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Abstract: Nanoparticles have gained significance in modern science due to their unique characteristics
and diverse applications in various fields. Zeta potential is critical in assessing the stability of
nanofluids and colloidal systems but measuring it can be time-consuming and challenging. The
current research proposes the use of cutting-edge machine learning techniques, including multiple
regression analyses (MRAs), support vector machines (SVM), and artificial neural networks (ANNs),
to simulate the zeta potential of silica nanofluids and colloidal systems, while accounting for affecting
parameters such as nanoparticle size, concentration, pH, temperature, brine salinity, monovalent
ion type, and the presence of sand, limestone, or nano-sized fine particles. Zeta potential data
from different literature sources were used to develop and train the models using machine learning
techniques. Performance indicators were employed to evaluate the models’ predictive capabilities.
The correlation coefficient (r) for the ANN, SVM, and MRA models was found to be 0.982, 0.997, and
0.68, respectively. The mean absolute percentage error for the ANN model was 5%, whereas, for
the MRA and SVM models, it was greater than 25%. ANN models were more accurate than SVM
and MRA models at predicting zeta potential, and the trained ANN model achieved an accuracy of
over 97% in zeta potential predictions. ANN models are more accurate and faster at predicting zeta
potential than conventional methods. The model developed in this research is the first ever to predict
the zeta potential of silica nanofluids, dispersed kaolinite, sand–brine system, and coal dispersions
considering several influencing parameters. This approach eliminates the need for time-consuming
experimentation and provides a highly accurate and rapid prediction method with broad applications
across different fields.

Keywords: zeta potential; nanoparticles; nanofluids; colloidal system; artificial neural networks

1. Introduction

Nanoparticles have gained significant importance in science and technology due to
their unique properties and potential applications. Nanoparticles exhibit increased reactivity
and altered material properties due to their high surface-area-to-volume ratio. This can lead
to more efficient chemical, biological, and catalytic reactions as well as improved strength,
toughness, and conductivity of materials [1]. Nanoparticles have shown great potential in
medical applications such as drug delivery, imaging, and cancer therapy, as they can be
designed to target specific cells and tissues [2–5]. In addition, they are being explored for
their use in the oil and gas industry [6–15], energy storage and conversion [16–19], environ-
mental remediation [20,21], and information and communication technology, including
the manufacture of smaller and faster electronic devices and data storage systems [22,23].
Overall, nanoparticles hold great potential for a wide range of applications and their unique
properties make them a promising area of research.

Nanofluids are advanced types of fluids that contain dispersed nanoparticles and a
base fluid such as water, oil, or ethylene glycol. These nanoparticles, which are typically
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less than 100 nanometers in diameter and made of materials such as metals, oxides, and
carbides, modify the fluid’s properties and improve its performance. To create nanofluids,
the nanoparticles are first synthesized through techniques such as chemical precipitation
or sol-gel synthesis. They are then dispersed into the base fluid using methods such as
ultrasonication, magnetic stirring, or high-pressure homogenization. To ensure the stability
of the nanofluids, techniques such as adding surfactants or electrostatic stabilization are
used [24]. During nanofluid preparation, it is required to prevent the aggregation of
nanoparticles and maintain a stable dispersion to obtain maximum efficiency. On the
other hand, coagulation may also be advantageous in certain industries, such as water
treatment or water filtration. This rapidly growing field of research offers a wide range of
applications due to their unique properties and the improved performance of nanofluids
when compared to traditional fluids. Nanoparticles, which can be made from metal oxides,
metals, or carbon-based materials, give the fluid new and distinct thermal, electrical, and
optical properties [25,26]. The advantages of nanofluids include enhanced oil recovery from
petroleum reservoirs [27,28], fines migration control in sandstones [10,29,30], enhanced
thermal stability [31,32], corrosion resistance [33,34], and potential uses in other fields such
as the aerospace, automotive, and textile industries [35–41].

Zeta potential is a measure of the electrical charge that exists on the surface of nanopar-
ticles present in a dispersion. The electrical charge on the surface of particles in the colloid
arises from the adsorption of ions from the surrounding medium [10,42,43]. The electrical
charge is produced on the surface as a consequence of local free electrons in the solution.
These local free electrons tend to rearrange themselves into a non-zero charged zone that
resides close to the particle–solution interface. An electric double layer (EDL), comprising
a compact layer and a diffuse layer, is developed due to the distribution of charges at
solid–liquid interface and the equilibrium between the positive–negative ions in the liquid.
It is a thin, tightly packed layer of ions that is present just adjacent to the surface of a
charged particle. Since there is a high electrostatic attractive force present, the ions in this
layer remain immobile [44,45]. On the other hand, beyond this layer, the ions in the solution
are free to move about. The electrostatic potential at the border separating the compact
layer from the diffusion layer is called the zeta potential.

Zeta potential can be positive or negative and plays a key role in determining the
stability of nanofluids and colloidal systems [46,47]. A high absolute value of zeta poten-
tial indicates a more stable and dispersed nanofluid. Conversely, a low absolute value
of zeta potential signals a greater chance of the particles settling out or aggregating [48].
Dispersions containing nanoparticles are among the key situations in which zeta potential
measurement is quite helpful. Among various types of nanoparticles, silica, titanium
dioxide, carbon nanotubes, copper, clay, and aluminum oxide are the most extensively
utilized nanoparticles in the oil and gas and energy sector, pharmaceuticals, the automobile
industry, the construction sector, and textile and paint sectors [16,36,40–42]. Silica nanopar-
ticles are widely utilized in the petroleum industry due to their advantageous combination
of small size, high surface area, and versatility, making them effective at improving oil
recovery, fines migration control, drilling fluid stability, and removing contaminants from
crude oil [10,14,49–55].

The zeta potential of silica nanoparticles is influenced by various factors such as the
surrounding pH, salt concentration, temperature, and surface modification. The negative
zeta potential of silica nanoparticles is primarily due to the presence of silanol groups
on their surface that can ionize to form negatively charged silicate species in an aqueous
solution. In this context, a more negative zeta potential can prevent the aggregation and
sedimentation of silica nanoparticles in a colloid, thus maintaining the stability of the
system. Zeta potential is often used as a stability indicator for nanofluids and is considered
an important factor in determining the quality and shelf life of these fluids. Therefore, it is
essential to have an understanding of zeta potential since this is a critical parameter to take
into account while preparing stable dispersions.
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The measurement of zeta potential is essential in a wide variety of industries, includ-
ing the upstream petroleum sector to determine the interaction between oil, water, and
rock [56–63]; the interaction between cement and surfactant, and cement hydration and ad-
sorption in the construction industry [64,65]; wastewater treatment and the optimization of
water quality [66,67]; pigment dyeing in the textile industry [68,69]; mineral extraction from
suspensions and solvents [70,71]; and brewing yeast mixtures and beverage processing [72,73].

Several factors can influence the surface charge of nanoparticles and colloidal materials,
which, in turn, affect the zeta potential [74,75]. The pH of the aqueous medium and the
temperature of the dispersion [8,76–79], the ionic strength [8–10,42,76], the presence of
monovalent and divalent ions and other substances such as polymers and surfactants in
the solution [42,80,81], the weight percentage of the solute in the dispersion [8,10,42], and
the utilization of ultrasonication [80] are other critical parameters that influence the surface
charge of the colloidal system

Quantification of the zeta potential is one of the most straightforward techniques
for describing the surface charge of the particles in colloidal systems. Knowing the zeta
potential value as well as the variables that influence it enables us to carefully evaluate the
stability of colloidal systems. To determine the zeta potential, the electrophoretic mobility is
measured and then used to calculate the zeta potential through the Smoluchowski equation,
as shown in Equation (1) [82].

ζ =
3 UE η

2 ε F(ka)
(1)

The equation takes into account various factors such as particle speed, fluid viscosity,
electric field strength, and the balance between the electrical repulsion and friction forces
in the fluid. This equation is widely used in the field of colloid science to quantify zeta
potential and is a valuable tool for comprehending the charge on particles in fluids. The
streaming potential method is another commonly used technique to determine the zeta
potential of colloidal materials. The magnitude of the streaming current is proportional
to the zeta potential of the particles in the solution [83,84]. The zeta potential may also be
predicted with the use of modeling techniques, such as molecular simulations [74] and a
Monte Carlo simulation [85]. There have been few studies on the prediction of zeta potential
using one machine learning technique such as ZPRED or neural networks. In addition, these
studies have only considered a single medium with limited variables [86,87]. The current
research proposes various machine learning approaches considering several mediums
and variables to at least partly substitute mathematical modeling for experimentation. In
artificial neural networks, the factors that have the largest effect on the value of the zeta
potential are typically employed as inputs. This is because these variables can best predict
the future values of zeta potential.

Since the early 1990s, researchers in the natural sciences have started making use of
artificial neural networks [88–90]. They are composed of interconnected artificial neurons,
arranged in layers. The input layer receives data which is processed by the hidden layers
and the output layer delivers the computed results. Each artificial neuron in an ANN
performs basic mathematical operations on the inputs received and outputs a value that
is then transmitted to the next layer. Artificial neural networks are employed by the
petroleum industry to forecast reservoir performance, polymer viscosity, stability, particle
size, well-log interpretation, and enhanced oil recovery prediction [91–96].

Considering the effect of all the influencing factors, zeta potential measurement is a
time-consuming process that calls for an in-depth understanding of the experimentation
process and resource utilization. This research aimed to develop zeta potential prediction
models using data collected from previous experiments, employing artificial neural net-
works (ANNs), support vector machines (SVMs), and multiple regression (MRAs) analyses,
and to compare the accuracy of these three methods. In addition, zeta potential predictions
were made using the most accurate ANN model, and the results were encouraging. The
ANN model developed in this study is the first-ever model to predict zeta potential based
on various influencing parameters, offering broad applications across multiple fields. The
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proposed method eliminates the need for lengthy experimentation and provides a rapid
and accurate prediction approach while taking into account several critical parameters that
can impact zeta potential.

2. Research Methodology
2.1. Data Collection

To have a comprehensive data set, zeta potential data were obtained from published
sources, collecting 249 data points. Zeta potential data were collected, considering critical
parameters such as ionic strength, pH, temperature, presence of monovalent ions, type
and concentration of silica nanoparticles, and medium. The zeta potential data were based
on silica nanoparticles, covering a size range of 10–50 nm. The measurements were taken
across a wide range of experimental conditions, including varying concentrations of silica
nanoparticles, ranging from 0.005–6 wt%; temperatures, ranging from 20–150 ◦C; and
salinities for NaCl (30–315,000 ppm) and KCl (500–60,000 ppm). Furthermore, the pH
range of the samples extended from 1 to 11, thereby offering insight into the zeta potential
behavior under acidic, neutral, and alkaline conditions. Furthermore, the zeta potential
data were collected for five different mediums, including water, sand, glass beads, coal,
and kaolinite. These mediums were selected to investigate the effect of different surfaces
on the zeta potential. In order to model the effect of the medium, which is a categorical
variable, a few preprocessing steps were followed to transform it into a numerical variable.
The one-hot encoding method was used which involved converting each category of the
categorical variable into a binary variable. For instance, since our categorical variable had
five categories, then five binary variables were created, where each variable took on value
1 if the category was present and 0 otherwise. The collected data are presented briefly in
Table 1. The complete dataset is available as a Supplementary Data file for further reference.
In addition, in our previous study, we measured the zeta potentials of sand dispersions
containing silica nanoparticles and used them to validate the predictions of our model [10].

Table 1. Zeta potential data collection.

Input Parameter Values Output Sources

Silica nanoparticle size 10–50 nm

Zeta potential (mV) [10,14,52,76,97–117]

Nanoparticle
concentration 0.005–6 wt%

Temperature 20–150 ◦C

Salinity NaCl: 30–315,000 ppm
KCl: 500–60,000 ppm

pH 1–11

Medium Water; sand; glass
beads; coal; kaolinite

2.2. Data Analysis Techniques

The primary objective of this work was to develop a model that can accurately predict
the zeta potential of dispersion, while considering influencing factors, without requiring
extensive laboratory experiments. To achieve this goal, three machine learning approaches
were utilized, as follows:

2.2.1. Multiple Linear Regression (MLR)

Multiple linear regression is a statistical technique used to examine the relationship
between an outcome or dependent variable and several predictor or independent variables
by establishing a linear equation based on observed data. It presumes a straight-line
relationship between the dependent and independent variables and aims to reduce the
deviations or differences between the observed and estimated values of the dependent
variable. The objective of MLR is to identify the optimal coefficients for the predictor
variables that produce the lowest deviations and the most accurate prediction of the



Nanomaterials 2023, 13, 1209 5 of 17

outcome variable. The fitlm function in MATLAB is used to analyze the relationship
between different variables in MLR. Outliers are then identified and removed. By utilizing
the least-squares method, this function produces a linear regression model where one or
more independent variables, or predictors, are combined linearly to form a dependent
variable. Finally, the coefficients of terms are calculated. The plot function is used to
visualize and interpret the results.

2.2.2. Support Vector Machine (SVM) Model

Support vector machines (SVM) is an algorithm used for supervised machine learning
that can handle both classification and regression problems. It works by finding the optimal
boundary, called a hyperplane, that separates the data into different classes or predicts
a continuous outcome by maximizing the margin between the closest data points, called
support vectors, and the hyperplane. The SVM algorithm is capable of handling non-
linearly separable data by transforming it into a higher dimensional space where a linear
boundary can be established. This method is versatile and can be applied to a wide range
of data types. The SVM method is based on kernel functions and thus it is a nonparametric
method. The nonlinear SVM regression algorithm uses a nonlinear kernel function to map
the inputs to a high-dimensional space. The model tries to obtain the coefficients that
decrease the Lagrangian function. Different solver algorithms are available to solve the
SVM optimization problem. In this study, the Gaussian or radial basis function ‘rbf’ was
used as a kernel function while the sequential minimal optimization (SMO) technique was
used to solve the regression optimization problem. A convergence criterion was specified,
and the solver stopped computation once the criterion was met.

The optimum SVM regression model is obtained by optimizing the hyperparameters.
As a result of optimization, the regression output with the lowest calculated cross-validation
loss is obtained. The model generalization is evaluated by computing the loss of the model
on the test dataset. To evaluate the accuracy of the zeta potential predictions, performance
parameters such as the root mean square error (RMSE), mean absolute percentage error
(MAPE), and correlation coefficient (r) were calculated for both the training and testing
datasets. These parameters were computed by comparing the actual and predicted values
of the zeta potential.

2.2.3. Artificial Neural Network (ANN) Model

In general, ANN models consist of input parameters, hidden layers with neurons, an
activation function, and output layers interconnected through neurons. Signals from one
layer are summed up in the next layer. The training process then applies the “bias and
weights” procedure to this summed value. Each signal from neurons is estimated by an
activation function. In order to effectively predict zeta potential using an ANN model, the
input layer must contain variables that have an impact on zeta potential. Therefore, the
selection of neurons for the input layer takes into account the behavior of these parameters
and their effect on zeta potential measurement conditions. A training process consisting of
1000 epochs was conducted to ensure the model achieved optimal performance. There are
several types of ANN models according to the structure and method of processing data.
One of the most common ANN models is a feed-forward neural network where neurons of
the input layer connect to one following layer. In this study, the ‘trainbr’ training function
was employed where Levenberg–Marquardt optimization was used to update the weight
and bias variables. To create a network that generalizes well, it first identifies the optimal
mix of squared errors and weights.

Data sets are converged to a matrix, imported into MATLAB script, and normalized.
These parameters are used for training, validating, and testing the models. The data
points are randomly divided into 2 sets including training (80%), and testing (20%), as
evidenced by some recent studies [118–120]. The Levenberg–Marquardt method is used
to train the feed-forward ANN model. The fitnet function in MATLAB is used to fit an
ANN model to the data. Furthermore, the ‘trainbr’ training function is employed where
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Levenberg–Marquardt optimization is used to updating the weight and bias variables.
To create a network that generalizes well, it first identifies the optimal mix of squared
errors and weights. The trial-and-error process is carried out according to the hyperbolic
tangent sigmoid transfer (tansig) activation function in the hidden layers and the pure
linear transfer function (purelin) in the output layer as a suitable structure of the ANN
model. In addition, the accuracy of the model directly depends on the number of hidden
layers and the number of neurons. Various ANN model configurations were evaluated,
and the final model was selected with two hidden layers having ten neurons in each layer,
as schematically shown in Figure 1. The finalized model was run several times to obtain
the best values of the correlation coefficient for the actual and predicted values for both
data sets.

Figure 1. A schematic of the developed ANN model.

To evaluate the generalization of the models, three performance parameters were
estimated using all the data analysis methods. The correlation coefficient (r), root mean
squared error (RMSE), and mean absolute percentage error (MAPE) were calculated and
compared to determine the best method for predicting zeta potential.

The correlation coefficient is an important statistical measure to evaluate the goodness
of a model. It ranges from 0 to 1, where 0 indicates no relationship and 1 indicates a perfect
agreement between the actual and predicted values. Equation (2) is used to calculate
‘r’ [121].

r = ∑(xi − x)(yi − y)√
∑(xi − x)2 ∑(yi − y)2

(2)

RMSE is a statistical measure used to evaluate the generalization ability of a model. It
is calculated as the square root of the mean of the squared differences between the predicted
and actual values of the target variable. RMSE measures the average difference between
the predicted and actual values and gives an idea of how much error the model makes in
its predictions. A lower RMSE value indicates that the model has high accuracy, while a
higher RMSE value indicates that the model is less accurate. The RMSE was calculated
using Equation (3).

RMSE =

√
∑n

i=1
(
µp(i)− µa(i)

)2

n
(3)

The mean absolute percentage error (MAPE), as given by Equation (4), is another
important statistical measure for evaluating the quality of a model. A model is considered
efficient and accurate if its MAPE is small or closer to zero.

MAPE =
1
n

n

∑
i=1

∣∣µp(i)− µa(i)
∣∣

µa(i)
(4)

3. Results and Discussion

The machine learning techniques of MLR, SVM, and ANN were employed, and the
results are presented in the following section.
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3.1. The MLR Results

The MLR outputs represented in Figure 2 show that the predicted zeta potentials
by the multiple linear regression model do not match the actual values accurately, with
a correlation coefficient of 0.68. It shows a positive correlation, but the relationship is
not perfect. This could be due to the MLR model’s inability to capture the underlying
nonlinearity of the data and the scarcity of available data points, limiting the generalization
capability of the model. Moreover, Table 2 shows the other estimated indices for the
predicted zeta potentials based on the MLR model. A high RMSE of 10.722 shows how
much predicted values deviate from actual values of zeta potential using the approach of
Euclidean distance. Similarly, a MAPE value of 0.265 indicates that the average deviation
of the forecast from the actual value is 26.5%, meaning that the forecast values are off by
roughly one-quarter of the actual values. This indicates that the inadequacy of the MLR
model to predict zeta potential accurately could also be due to the model’s reliance on
multiple predictors, leading to underfitting and, hence, poor generalization.

Figure 2. Actual and predicted zeta potentials from MLR.

Table 2. MLR model performance indexes.

Response Variable Indices Value

Zeta potential
Correlation coefficient 0.680

RMSE 10.722
MAPE 0.267

3.2. The SVM Results

The results of the SVM model for zeta potential modeling and prediction are presented
in Figure 3. It is evident from the figure that the SVM model performs substantially
better than the MLR model, especially during ‘training’ as it considers the non-linear
relationship between the response and predictors. Various kernel functions, such as linear,
rbf, and polynomial, were tested, and the ‘rbf’ kernel function delivered the most accurate
predictions of the zeta potential, with an excellent correlation coefficient of over 0.997 for
the training set. This suggests that the SVM model has a stronger ability to capture the
non-linear patterns in the data, leading to improved performance compared to the MLR
model. However, the correlation coefficient of the ‘test’ data is 0.516, showing that the SVM
model is unable to predict the zeta potential effectively due to the complexity of data with
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several variables. Table 3 provides a comprehensive summary of the estimated indices
and correlation coefficients for the predicted zeta potentials based on the SVM model for
both training and test data. The RMSE and MAPE for training data are 1.155 and 0.0191,
respectively, indicating an excellent capturing of data points during training. On the other
hand, the higher values of RMSE and MAPE of test data, 12.271 and 0.2881, respectively,
show the inability of the SVM model for prediction.

Figure 3. Actual and predicted zeta potentials from SVM (training and test data).

Table 3. SVM model performance indexes.

Response Variable Indices Category Value

Zeta potential

Correlation coefficient
Training 0.997

Test 0.516

RMSE
Training 1.155

Test 12.271

MAPE
Training 0.019

Test 0.288

Zeta Potential Prediction Using SVM Model

The measurement conditions for the zeta potential of the silica nanoparticles–sand–
brine system were obtained from our previous study [10] and used as input for the SVM
model to make predictions. To ensure consistency and reliability in the model’s outcomes,
the operating conditions were kept the same. The results of zeta potential prediction
in the presence of silica nanoparticles using the SVM model were not encouraging, as
indicated in Figure 4a, with a correlation coefficient of only 0.60. Likewise, the zeta
potential measurement conditions for the sand–brine system without silica nanoparticles
were obtained from the literature [107] and used as input to predict the zeta potential, and
the results are shown in Figure 4b. The low correlation coefficient of 0.15 indicates that
the SVM model was unable to predict zeta potential when provided with the conditions
of unseen data. Although the SVM model performed well during the training phase, it
was unable to capture the complexity of the zeta potential data with multiple variables
and provide satisfactory results. The SVM model failed in prediction due to overfitting
(r = 0.997), whereas the model worked perfectly on training data but failed to generalize
to new data. There have been studies that suggest that SVM models may not be able to
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accurately predict outcomes in complex datasets which contain multiple variables, are not
linearly separable, or have outliers [122,123].

Figure 4. Zeta potential predictions using SVM model: (a) sand with nanoparticles and (b) only sand.

3.3. The ANN Results

Figure 5 presents the impressive performance of the ANN model for predicting zeta
potential, with predicted values closely matching the actual zeta potential. The correlation
coefficients for training and test data are 0.982 and 0.923, respectively. When the correlation
coefficient for the training data is 0.982 and for the test data is 0.923, it suggests that the
ANN can capture the non-linearity of both the training and test data with a high degree of
accuracy. This indicates that the model performs well at predicting the outcomes for new,
unseen data, and is not just overfitting the training data. In addition, Table 4 provides a
detailed overview of the model performance, including the indexes that suggest excellent
agreement between the predicted and actual values. The RMSE values for training and
test are 2.754 and 5.347, respectively, indicating that the model’s predictions are highly
concentrated around the best-fit line. Additionally, MAPE for both training and test data
are 0.053 and 0.131, respectively, indicating that the model performs exceptionally well
on both training and test data. Overall, the ANN model demonstrated a significantly
better performance than both the MLR and SVM approaches, which is a testament to its
robustness and effectiveness in capturing the non-linear patterns and relationships within
the data.

Table 4. ANN model performance indexes.

Response Variable Indices Category Value

Zeta potential

Correlation coefficient
Training 0.982

Test 0.923

RMSE
Training 2.754

Test 5.347

MAPE
Training 0.053

Test 0.131



Nanomaterials 2023, 13, 1209 10 of 17

Figure 5. Actual and predicted zeta potentials from ANN (training and test data).

Zeta Potential Prediction Using ANN Model

The most accurate predictions of zeta potential for systems involving silica nanoparticles–
sand–brine and sand–brine were made using the ANN model that performed the best.
The zeta potential measurement conditions used for the ANN model were obtained from
our previous study [10] and kept consistent to ensure reliable and accurate predictions.
As depicted in Figure 6a, the ANN model was able to generate zeta potential predictions
that were in close agreement with the measured data. With a correlation coefficient of
0.972 for actual and predicted values, the developed ANN model performed remarkably
well at predicting the zeta potential of the silica nanoparticles–sand–brine system with
varying concentrations of nanoparticles and other influencing parameters. This high level
of accuracy suggests that the ANN model was able to perform excellently even when
presented with unseen data. Similarly, the zeta potential measurement conditions for the
sand–brine system alone were also obtained from the literature and utilized as input to
predict the zeta potential [107]. The ANN model was also able to accurately predict the zeta
potential for a sand–brine system alone, with a remarkably strong correlation coefficient
of 0.998 for actual and predicted values, as presented in Figure 6b. This indicates that the
ANN model was highly effective at producing accurate and reliable predictions for this
particular system as well. This approach helped to ensure that the predictions generated
by the ANN model were based on reliable and consistent data, which would allow for
accurate comparison with the actual experimental results.
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Figure 6. Zeta potential predictions using ANN model: (a) with nanoparticles and (b) with sand.

3.4. Comparative Analysis of ANNs and SVM

In this study, the performance of three distinct machine learning methods for pre-
dicting zeta potential based on seven input parameters was assessed and compared. The
outcomes of these different techniques were analyzed and evaluated using various perfor-
mance metrics, including correlation coefficient, MAPE, and RMSE values, as shown in
Tables 2–4. These results indicate that the ANN model is the most effective approach for
predicting zeta potential with multiple independent parameters, due to its ability to cap-
ture complex non-linear patterns within the data and produce highly accurate predictions,
as presented in Figure 7. The SVM model, which also considers non-linearity, achieved
excellent results for training data but failed with test data and prediction with unseen data.
There could be various reasons why the ANN outperforms a support SVM on the test data,
despite the SVM offering a superior correlation coefficient during training. Overfitting of
the training data could have occurred, leading to a poor generalization of the SVM model.
ANNs are more adept at generalizing to new data and can capture nonlinear relationships
between variables, whereas SVMs may struggle to recognize the underlying pattern in
the data. SVM performance relies heavily on kernel selection and associated parameters,
which, if not optimized, can result in a subpar performance on test data. ANNs are more
suited to data with complex nonlinear relationships, whereas SVMs excel on data with a
clear boundary between classes. Overall, this study provides valuable insights into the
effectiveness of different machine learning techniques for predicting zeta potential and
highlights the importance of selecting appropriate methods that can effectively handle
the complexity and non-linearity of the zeta potential data when dealing with various
influential parameters.
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Figure 7. Comparative analysis of SVM and ANN models.

4. Conclusions

Many sectors, such as pharmaceuticals, construction, pigment production, petroleum,
mineral processing, and others, rely on the measurement of the zeta potential to assess the
stability of colloidal suspensions. Therefore, the prediction of zeta potential is necessary
to help save both time and money. In this study, machine learning methods including
MLR, SVM, and ANNs were tested to estimate zeta potential based on various affecting
parameters. The following conclusions are made:

• The correlation coefficient for the developed MLR model was found to be 0.68, possibly
due to the model’s consideration of seven predictors and the intricate relationship
between these predictors and the response variable. This suggests that the model’s
ability to predict zeta potential is limited due to the nonlinearity of data.

• The SVM model shows a better correlation between predicted and experimental zeta
potential compared to the MLR model, with an excellent correlation coefficient of 0.997
for the training set. This is because the SVM model can capture the nonlinearity of the
relationship between predictors and response variables. However, it failed to provide
acceptable results for the test data and predictions due to the complexity of the system
with several variables.

• Compared to the MLR and SVM models, the ANN model presents the strongest and
most significant correlation between predicted and experimental zeta potential for both
training and test sets, with correlation coefficients of 0.982 and 0.923, respectively, indi-
cating that the model has a high degree of accuracy. Additionally, the ANN model was
able to accurately predict zeta potentials when specific measurement conditions were
used as inputs, which were obtained from the literature. The predicted zeta potential
closely matched the actual values with correlation coefficients of more than 97%.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano13071209/s1, Table S1: Input Data for machine learning
models. Reference [124] is cited in the supplementary materials.
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Nomenclature

r correlation coefficient
xi values of the x-variable in a sample
x mean of the values of the x-variable
yi values of the y-variable in a sample
y mean of the values of the y-variable
F(ka) Debye function
UE electrophoretic mobility
η viscosity of the medium
ε dielectric constant

References
1. Samuel, M.S.; Ravikumar, M.; John, J.A.; Selvarajan, E.; Patel, H.; Chander, P.S.; Soundarya, J.; Vuppala, S.; Balaji, R.;

Chandrasekar, N. A Review on Green Synthesis of Nanoparticles and Their Diverse Biomedical and Environmental Appli-
cations. Catalysts 2022, 12, 459. [CrossRef]

2. Ahmad, F.; Salem-Bekhit, M.M.; Khan, F.; Alshehri, S.; Khan, A.; Ghoneim, M.M.; Wu, H.-F.; Taha, E.I.; Elbagory, I. Unique
Properties of Surface-Functionalized Nanoparticles for Bio-Application: Functionalization Mechanisms and Importance in
Application. Nanomaterials 2022, 12, 1333. [CrossRef]

3. Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering Precision Nanoparticles for
Drug Delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [CrossRef]

4. Riley, R.S.; Day, E.S. Gold Nanoparticle-mediated Photothermal Therapy: Applications and Opportunities for Multimodal Cancer
Treatment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017, 9, e1449. [CrossRef] [PubMed]

5. Garino, N.; Limongi, T.; Dumontel, B.; Canta, M.; Racca, L.; Laurenti, M.; Castellino, M.; Casu, A.; Falqui, A.; Cauda, V. A
Microwave-Assisted Synthesis of Zinc Oxide Nanocrystals Finely Tuned for Biological Applications. Nanomaterials 2019, 9, 212.
[CrossRef] [PubMed]

6. Muneer, R.; Hashmet, M.R.; Pourafshary, P. Application of DLVO Modeling to Study the Effect of Silica Nanofluid to Reduce
Critical Salt Concentration in Sandstones. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1186, 12001. [CrossRef]

7. Muneer, R.; Hashmet, M.R.; Pourafshary, P. Prediction of Critical pH for Fines Migration Pre-and Post-Nanofluid Treatment in
Sandstone Reservoirs Using the DLVO Modelling. In Proceedings of 8th World Congress on Mechanical, Chemical and Material
Engineering (MCM’22), Prague, Czech Republic, 31 July–2 August 2022.

8. Muneer, R.; Pourafshary, P.; Hashmet, M.R. Application of DLVO Modeling to Predict Critical PH for Fines Migration Pre-and
Post-SiO2 and MgO Nanofluid Treatments in Sandstones. J. Fluid Flow Heat Mass Transf. 2022, 9, 106. [CrossRef]

9. Muneer, R.; Rehan Hashmet, M.; Pourafshary, P. Fine Migration Control in Sandstones: Surface Force Analysis and Application of
DLVO Theory. ACS Omega 2020, 5, 31624–31639. [CrossRef]

10. Muneer, R.; Hashmet, M.R.; Pourafshary, P. DLVO Modeling to Predict Critical Salt Concentration to Initiate Fines Migration
Pre-and Post-Nanofluid Treatment in Sandstones. SPE J. 2022, 27, 1915–1929. [CrossRef]

11. Ulasbek, K.; Hashmet, M.R.; Pourafshary, P.; Muneer, R. Laboratory Investigation of Nanofluid-Assisted Polymer Flooding in
Carbonate Reservoirs. Nanomaterials 2022, 12, 4258. [CrossRef]

12. Issakhov, M.; Shakeel, M.; Pourafshary, P.; Aidarova, S.; Sharipova, A. Hybrid Surfactant-Nanoparticles Assisted CO2 Foam
Flooding for Improved Foam Stability: A Review of Principles and Applications. Pet. Res. 2021, 7, 186–203. [CrossRef]

13. Zhangaliyev, M.M.; Hashmet, M.R.; Pourafshary, P. Laboratory Investigation of Hybrid Nano-Assisted-Polymer Method for EOR
Applications in Carbonate Reservoirs. In Offshore Technology Conference Asia; OnePetro: Richardson, TX, USA, 2022.

14. Hasannejad, R.; Pourafshary, P.; Vatani, A.; Sameni, A. Application of Silica Nanofluid to Control Initiation of Fines Migration.
Pet. Explor. Dev. 2017, 44, 850–859. [CrossRef]

15. Ogolo, N.A.; Olafuyi, O.A.; Onyekonwu, M.O. Enhanced Oil Recovery Using Nanoparticles. In Proceedings of the SPE Saudi Arabia
Section Technical Symposium and Exhibition; OnePetro: Richardson, TX, USA, 2012.

http://doi.org/10.3390/catal12050459
http://doi.org/10.3390/nano12081333
http://doi.org/10.1038/s41573-020-0090-8
http://doi.org/10.1002/wnan.1449
http://www.ncbi.nlm.nih.gov/pubmed/28160445
http://doi.org/10.3390/nano9020212
http://www.ncbi.nlm.nih.gov/pubmed/30736299
http://doi.org/10.1088/1757-899X/1186/1/012001
http://doi.org/10.11159/jffhmt.2022.014
http://doi.org/10.1021/acsomega.0c03943
http://doi.org/10.2118/209588-PA
http://doi.org/10.3390/nano12234258
http://doi.org/10.1016/j.ptlrs.2021.10.004
http://doi.org/10.1016/S1876-3804(17)30096-4


Nanomaterials 2023, 13, 1209 14 of 17

16. Julien, C.M.; Mauger, A. Nanostructured MnO2 as Electrode Materials for Energy Storage. Nanomaterials 2017, 7, 396. [CrossRef]
[PubMed]

17. Pasquini, L. Nanostructured Materials for Energy Storage and Conversion. Nanomaterials 2022, 12, 1583. [CrossRef]
18. Ansari, S.A. Graphene Quantum Dots: Novel Properties and Their Applications for Energy Storage Devices. Nanomaterials 2022,

12, 3814. [CrossRef]
19. Kiani, M.S.; Sadirkhanov, Z.T.; Kakimov, A.G.; Parkhomenko, H.P.; Ng, A.; Jumabekov, A.N. Solution-Processed SnO2 Quantum

Dots for the Electron Transport Layer of Flexible and Printed Perovskite Solar Cells. Nanomaterials 2022, 12, 2615. [CrossRef]
20. Gulzar, A.B.M.; Mazumder, P.B. Use of Nanoparticles for Environmental Remediation. In Handbook of Research on Green Synthesis

and Applications of Nanomaterials; IGI Global: Hershey, PA, USA, 2022; pp. 223–246.
21. Rafeeq, H.; Hussain, A.; Ambreen, A.; Waqas, M.; Bilal, M.; Iqbal, H.M.N. Functionalized Nanoparticles and Their Environmental

Remediation Potential: A Review. J. Nanostructure Chem. 2022, 12, 1007–1031. [CrossRef]
22. Gu, M.; Zhang, Q.; Lamon, S. Nanomaterials for Optical Data Storage. Nat. Rev. Mater. 2016, 1, 16070. [CrossRef]
23. Pandey, P. Role of Nanotechnology in Electronics: A Review of Recent Developments and Patents. Recent Pat. Nanotechnol. 2022,

16, 45–66.
24. Bhanvase, B.A.; Barai, D. Nanofluids for Heat and Mass Transfer: Fundamentals, Sustainable Manufacturing and Applications; Academic

Press: Cambridge, MA, USA, 2021; ISBN 0128219475.
25. Bindu, M.V.; Herbert, G.M.J. Experimental Investigation of Stability, Optical Property and Thermal Conductivity of Water Based

MWCNT-Al2O3-ZnO Mono, Binary and Ternary Nanofluid. Synth. Met. 2022, 287, 117058. [CrossRef]
26. Sun, C.; Qin, C.; Zhai, H.; Zhang, B.; Wu, X. Optical Properties of Plasma Dimer Nanoparticles for Solar Energy Absorption.

Nanomaterials 2021, 11, 2722. [CrossRef]
27. Sun, X.; Zhang, Y.; Chen, G.; Gai, Z. Application of Nanoparticles in Enhanced Oil Recovery: A Critical Review of Recent Progress.

Energies 2017, 10, 345. [CrossRef]
28. ShamsiJazeyi, H.; Miller, C.A.; Wong, M.S.; Tour, J.M.; Verduzco, R. Polymer-coated Nanoparticles for Enhanced Oil Recovery.

J. Appl. Polym. Sci. 2014, 131, 40576. [CrossRef]
29. Zhao, X.; Qiu, Z.; Gao, J.; Ren, X.; Li, J.; Huang, W. Mechanism and Effect of Nanoparticles on Controlling Fines Migration in

Unconsolidated Sandstone Formations. SPE J. 2021, 26, 3819–3831. [CrossRef]
30. Díez, R.; Medina, O.E.; Giraldo, L.J.; Cortés, F.B.; Franco, C.A. Development of Nanofluids for the Inhibition of Formation Damage

Caused by Fines Migration: Effect of the Interaction of Quaternary Amine (CTAB) and MgO Nanoparticles. Nanomaterials 2020,
10, 928. [CrossRef] [PubMed]

31. Younes, H.; Mao, M.; Murshed, S.M.S.; Lou, D.; Hong, H.; Peterson, G.P. Nanofluids: Key Parameters to Enhance Thermal
Conductivity and Its Applications. Appl. Therm. Eng. 2022, 207, 118202. [CrossRef]

32. Hamze, S.; Berrada, N.; Cabaleiro, D.; Desforges, A.; Ghanbaja, J.; Gleize, J.; Bégin, D.; Michaux, F.; Maré, T.; Vigolo, B. Few-Layer
Graphene-Based Nanofluids with Enhanced Thermal Conductivity. Nanomaterials 2020, 10, 1258. [CrossRef]

33. Dong, J.; Zheng, Q.; Xiong, C.; Sun, E.; Chen, J. Experimental Investigation and Application of Stability and Thermal Characteris-
tics of SiO2-Ethylene-Glycol/Water Nanofluids. Int. J. Therm. Sci. 2022, 176, 107533. [CrossRef]

34. Navarro, M.E.; Palacios, A.; Jiang, Z.; Avila, A.; Qiao, G.; Mura, E.; Ding, Y. Effect of SiO2 Nanoparticles Concentration on the
Corrosion Behaviour of Solar Salt-Based Nanofluids for Concentrating Solar Power Plants. Sol. Energy Mater. Sol. Cells 2022,
247, 111923. [CrossRef]

35. Kulkarni, H.B.; Nadakatti, M.M.; Kulkarni, S.C.; Kulkarni, R.M. Investigations on Effect of Nanofluid Based Minimum Quantity
Lubrication Technique for Surface Milling of Al7075-T6 Aerospace Alloy. Mater. Today Proc. 2020, 27, 251–256. [CrossRef]

36. Divya, A.; Bala Anki Reddy, P. Aerospace Aspects of Electromagnetohydrodynamic Dusty Flow of Hybrid Nanofluid with
Entropy Generation over a Rotating Disk. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2022. [CrossRef]

37. Shah, T.R.; Ali, H.M.; Janjua, M.M. On Aqua-Based Silica (SiO2–Water) Nanocoolant: Convective Thermal Potential and
Experimental Precision Evaluation in Aluminum Tube Radiator. Nanomaterials 2020, 10, 1736. [CrossRef]

38. Ahmad, H.; Al-Khaled, K.; Sowayan, A.S.; Abdullah, M.; Hussain, M.; Hammad, A.; Khan, S.U.; Tlili, I. Experimental Investigation
for Automotive Radiator Heat Transfer Performance with ZnO–Al2O3/Water-Based Hybird Nanoparticles: An Improved Thermal
Model. Int. J. Mod. Phys. B 2023, 37, 2350050. [CrossRef]

39. Tinti, A.; Carallo, G.A.; Greco, A.; Romero-Sánchez, M.D.; Vertuccio, L.; Guadagno, L. Effective Practical Solutions for De-Icing of
Automotive Component. Nanomaterials 2022, 12, 2979. [CrossRef] [PubMed]
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81. Mucha, M.; Maršálek, R.; Bukáčková, M.; Zelenková, G. Interaction among Clays and Bovine Serum Albumin. RSC Adv. 2020, 10,
43927–43939. [CrossRef] [PubMed]

82. Smoluchowski, M. von Contribution to the Theory of Electro-Osmosis and Related Phenomena. Bull. Int. Acad. Sci. Cracovie 1903,
3, 184–199.

83. Li, Z.; Liu, Y.; Zheng, Y.; Xu, R. Zeta Potential at the Root Surfaces of Rice Characterized by Streaming Potential Measurements.
Plant Soil 2015, 386, 237–250. [CrossRef]

84. Luong, D.T.; Rudolf, S. Zeta Potential Measurement Using Streaming Potential in Porous Media. VNU J. Sci. Math. 2015, 31, 4.
85. Liu, H.H.; Lanphere, J.; Walker, S.; Cohen, Y. Effect of Hydration Repulsion on Nanoparticle Agglomeration Evaluated via a

Constant Number Monte–Carlo Simulation. Nanotechnology 2015, 26, 45708. [CrossRef]
86. Marsalek, R.; Kotyrba, M.; Volna, E.; Jarusek, R. Neural Network Modelling for Prediction of Zeta Potential. Mathematics 2021,

9, 3089. [CrossRef]
87. Grisham, D.R.; Nanda, V. Zeta Potential Prediction from Protein Structure in General Aqueous Electrolyte Solutions. Langmuir

2020, 36, 13799–13803. [CrossRef]
88. Peterson, K.L. Artificial Neural Networks and Their Use in Chemistry. Rev. Comput. Chem. 2000, 16, 53–140.
89. Duch, W.; Diercksen, G.H.F. Neural Networks as Tools to Solve Problems in Physics and Chemistry. Comput. Phys. Commun. 1994,

82, 91–103. [CrossRef]
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