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Abstract: Exploiting cost-effective and durable non-platinum electrocatalysts for oxygen reduction
reaction (ORR) is of great significance for the development of abundant renewable energy conversion
and storage technologies. Herein, a series of Co3O4 supported on graphene-like carbon (Co3O4/C)
samples were firstly effectively synthesized by one-step calcination of cobalt phthalocyanine and their
electrocatalytic performances were measured for ORR under an alkaline medium. By systematically
adjusting the calcination temperature of cobalt phthalocyanine, we found that the material pyrolyzed
at 750 ◦C (Co3O4/C−750) shows the best ORR electrocatalytic performance (half-wave potentials
of 0.77 V (vs. RHE) in 0.1 M KOH) among all the control samples. Moreover, it displays better
stability and superior methanol tolerance than commercial 20% Pt/C. The further electrochemical
test results reveal that the process is close in characteristics to the four-electron ORR process on
Co3O4/C−750. In addition, Co3O4/C−750 applied in the zinc–air battery presents 1.34 V of open
circuit potential. Based on all the characterizations, the enhanced electrocatalytic performances
of Co3O4/C−750 composite should be ascribed to the synergistic effect between Co3O4 and the
graphene-like carbon layer structure produced by pyrolysis of cobalt phthalocyanine, as well as its
high specific surface area.

Keywords: Co3O4; graphene-like carbon; oxygen reduction reaction; one-step calcination; cobalt
phthalocyanine

1. Introduction

The oxygen reduction reaction (ORR) is of great significance for the development of
abundant renewable energy conversion and storage technologies with low environmental
pollution, such as fuel cells (FCs) and metal–air batteries [1–5]. However, the inherent
sluggish kinetics of ORR hinders the extensive application of FCs and metal–air batter-
ies. Platinum and platinum-based electrocatalysts have been proven to enable the high
catalytic activity in ORR. However, the high cost and sensitivity to poisoning of Pt-based
electrocatalysts greatly impede their commercial applications [6–8]. Therefore, exploring
cost-effective and durable non-platinum catalysts for ORR has been drawing more and
more attention.

Nonprecious transition metal-based oxides (perovskite [9], spinels and pyrochlore [10–13],
single oxide [14,15], and multiple oxides [16], etc.), sulfides [17], nitrides [18], phos-
phides [19], organometallic compounds [20], and carbon-based materials [21,22] have
been extensively studied for ORR. Among them, Co3O4 with mixed valences of Co cations
(i.e., Co2+ and Co3+) seems to be one of the most competitive candidates for use in ORR due
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to their advantages of low cost and abundant reserves. The Co2+ ions are located on 1/8
of the tetrahedral ‘A’ sites and the Co3+ ions occupy 1/2 of the octahedral ‘B’ sites [23–25].
The presence of mixed valences of Co cations in the crystal structure could provide donor–
acceptor chemisorption sites for the reversible adsorption of oxygen, thus favouring the
ORR process [10,26,27]. Moreover, integrating the carbon-based materials with Co3O4 can
further improve the relatively high electrocatalytic activity and enhance the durability
generated by a synergistic effect between the two components [28–33]. However, there are
only several works which report on the combination of Co3O4 and carbon-based materials
via a one-step synthesis method for ORR.

In this work, a series of Co3O4 supported on graphene-like carbon (Co3O4/C) sam-
ples were firstly effectively synthesized by one-step calcination of cobalt phthalocyanine
and their electrocatalytic performances for ORR was measured under alkaline medium
conditions. By systematically adjusting the calcination temperature of CoPc, the sample
pyrolyzed at 750 ◦C (Co3O4/C−750) was shown to have the best ORR electrocatalytic
performance, with half-wave potentials of 0.77 V (vs. RHE) in 0.1 M KOH and an approxi-
mate four-electron ORR process. The stability and methanol tolerance of Co3O4/C−750
are better than those of commercial 20% Pt/C. In addition, Co3O4/C−750 applied in the
zinc–air battery presents 1.34 V of open-circuit potential. Based on all the characteriza-
tions, the enhanced electrocatalytic performances of Co3O4/C−750 composite should be
attributed to the synergistic effect between Co3O4 and the graphene-like carbon layer
structure produced by pyrolysis of CoPc, as well as its high-specificity surface area.

2. Experimental Section
2.1. Materials

Except for the specific statement, all chemicals and reagents were purchased from
China National Medicines Corporation (Shanghai, China), which were all analytical
reagents and used without any further purification.

2.2. Preparation of Co3O4/C

In a typical procedure, 5 mL 0.1 mol·L−1 CoPc was dispersed in 50 mL water and
stirred constantly. After that, 3 g NaCl and 3 g KCl were added into the above solution to
form a homogeneous solution. Then, the sample solution was freeze-dried. Subsequently,
the freeze-dried sample powder was calcined under different temperatures (700 ◦C, 750 ◦C,
800 ◦C, 900 ◦C and 1000 ◦C) in N2 for 2 h, with a temperature increase rate of 5 ◦C·min−1. The
final product was repetitively washed with water and anhydrous ethanol and dried at 80 ◦C
overnight. The different samples, pyrolyzed from 700 to 1000 ◦C, were named Co3O4/C−700,
Co3O4/C−750, Co3O4/C−800, Co3O4/C−900 and Co3O4/C−1000, respectively.

2.3. Characterization

Thermogravimetric analysis (TGA) curve was recorded using a Pyris-Diamond TG/DTA
instrument (Perkin Elmer, Waltham, MA, USA) in flowing N2 at a heating rate of 10 ◦C·min−1.
X−ray diffraction patterns of the resultant products were characterized using an Empyrean,
Holland Panalytical X−ray diffractometer (PANalytical B.V., Almelo, Holland) with Cu Kα

radiation (λ = 0.154178 nm). Transmission electron microscope (TEM) and high−resolution
TEM (HRTEM) images were obtained with a FEI−Tecnai F20 (200 kV, FEI, Hillsboro,
America). A scanning electron microscope (SEM, Zeiss, Oberkochen, Germany) was used in
the characterization of the surface morphology. An energy−dispersive spectrometer (EDS)
was used to check the element contents of the samples. X−ray photoelectron spectroscopy
(XPS) measurements were conducted on a KRATOS Axis ultra-DLD X−ray photo-electron
spectroscope (Kratos Analytical Ltd, Manchester, UK) with a monochromatic Al Kα X−ray
source. The Brunauer–Emmett–Teller (BET, Micromeritics, Atlanta, GA, USA) specific
surface area of the samples was recorded using an ASAP 2050 medium with a high-pressure
physical adsorption apparatus.



Nanomaterials 2023, 13, 1241 3 of 11

2.4. Electrochemical Measurements

Electrochemical correlation characterizations were performed by using a CHI 920C
electrochemical workstation (CH Instruments, Chenhua, Shanghai, China) to explore the
electrochemical properties of ORR in a standard three-electrode electrochemical cell. All
tests were carried out at room temperature (25 ◦C) with a RRDE-3A Rotating Ring Disk
Electrode Apparatus (ALS Co., Ltd., Tokyo, Japan). Graphite and Ag/AgCl were used as
the counter electrode and the reference electrode, respectively. The rotating disk electrode
(3 mm diameter, RDE) and rotating ring disk electrode (4 mm diameter, RRDE) were used
as working electrodes. In a typical process for the preparation of working electrode, 5 mg
sample was dispersed in 1 mL 0.5 wt.% Nafion aqueous solution. Then, the mixed solution
was subjected to ultrasonic treatment for 1 h to acquire a uniform solution (~5 mg·mL−1).
Subsequently, for RDE, 4 µL uniform catalyst solution was dropped onto the glassy carbon
electrode surface. The catalyst loading amount was calculated to be 0.28 mg·cm−2, while
7.1 µL uniform catalyst solution was dropped onto the RRDE to achieve the identical
loading amount. Finally, these prepared working electrodes were dried naturally in the air.
The Pt/C (20 wt%, Johnson Matthey (Shanghai, China) Catalyst Co., Ltd., Shanghai, China)
electrode was prepared with the same procedure. All experiments were conducted in 0.1 M
KOH. The electrolyte was saturated with N2 (or O2) for at least 30 min before each test and
the gas flow was maintained during the experiments. The cyclic voltammetry (CV) tests
of catalysts were performed in O2-saturated and N2-saturated 0.1 M KOH, respectively.
The linear sweep voltammogram (LSV) measurements were obtained in an O2-saturated
electrolyte solution under 1600 revolutions per minute (rpm). All test obtained potentials
were converted into the standard reversible hydrogen electrode (RHE) scale in accordance
with the formula E(RHE) = E(Ag/AgCl) + 0.059 × pH + 0.199 V. Similarly, the stability tests
were carried out in O2-saturated 0.1 M KOH under 1600 rpm.

3. Results and Discussion
3.1. Morphological and Structural Characterization

As is common knowledge, the CoPc has been known to exhibit electrocatalytic activity
since it was proven in 1964 [34]. Inspired by this, the CoPc was chosen as the raw material
to use to obtain the Co3O4. During the procedure of sample preparation, we found that
the addition of NaCl and KCl could promote the dissolution of CoPc in water and that
the above two salts could be removed thoroughly from the final product system via water
rinse. Figure S1a shows the structure diagram of CoPc, which is a well-known metal–ligand
coordination organic molecule whose derivatives are usually applied in oxygen reduction
reactions [30]. In the following experiments, the thermogravimetric analysis (TGA) of CoPc
was performed under N2 and the results are shown in Figure S1b. As can be seen, the mass
of CoPc begins to decrease significantly at about 600 ◦C. When the temperature surpasses
700 ◦C, the quality of CoPc drops sharply, indicating that its structure begins to collapse at
this temperature. Therefore, the calcination temperature was chosen from 700 ◦C. As the
temperature goes up, CoPc could gradually transform into Co3O4 and carbon, details of
which will be discussed in the following section.

There is abundant stacked graphene-like carbon in Co3O4/C−750, as shown in
Figure 1a. The presence of Co3O4 nanoparticles with a diameter of around 180 nm sepa-
rately and their evenly deposited nature on the surface of graphene-like carbon layers are
confirmed in the magnified SEM image (Figure 1b). As presented in Figure S2, the SEM
images of Co3O4/C−700, Co3O4/C−800, Co3O4/C−900 and Co3O4/C−1000 demonstrate
that as the temperature increases, the morphology of graphene-like carbon layers gradually
changes from thin flake to thick bulk. The average sizes of separate Co3O4 particles in the
SEM images are around 80 nm; however, at a higher calcination temperature, more CoPc
decompose and transform into Co3O4 and carbon. Obviously, more Co3O4 aggregates
appear on the carbon support instead of separate particles. Therefore, the calcination
temperature has a great influence on both the morphology of the resultant carbon and the
dispersion of Co3O4, which can further affect the catalytic properties of the composites.
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Figure 1. (a) SEM image, (b) Enlarged SEM image, (c) TEM image and (d) HRTEM image of
Co3O4/C−750. (e) HAADF-STEM image and (f) relevant element analysis diagram of Co3O4/C−750
(scale bar for illustration: 50 nm).

The TEM image of Co3O4/C−750 (Figure 1c) shows that the sample has a lamellar
structure, which is similar to that of graphene. Clearly, separate Co3O4 nanoparticles
with sizes pf around 100~200 nm can be observed on the graphene-like carbon layer.
The high-resolution TEM (HRTEM) image of Co3O4/C−750 is displayed in Figure 1d,
where the lattice spacing of 0.24 nm is corresponds well with the Co3O4 (311) plane. The
HAADF-STEM and relevant element characterization were performed to further reveal
the constituent of Co3O4/C−750. Corresponding to the STEM pattern of Co3O4/C−750
(Figure 1e), Figure 1f shows that the Co (green and blue), O (yellow), N (orange) and C
(red) elements are evenly distributed in the composite.

X−ray diffraction (XRD) measurements were carried out to explore the crystal phase
of Co3O4/C-750. As shown in Figure 2a, the characteristic peaks located at 36.9◦, 44.8◦,
59.4◦ and 65.2◦ are well indexed to (311), (400), (511) and (440) planes of Co3O4 (JCPDS
No. 43–1003), respectively. The strongest intensity of the peak appearing at about 26◦

can be assigned to the (002) facet of graphite carbon (JCPDS No. 65–6212) in the XRD
patterns. Except for the mentioned peaks, there is no other signal. The positions and relative
intensities of these peaks are consistent with those on the standard cards, demonstrating that
the sample is indeed composed of Co3O4 and graphitized carbon. The conclusion agrees
with the TEM result. At the same time, the XRD measurements were performed on other
samples obtained from different calcination temperatures shown in Figure S3. As shown
in illustration, there are also several characteristic peaks located at 36.9◦, 44.8◦, 59.4◦and
65.2◦, which corresponding to the (311), (400), (511) and (440) planes of Co3O4 (JCPDS No.
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43–1003). Notably, as the temperature increases, relative to the enhanced crystallinity of
Co3O4, the graphitization of carbon significantly improves, which is accordance with the
SEM results.
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Figure 2. (a) XRD patterns of Co3O4/C−750, Co3O4, and graphite (red, blue and green traces,
respectively, peaks labeled with * are attributed to Co3O4 and peak labeled with # is ascribed to C).
XPS characterizations of Co3O4/C−750 for (b) survey spectrum, high-resolution analysis of (c) Co
2p, (d) O 1s, (e) N 1s and (f) C 1s.

To explore the detailed information about the elemental character and oxidation state
of catalysts, X-ray photoelectron spectroscopy (XPS) was employed. As shown in the XPS
survey spectrum of Co3O4/C−750 (figure performance increases), this technique mani-
fests the existence of Co, C, N and O elements. No signal of Na, K or Cl elements was
detected, evidencing that NaCl and KCl were indeed all removed during the water washing
procedure. With regard to the high-resolution XPS spectrum of Co 2p (Figure 3c), it can
be deconvoluted with three peaks, corresponding to Co3+ (780.4eV and 795.5 eV), Co2+

(781.6eV and 797.3 eV) and the satellite peaks (786.3 eV and 803.8 eV) [35,36]. Similarly, the
high-resolution XPS spectrum of O 1s (Figure 2d) is clearly identified by the C=O (531.0 eV),
Co–O (532.2 eV), C–O (532.9 eV) and surface adsorbed water (533.6 eV) [37–39]. Meanwhile,
two single N species peaks in the spectrum XPS of N 1s (Figure 2e) correspond to graphitic
N (400.6 eV) and pyridinic N (398.5 eV), respectively [40]. Figure 2f shows four peaks corre-
sponding to C–O (284.1 eV), C=C (284.5 eV), C–O (285.2 eV) and C=O (286.7 eV) [37,41–44].
The above results demonstrate that Co3O4/C−750 was successfully synthesized.
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Figure 3. (a) CV curves of Co3O4/C−750 in N2− (black trace) and O2− (red trace) saturated 0.1 M
KOH solution at a sweeping rate of 50 mV·s−1, respectively. (b) LSV curves of Co3O4/C−750 and
20% Pt/C in O2−saturated 0.1 M KOH at 1600 rpm with 10 mV·s−1 sweep rate. (c) LSV curves
for Co3O4/C−750 at different rotation speeds (400–2000 rpm). (d) K−L plots of Co3O4/C−750 at
different electrode potentials (V vs. RHE).

Because of the special morphology of Co3O4/C, the specific surface areas of samples
prepared with different calcination temperatures were measured. Figure S4 shows the
N2 adsorption–desorption isotherms of samples prepared at different calcination temper-
atures. All the samples display a type IV pattern with an H3 hysteresis loop, except for
Co3O4/C−700 (black line). The Co3O4/C−750 exhibits the highest BET surface area of
139.8 m2·g−1, which is better than those of Co3O4/C−700 (42.3 m2·g−1), Co3O4/C−800
(80.6 m2·g−1), Co3O4/C−900 (47.4 m2·g−1) and Co3O4/C−1000 (44.9 m2·g−1). Combining
the results of SEM, TEM images and TGA curve, we conclude that even though CoPc does
not completely decompose at 750 ◦C, the resultant thin flake of the graphene-like carbon
layer and evenly dispersed separate Co3O4 particles together lead to a higher specific
surface area at this temperature.

3.2. Electrochemical Properties

Cyclic voltammetry (CV) and rotating disk electrode (RDE) measurements were ap-
plied to assess the ORR performances of the obtained catalysts. Figure 3a shows the
CV curves of Co3O4/C−750 in O2−saturated (red line) and N2−saturated (black line)
KOH solutions, respectively, implying that Co3O4/C−750 possesses obvious ORR activity.
Figure 3b exhibits the ORR linear sweep voltammogram (LSV) curves of Co3O4/C−750
and 20% Pt/C. The half−wave potential (E1/2) of Co3O4/C−750 is 0.77 V, which is slightly
lower than that of 20% for Pt/C (0.84 V). The RDE measurements with different rotating
speeds (400–2000 rpm) were carried out (Figure 3c) to further assess the pathway of the
ORR process over Co3O4/C−750, in which the limiting current density was enhanced
with an increase in the rotation rate, indicating a shortened diffusion distance at higher
rotation speeds [45]. Figure 3d displays the corresponding K−L plots from 0.3 to 0.7 V
vs. RHE. The calculated result reveals that the number (n) of electrons transferred is
~3.7 for Co3O4/C−750, confirming that it is close to the four-electron ORR process on
Co3O4/C−750 (details are shown in Supplementary Materials).



Nanomaterials 2023, 13, 1241 7 of 11

Figure 4a shows LSVs curves of Co3O4/C−750 and other control samples, including
the Co3O4/C−700, Co3O4/C−800, Co3O4/C−900 and Co3O4/C−1000 samples. As is
shown, Co3O4/C−750 has relatively superior ORR properties, especially its half-wave
potential (E1/2) of 0.77 V, outperforming those of the other samples. This can be attributed to
the evenly dispersed separate Co3O4 particles and the graphene-like carbon layer structure,
as well as its highest specific surface area among all the samples. The number of electrons
transferred of Co3O4/C−750 was also computed to be 3.6 from the RRDE measurement
(Figure 4b). The result is basically consistent with that derived from K−L plots (Figure 3d).
It further proves that this is close to the four-electron pathway ORR process. Simultaneously,
the electrochemical performances of pure Co3O4 and pure carbon black after 750 ◦C heat
treatment were assessed, a procedure which was conducted (as shown in Figure S5) for
the control experiments. The calculated numbers of electrons−transferred on the above
two control samples (3.4 and 2.5, respectively) were significantly lower than those on
the Co3O4/C−750 sample. Moreover, their half−wave potentials also could not reach
0.77 V. Besides a better ORR activity, Co3O4/C−750 also exhibits superior stability and good
methanol tolerance. Figure 4c shows that after 8000 cycles, the half−wave potential (E1/2) of
Co3O4/C−750 displays only a small left shift of ~16 mV, while 20% Pt/C gives substantial
left shift of ~82 mV, confirming that Co3O4/C−750 has a better stability than 20% Pt/C.
Figure 4d reveals the comparison of the durability between Co3O4/C−750 and 20% Pt/C
via an evaluation of the chronoamperometric responses. A volume of 3 mL methanol was
dropped into 97 mL 0.1 M KOH at 1000 s. The 20% Pt/C sample shows a significant decline,
however, Co3O4/C−750 has no obvious decay, implying Co3O4/C−750 shows superior
durability to 20% Pt/C. To further confirm the stability of Co3O4/C−750, the SEM/TEM
images, XRD pattern and high−resolution XPS spectrum of Co 2p for Co3O4/C−750 after
the ORR measurement were determined. As shown in Figure S6, there is almost no change
on the morphology of the sample before and after the reaction. Figure S7a shows that the
composition of Co2+ increased slightly after the reaction, indicating that a small part of
Co3+ species were reduced to Co2+ species during the reaction. However, the XRD patterns
of Co3O4/C−750 before and after the reaction exhibit negligible differences (Figure S7b).
In sum, the above results fully demonstrate that Co3O4/C−750 possesses good stability.

In order to further explore the ORR properties of Co3O4/C−750, its application in a
zinc–air battery was launched. The liquid mixture, dispersed with Co3O4/C−750, was
dropped on a piece of carbon cloth as the cathode while a zinc sheet was used as the anode.
Meanwhile, 6 M KOH was used as the electrolyte. Figure 5a presents polarization and
corresponding power density curves of Co3O4/C−750. The open circuit voltage (OCV) of
Co3O4/C−750 is 1.34 V and its power density can reach up to 74 mW·cm−2. In order to
assess the stability of the battery, a galvanostatic discharge experiment of Co3O4/C−750
was performed. As shown in Figure 5b, there is no significant voltage reduction at a current
density of 10 mA·cm−2 during the reaction time of 48 h, indicating that the zinc–air battery
possesses good stability.
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Co3O4/C−1000. (b) RRDE LSV curves for Co3O4/C−750, with GC disk−Pt ring electrodes
at 1600 rpm in O2−saturated 0.1 M KOH solution (scan rate, 10 mV·s−1). (c) LSV curves of
Co3O4/C−750 and 20% Pt/C after 8000 cycles in O2−saturated 0.1 M KOH solution. (d) LSV
curves of Co3O4/C−750 and 20% Pt/C in 0.1 M KOH, with and without methanol.
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4. Conclusions

A series of Co3O4 supported on graphene-like carbon (Co3O4/C) compositeswere ef-
fectively synthesized by one−step calcination of CoPc. Based on the TGA curve of CoPc, the
calcination temperatures were chosen as 700, 750, 800, 900 and 1000 ◦C. Among the obtained
samples, the material pyrolyzed at 750 ◦C (Co3O4/C−750) shows the best ORR electrocat-
alytic performance (half−wave potentials of 0.77 V (vs. RHE) in 0.1 M KOH); moreover, it
exhibits better stability and superior methanol tolerance than 20% Pt/C. The further elec-
trochemical measurement results reveal that it is close in values to the four−electron ORR
process on Co3O4/C−750. In addition, the application of Co3O4/C−750 in the zinc–air
battery presents 1.34 V of open circuit potential. The enhanced electrocatalytic performance
of Co3O4/C−750 can be ascribed to the synergistic effect between evenly dispersed sepa-
rate Co3O4 particles and a thin−flake graphene−like carbon layer produced by pyrolysis
of CoPc, as well as its high specific surface area. The obtained Co3O4/C−750 catalyst
shows effective electrocatalytic activity under the condition of alkalinity, which could be
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considered as a promising nonprecious ORR catalyst for energy storage and conversion
devices. Simultaneously, our study affords a feasible strategy for the development of
effective electrocatalysts in zinc–air batteries.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano13071241/s1, Figure S1: (a) The structure diagram of CoPc.
(b) TGA curve of CoPc under N2; Figure S2: SEM images of (a) Co3O4/C−700, (b) Co3O4/C−800,
(c) Co3O4/C−900 and (d) Co3O4/C−1000; Figure S3: XRD patterns of Co3O4 (JCPDS No. 43−1003),
Co3O4/C−700, Co3O4/C−800, Co3O4/C−900 and Co3O4/C−1000 (black, red, blue, pink and green
lines, respectively); Figure S4: N2 adsorption–desorption isotherms of Co3O4/C−700, Co3O4/C−750,
Co3O4/C−800, Co3O4/C−900 and Co3O4/C−1000 (black, red, blue, pink and green lines, respec-
tively); Figure S5: (a) LSV curves for Co3O4 at different rotation speeds (400−2000 rpm). (b) K−L
plots of Co3O4 at different electrode potentials (V vs. RHE). (c) LSV curves for carbon black after
750 ◦C heat treatment at different rotation speeds (400−2000 rpm). (d) K−L plots of carbon black
after 750 ◦C heat treatment at different electrode potentials (V vs. RHE); Figure S6: (a) SEM image
and (b) TEM image of Co3O4/C−750 after the ORR measurement; Figure S7: (a) High-resolution
XPS spectra of Co 2p and (b) XRD patterns of Co3O4/C−750 before and after the ORR measure-
ment. Section S1: Experimental section, structural characterization of CoPc and contrast samples, N2
adsorption–desorption isotherms of samples, and stability of sample after electrochemical test.
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