod arrays. It
can be observed that the entire surface of the FTO substrate is covered uniformly with TiO2
NRAs. Figure 1b reveals that the TiO2 NRAs are tetragonal in shape and their diameters
range from 75 to 100 nm with an average length of ~784 nm. After loading 2D Sb onto the
TiO2 NRAs, the lamellar structure of the 2D Sb nanosheets was observed on the surfaces
of the TiO2 NRAs (Figure 1c,d), suggesting the successful loading of Sb nanosheets onto
the TiO2 NRAs. The average thickness of the nanosheets is about 100–200 nm, as shown in
Figure 1d.
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Figure 1. (a,b) Top view SEM of TiO2 NRAs. (c,d) SEM images of 2D Sb/TiO2 NRAs: (c) top view,
(d) cross-sectional view.

The composition and phase structure of the TiO2 NRAs and 2D Sb/TNRAs were
studied by XRD. As shown in Figure 2a, two sharp reflection peaks at 36.1◦ and 62.8◦

marked with black squares are observed for pristine TiO2 NRAs, which correspond to the
(101) and (002) planes of rutile TiO2 (JCPDS No. 88-1175) [53], respectively. The results
suggest that the synthesized TiO2 NRAs are mainly composed of rutile TiO2 as reported
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previously. For the nanocomposites of 2D Sb/TNRAs, the characteristic diffraction peak of
2D Sb at 28.7◦ is observed, which is consistent with the previous report [54]. Additionally, a
weak peak appeared at 23.7◦, corresponding to the (003) plane of bulk antimony (JCPDS No.
35-0732). No characteristic diffraction peaks ascribed to antimonene oxide are observed,
suggesting that the Sb in 2D Sb/TNRAs remained unoxidized [52]. The morphologies and
crystal structure of 2D Sb were observed by transmission electron microscopy (TEM) and
high-resolution transmission electron microscopy (HRTEM). The layered structure of the
2D Sb nanosheet is clearly observed in Figure 2b. Furthermore, a lattice fringe of 0.36 nm is
observed in Figure 2c, which is consistent with the value previously reported [26], further
confirming that the obtained Sb is present as few-layered Sb nanosheets.
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Figure 2. (a) XRD patterns and (d) Raman spectra of 2D Sb/TiO2 NRAs. TNRAs: TiO2 nanorod
arrays. (b) TEM and (c) HRTEM images of obtained 2D Sb.

Raman spectroscopy can provide fingerprint spectra of molecular vibrations and
rotations. To further characterize the prepared samples, Raman spectra were recorded
as shown in Figure 2d. Two characteristic peaks at ~148 cm−1 and ~111 cm−1 were
observed for 2D Sb/TNRAs and attributed to the A1g and Eg modes of Sb, respectively [48].
These peaks are blue-shifted compared with bulk antimony, confirming the successful
loading of 2D Sb onto TiO2 NRAs and the strong interaction between the 2D Sb and TiO2
nanorods [26]. The characteristic Raman modes of rutile TiO2 are also observed in the
synthesized 2D Sb/TNRAs nanocomposites at ~608 cm−1, ~445 cm−1, and ~240 cm−1. The
peak at ~240 cm−1 can be assigned to the second-order effect (SOE). The Raman results
further indicate that 2D Sb/TNRAs heterostructures have been successfully synthesized.

The surface chemical composition of the prepared 2D Sb (4 mg)/TNRAs nanocom-
posites were analyzed using XPS with different etching depths (Figure 3). Figure 3a shows
high-resolution Ti 2p XPS spectra for the nanocomposites unetched and etched 100 and
200 nm. For the 2D Sb (4 mg)/TNRAs nanocomposites etched 100 nm, the XPS spectra
show two peaks at 452.8 and 458.5 eV, corresponding to Ti 2p3/2 and Ti 2p1/2, respectively,
which is a typical characteristic of Ti4+-O bond in titanium dioxide [55]. When further etch-
ing to 200 nm, the peak value of Ti 2p remains almost unchanged. While for the unetched
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2D Sb (4 mg)/TNRAs, the binding energy of Ti 2p occurs at 452.6 and 458.3 eV, respectively,
which is reduced by about 0.2 eV compared to the pristine TiO2 NRAs. The negative shift
is due to the electron transfer of 2D Sb to Ti4+-O, suggesting the successful loading of 2D
Sb onto TiO2. The same results were observed from the fine XPS spectra of O 1s with
different degrees of etching. As shown in Figure 3b, a negative shift of the binding energies
is also observed for the O 1s of unetched 2D Sb (4 mg)/TNRAs compared with those of
etched binding energies. Additionally, a new small peak near 528.4 eV was observed for
the unetched 2D Sb (4 mg)/TNRAs, which can be assigned to the Sb 3d5/2 of metallic Sb
(Sb0), further indicating the successful loading of Sb nanosheets [26]. According to the XPS
results, the thickness of the loaded 2D Sb is about 100–200 nm, which is consistent with the
SEM results (Figure 1d).
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The UV-Vis absorption spectra of pristine TiO2 NRAs and 2D Sb (4 mg)/TiO2 NRAs
nanocomposites are shown in Figure 4a. The 2D Sb (4 mg)/TiO2 NRAs nanocomposites
show stronger light absorption than that of pristine TiO2 NRAs in the UV light to visible
light range. Figure 4b shows the Tauc plots obtained from Figure 4a. The absorption edge
of the pristine TiO2 NRAs (black line) is at 404 nm, which indicates the energy band gap
is 3.06 eV. After loading 2D Sb, the absorption edge of the 2D Sb/TNRAs was shifted
to 455 nm, indicating that the combination of 2D Sb with TiO2 NRAs could expand the
absorption range of the photoelectrode. As can be seen from the Tauc plot, the band gap of
the 2D Sb (4 mg)/TNRAs is about 2.72 eV, lower than that of the pristine TiO2 NRAs with
the band gap reduced by about 0.34 eV. The results demonstrate that the introduction of
2D Sb into TiO2 NRAs can broaden the range of the photoresponse, which can result in an
enhancement in the utilization of solar light and improve PEC performance. In addition,
the enhanced light absorption can be attributed to the existence of few-layered antimonene
nanosheets, which are proved to be semiconductors with tunable bandgaps.

3.2. PEC Performance of 2D Sb/TiO2 NRAs

The effect of loading 2D Sb onto TNRAs has been investigated on the PEC perfor-
mances of the 2D Sb/TNRAs nanocomposites through a number of experiments. Figure 5a
shows the photocurrent density versus time curves of bare TiO2 and 2D Sb/TiO2 photoan-
odes with various 2D Sb loadings. The average photocurrent density of pristine TNRAs, 2D
Sb (2 mg)/TNRAs, 2D Sb (4 mg)/TNRAs, and 2D Sb (6 mg)/TNRAs electrodes are found
to be ~0.80, ~1.20, ~1.32, and ~0.88 mA/cm2, respectively, at 1.23 V vs. RHE. It can be seen



Nanomaterials 2023, 13, 1293 7 of 12

that the 2D Sb (4 mg)/TNRAs material exhibits the highest photocurrent density under the
same conditions, which is ~1.65 times higher than that of the pristine TiO2 NRAs photoan-
ode. When further decreasing or increasing the loaded 2D Sb content, a deterioration in
PEC performance occurs for 2D Sb (2 mg)/TNRAs and 2D Sb (6 mg)/TNRAs, respectively,
as shown in Figure 5a. For the pure 2D Sb photoanode, the photocurrent density is very
weak, only ~2.2 µA cm−2, which is consistent with the previous report [42]. As shown in
Figure 5b, the photocurrent density increases with increasing applied bias voltage, and
the photocurrent density of the 2D Sb (4 mg)/TNRAs is significantly higher than that of
the original TNRAs. This enhancement is mainly due to the photogenerated electron-hole
pairs becoming separated at the interface of the 2D Sb (4 mg)/TiO2 heterojunction and the
electron transport along the TiO2 nanorods to the FTO substrate so that the charge separa-
tion efficiency is promoted. Moreover, the introduction of 2D Sb extends the absorption
range to the visible light region.
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To further understand the photo-generated carriers’ transition, open-circuit potential
(OCP) measurements were obtained to identify long-lived carriers on a heterogeneous
structure generated between the optical collector layer and the buffer layer. Figure 5c
shows the OCP curve of the 2D Sb (4 mg)/TNRAs photoanode. Compared to the TNRAs
photoanode, the 2D Sb (4 mg)/TNRAs photoanode shows a higher photo-potential value,
indicating a higher capability of separating electron-hole pairs with a lower recombination
rate. The enhanced photo-potential value is due to the formed heterostructure between the
2D Sb and TNRAs, which facilitates carrier separation [56,57].

3.3. Possible Mechanism of the Enhanced PEC Performance

To gain a clear idea of the charge-transfer process in the pristine TNRAs and 2D
Sb/TNRAs photoelectrodes, an EIS analysis was carried out under simulated solar light il-
lumination. Figure 5d shows the Nyquist plots of the pristine TNRAs, 2D Sb (2 mg)/TNRAs,
2D Sb (4 mg)/TNRAs, and 2D Sb (6 mg)/TNRAs. The smaller semicircle at high frequen-
cies for 2D Sb/TNRAs represents lower charge-transfer resistance, namely, the higher
separation efficiency of the photogenerated electron-hole pairs than that of pristine TNRAs.
Furthermore, The 2D Sb (4 mg)/TNRAs electrode presents the smallest semicircle at high
frequencies among the investigated 2D Sb/TNRAs electrodes with three different 2D Sb
loading amounts. Combined with the UV-Vis absorption spectra, it can be concluded that
the higher PEC performance of 2D Sb (4 mg)/TNRAs is mainly ascribed to the enhanced
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light absorption and lowered charge transfer resistance in the interface between the 2D Sb
and TiO2 NRAs.
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comparison). (b) LSV curves. (c) Open-circuit potential curves. (d) EIS spectra. TNRAs: TiO2 NRAs;
2D Sb (4 mg)/TNRAs: 2D Sb (4 mg)/TiO2 nanorod arrays.

According to the results discussed above, a possible mechanism for the charge transfer
process in a 2D Sb/TNRAs hybrid system is proposed. As shown in Figure 6, under
illumination conditions, when the energy of the incident light is greater than the energy
of the semiconductor bandgap, photoelectrons and holes are generated in the conduction
band (CB) and the valence band (VB) of the TNRAs and 2D Sb, respectively. Compared
with TiO2, the CB of 2D Sb is more negative, so the photo-generated electrons in 2D Sb
can be easily transferred to the TiO2 nanorods. The ordered 1D structure of the TiO2
NRAs provides a conduction path for electrons and rapidly transfers electrons to the FTO
along the vertically oriented TiO2 nanorods, which finally reach the counter electrode for
hydrogen generation. At the same time, these holes left in the VB of TiO2 are transported
to the VB of 2D Sb and oxidized water to produce O2. The migration of electrons and
holes in opposite directions increases the efficiency of the charge separation and effectively
improves the PEC performance.

Figure 7 compares this work with related work reported in recent years to improve
the PEC performance by constructing heterojunctions [58–63]. Comparing the photocur-
rent density at 1.23 V vs. RHE, the 2D Sb/TNRAs photoanode reported in this work
shows a comparatively high photocurrent density, indicating that the synthesized 2D
Sb/TNRAs composites show certain potential in photoelectrocatalytic applications such as
for water splitting.
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and valence band (VB) edges for TiO2 and 2D Sb were taken from the literature [24,26].
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Figure 7. Comparison chart demonstrating the photocurrent density of previous works and this
work. Each photocurrent density was obtained at 1.23 V vs. RHE [23,58–63].

4. Conclusions

In summary, we designed heterostructured 2D Sb/TiO2 nanorod arrays via a facile
drop-coating method from liquid-exfoliated 2D Sb suspensions and investigated their
PEC performances for water splitting. As a photoanode for PEC water splitting, the
optimal 2D Sb/TNRAs photoanode showed a significantly enhanced photocurrent density
(1.32 mA/cm2, AM 1.5 G), which is 1.65 times higher than that of pristine TiO2 nanorod
arrays. We conducted an in-depth study on the enhancement of PEC performance and
proposed a possible mechanism. The troublesome charge-transfer resistance of bare TiO2,
which blocks the PEC activity, was significantly reduced after the introduction of 2D Sb
onto TiO2 NRAs. The 2D Sb/TNRAs photoanode shows higher electron-hole separation
efficiency and lower interfacial impedance. Moreover, it can be observed from UV-Vis
absorption spectra that the 2D Sb/TNRAs heterostructure has an enhanced absorption
intensity throughout the ultraviolet to visible light region. Therefore, the construction of
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2D Sb/TNRAs heterojunctions plays an important role in inhibiting the photogenerated
electron-hole pair recombination and increasing the charge transfer rate.
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